All of lore.kernel.org
 help / color / mirror / Atom feed
From: Wu Hao <hao.wu@intel.com>
To: atull@kernel.org, mdf@kernel.org, linux-fpga@vger.kernel.org,
	linux-kernel@vger.kernel.org
Cc: linux-api@vger.kernel.org, luwei.kang@intel.com,
	yi.z.zhang@intel.com, hao.wu@intel.com,
	Enno Luebbers <enno.luebbers@intel.com>,
	Xiao Guangrong <guangrong.xiao@linux.intel.com>
Subject: [PATCH v7 01/29] docs: fpga: add a document for FPGA Device Feature List (DFL) Framework Overview
Date: Sat, 30 Jun 2018 08:53:08 +0800	[thread overview]
Message-ID: <1530320016-24712-2-git-send-email-hao.wu@intel.com> (raw)
In-Reply-To: <1530320016-24712-1-git-send-email-hao.wu@intel.com>

Add a document for FPGA Device Feature List (DFL) Framework Overview.

Signed-off-by: Enno Luebbers <enno.luebbers@intel.com>
Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Wu Hao <hao.wu@intel.com>
Acked-by: Alan Tull <atull@kernel.org>
---
v2: added FME fpga-mgr/bridge/region platform driver to driver organization.
    updated open discussion per current implementation.
    fixed some typos.
v3: use FPGA base region as container device instead of fpga-dev class.
    split common enumeration code from pcie driver to functions exposed by
    device feature list framework.
    update FME performance reporting which supports both integrated (iperf/)
    and discrete (dperf/) FPGA solutions.
v4: rename this doc to Device Feature List (DFL) Framework Overview (dfl.txt)
    add Device Feature List introduction and re-organize the content.
    add description for port reset, bitstream_id/metadata and etc.
v5: remove introduction of the APIs/features which aren't covered in this patchset.
    replace "blue/green bitstream" terminology with "static region" and "PR bitstream".
    add a "DFL_" prefix to IOCTL APIs introduced by DFL framework.
    s/FPGA Bus Device Module/FPGA DFL Device Module/
    fix typos, improve descriptions per comments from Alan Tull against v4.
v6: add Acked-by from Alan.
v7: fix typoes
---
 Documentation/fpga/dfl.txt | 285 +++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 285 insertions(+)
 create mode 100644 Documentation/fpga/dfl.txt

diff --git a/Documentation/fpga/dfl.txt b/Documentation/fpga/dfl.txt
new file mode 100644
index 0000000..6df4621
--- /dev/null
+++ b/Documentation/fpga/dfl.txt
@@ -0,0 +1,285 @@
+===============================================================================
+              FPGA Device Feature List (DFL) Framework Overview
+-------------------------------------------------------------------------------
+                Enno Luebbers <enno.luebbers@intel.com>
+                Xiao Guangrong <guangrong.xiao@linux.intel.com>
+                Wu Hao <hao.wu@intel.com>
+
+The Device Feature List (DFL) FPGA framework (and drivers according to this
+this framework) hides the very details of low layer hardwares and provides
+unified interfaces to userspace. Applications could use these interfaces to
+configure, enumerate, open and access FPGA accelerators on platforms which
+implement the DFL in the device memory. Besides this, the DFL framework
+enables system level management functions such as FPGA reconfiguration.
+
+
+Device Feature List (DFL) Overview
+==================================
+Device Feature List (DFL) defines a linked list of feature headers within the
+device MMIO space to provide an extensible way of adding features. Software can
+walk through these predefined data structures to enumerate FPGA features:
+FPGA Interface Unit (FIU), Accelerated Function Unit (AFU) and Private Features,
+as illustrated below:
+
+    Header            Header            Header            Header
+ +----------+  +-->+----------+  +-->+----------+  +-->+----------+
+ |   Type   |  |   |  Type    |  |   |  Type    |  |   |  Type    |
+ |   FIU    |  |   | Private  |  |   | Private  |  |   | Private  |
+ +----------+  |   | Feature  |  |   | Feature  |  |   | Feature  |
+ | Next_DFH |--+   +----------+  |   +----------+  |   +----------+
+ +----------+      | Next_DFH |--+   | Next_DFH |--+   | Next_DFH |--> NULL
+ |    ID    |      +----------+      +----------+      +----------+
+ +----------+      |    ID    |      |    ID    |      |    ID    |
+ | Next_AFU |--+   +----------+      +----------+      +----------+
+ +----------+  |   | Feature  |      | Feature  |      | Feature  |
+ |  Header  |  |   | Register |      | Register |      | Register |
+ | Register |  |   |   Set    |      |   Set    |      |   Set    |
+ |   Set    |  |   +----------+      +----------+      +----------+
+ +----------+  |      Header
+               +-->+----------+
+                   |   Type   |
+                   |   AFU    |
+                   +----------+
+                   | Next_DFH |--> NULL
+                   +----------+
+                   |   GUID   |
+                   +----------+
+                   |  Header  |
+                   | Register |
+                   |   Set    |
+                   +----------+
+
+FPGA Interface Unit (FIU) represents a standalone functional unit for the
+interface to FPGA, e.g. the FPGA Management Engine (FME) and Port (more
+descriptions on FME and Port in later sections).
+
+Accelerated Function Unit (AFU) represents a FPGA programmable region and
+always connects to a FIU (e.g. a Port) as its child as illustrated above.
+
+Private Features represent sub features of the FIU and AFU. They could be
+various function blocks with different IDs, but all private features which
+belong to the same FIU or AFU, must be linked to one list via the Next Device
+Feature Header (Next_DFH) pointer.
+
+Each FIU, AFU and Private Feature could implement its own functional registers.
+The functional register set for FIU and AFU, is named as Header Register Set,
+e.g. FME Header Register Set, and the one for Private Feature, is named as
+Feature Register Set, e.g. FME Partial Reconfiguration Feature Register Set.
+
+This Device Feature List provides a way of linking features together, it's
+convenient for software to locate each feature by walking through this list,
+and can be implemented in register regions of any FPGA device.
+
+
+FIU - FME (FPGA Management Engine)
+==================================
+The FPGA Management Engine performs reconfiguration and other infrastructure
+functions. Each FPGA device only has one FME.
+
+User-space applications can acquire exclusive access to the FME using open(),
+and release it using close().
+
+The following functions are exposed through ioctls:
+
+ Get driver API version (DFL_FPGA_GET_API_VERSION)
+ Check for extensions (DFL_FPGA_CHECK_EXTENSION)
+ Program bitstream (DFL_FPGA_FME_PORT_PR)
+
+More functions are exposed through sysfs
+(/sys/class/fpga_region/regionX/dfl-fme.n/):
+
+ Read bitstream ID (bitstream_id)
+     bitstream_id indicates version of the static FPGA region.
+
+ Read bitstream metadata (bitstream_metadata)
+     bitstream_metadata includes detailed information of static FPGA region,
+     e.g. synthesis date and seed.
+
+ Read number of ports (ports_num)
+     one FPGA device may have more than one port, this sysfs interface indicates
+     how many ports the FPGA device has.
+
+
+FIU - PORT
+==========
+A port represents the interface between the static FPGA fabric and a partially
+reconfigurable region containing an AFU. It controls the communication from SW
+to the accelerator and exposes features such as reset and debug. Each FPGA
+device may have more than one port, but always one AFU per port.
+
+
+AFU
+===
+An AFU is attached to a port FIU and exposes a fixed length MMIO region to be
+used for accelerator-specific control registers.
+
+User-space applications can acquire exclusive access to an AFU attached to a
+port by using open() on the port device node and release it using close().
+
+The following functions are exposed through ioctls:
+
+ Get driver API version (DFL_FPGA_GET_API_VERSION)
+ Check for extensions (DFL_FPGA_CHECK_EXTENSION)
+ Get port info (DFL_FPGA_PORT_GET_INFO)
+ Get MMIO region info (DFL_FPGA_PORT_GET_REGION_INFO)
+ Map DMA buffer (DFL_FPGA_PORT_DMA_MAP)
+ Unmap DMA buffer (DFL_FPGA_PORT_DMA_UNMAP)
+ Reset AFU (*DFL_FPGA_PORT_RESET)
+
+*DFL_FPGA_PORT_RESET: reset the FPGA Port and its AFU. Userspace can do Port
+reset at any time, e.g. during DMA or Partial Reconfiguration. But it should
+never cause any system level issue, only functional failure (e.g. DMA or PR
+operation failure) and be recoverable from the failure.
+
+User-space applications can also mmap() accelerator MMIO regions.
+
+More functions are exposed through sysfs:
+(/sys/class/fpga_region/<regionX>/<dfl-port.m>/):
+
+ Read Accelerator GUID (afu_id)
+     afu_id indicates which PR bitstream is programmed to this AFU.
+
+
+DFL Framework Overview
+======================
+
+         +----------+    +--------+ +--------+ +--------+
+         |   FME    |    |  AFU   | |  AFU   | |  AFU   |
+         |  Module  |    | Module | | Module | | Module |
+         +----------+    +--------+ +--------+ +--------+
+                 +-----------------------+
+                 | FPGA Container Device |    Device Feature List
+                 |  (FPGA Base Region)   |         Framework
+                 +-----------------------+
+--------------------------------------------------------------------
+               +----------------------------+
+               |   FPGA DFL Device Module   |
+               | (e.g. PCIE/Platform Device)|
+               +----------------------------+
+                 +------------------------+
+                 |  FPGA Hardware Device  |
+                 +------------------------+
+
+DFL framework in kernel provides common interfaces to create container device
+(FPGA base region), discover feature devices and their private features from the
+given Device Feature Lists and create platform devices for feature devices
+(e.g. FME, Port and AFU) with related resources under the container device. It
+also abstracts operations for the private features and exposes common ops to
+feature device drivers.
+
+The FPGA DFL Device could be different hardwares, e.g. PCIe device, platform
+device and etc. Its driver module is always loaded first once the device is
+created by the system. This driver plays an infrastructural role in the
+driver architecture. It locates the DFLs in the device memory, handles them
+and related resources to common interfaces from DFL framework for enumeration.
+(Please refer to drivers/fpga/dfl.c for detailed enumeration APIs).
+
+The FPGA Management Engine (FME) driver is a platform driver which is loaded
+automatically after FME platform device creation from the DFL device module. It
+provides the key features for FPGA management, including:
+
+	a) Expose static FPGA region information, e.g. version and metadata.
+	   Users can read related information via sysfs interfaces exposed
+	   by FME driver.
+
+	b) Partial Reconfiguration. The FME driver creates FPGA manager, FPGA
+	   bridges and FPGA regions during PR sub feature initialization. Once
+	   it receives a DFL_FPGA_FME_PORT_PR ioctl from user, it invokes the
+	   common interface function from FPGA Region to complete the partial
+	   reconfiguration of the PR bitstream to the given port.
+
+Similar to the FME driver, the FPGA Accelerated Function Unit (AFU) driver is
+probed once the AFU platform device is created. The main function of this module
+is to provide an interface for userspace applications to access the individual
+accelerators, including basic reset control on port, AFU MMIO region export, dma
+buffer mapping service functions.
+
+After feature platform devices creation, matched platform drivers will be loaded
+automatically to handle different functionalities. Please refer to next sections
+for detailed information on functional units which have been already implemented
+under this DFL framework.
+
+
+Partial Reconfiguration
+=======================
+As mentioned above, accelerators can be reconfigured through partial
+reconfiguration of a PR bitstream file. The PR bitstream file must have been
+generated for the exact static FPGA region and targeted reconfigurable region
+(port) of the FPGA, otherwise, the reconfiguration operation will fail and
+possibly cause system instability. This compatibility can be checked by
+comparing the compatibility ID noted in the header of PR bitstream file against
+the compat_id exposed by the target FPGA region. This check is usually done by
+userspace before calling the reconfiguration IOCTL.
+
+
+Device enumeration
+==================
+This section introduces how applications enumerate the fpga device from
+the sysfs hierarchy under /sys/class/fpga_region.
+
+In the example below, two DFL based FPGA devices are installed in the host. Each
+fpga device has one FME and two ports (AFUs).
+
+FPGA regions are created under /sys/class/fpga_region/
+
+	/sys/class/fpga_region/region0
+	/sys/class/fpga_region/region1
+	/sys/class/fpga_region/region2
+	...
+
+Application needs to search each regionX folder, if feature device is found,
+(e.g. "dfl-port.n" or "dfl-fme.m" is found), then it's the base
+fpga region which represents the FPGA device.
+
+Each base region has one FME and two ports (AFUs) as child devices:
+
+	/sys/class/fpga_region/region0/dfl-fme.0
+	/sys/class/fpga_region/region0/dfl-port.0
+	/sys/class/fpga_region/region0/dfl-port.1
+	...
+
+	/sys/class/fpga_region/region3/dfl-fme.1
+	/sys/class/fpga_region/region3/dfl-port.2
+	/sys/class/fpga_region/region3/dfl-port.3
+	...
+
+In general, the FME/AFU sysfs interfaces are named as follows:
+
+	/sys/class/fpga_region/<regionX>/<dfl-fme.n>/
+	/sys/class/fpga_region/<regionX>/<dfl-port.m>/
+
+with 'n' consecutively numbering all FMEs and 'm' consecutively numbering all
+ports.
+
+The device nodes used for ioctl() or mmap() can be referenced through:
+
+	/sys/class/fpga_region/<regionX>/<dfl-fme.n>/dev
+	/sys/class/fpga_region/<regionX>/<dfl-port.n>/dev
+
+
+Add new FIUs support
+====================
+It's possible that developers made some new function blocks (FIUs) under this
+DFL framework, then new platform device driver needs to be developed for the
+new feature dev (FIU) following the same way as existing feature dev drivers
+(e.g. FME and Port/AFU platform device driver). Besides that, it requires
+modification on DFL framework enumeration code too, for new FIU type detection
+and related platform devices creation.
+
+
+Add new private features support
+================================
+In some cases, we may need to add some new private features to existing FIUs
+(e.g. FME or Port). Developers don't need to touch enumeration code in DFL
+framework, as each private feature will be parsed automatically and related
+mmio resources can be found under FIU platform device created by DFL framework.
+Developer only needs to provide a sub feature driver with matched feature id.
+FME Partial Reconfiguration Sub Feature driver (see drivers/fpga/dfl-fme-pr.c)
+could be a reference.
+
+
+Open discussion
+===============
+FME driver exports one ioctl (DFL_FPGA_FME_PORT_PR) for partial reconfiguration
+to user now. In the future, if unified user interfaces for reconfiguration are
+added, FME driver should switch to them from ioctl interface.
-- 
1.8.3.1


  reply	other threads:[~2018-06-30  1:05 UTC|newest]

Thread overview: 34+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2018-06-30  0:53 [PATCH v7 00/29] FPGA Device Feature List (DFL) Device Drivers Wu Hao
2018-06-30  0:53 ` Wu Hao [this message]
2018-06-30  0:53 ` [PATCH v7 02/29] fpga: mgr: add region_id to fpga_image_info Wu Hao
2018-06-30  0:53 ` [PATCH v7 03/29] fpga: mgr: add status for fpga-manager Wu Hao
2018-06-30  0:53 ` [PATCH v7 04/29] fpga: mgr: add compat_id support Wu Hao
2018-06-30  0:53 ` [PATCH v7 05/29] fpga: region: " Wu Hao
2018-06-30  0:53 ` [PATCH v7 06/29] fpga: add device feature list support Wu Hao
2018-06-30  0:53 ` [PATCH v7 07/29] fpga: dfl: add chardev support for feature devices Wu Hao
2018-06-30  0:53 ` [PATCH v7 08/29] fpga: dfl: add dfl_fpga_cdev_find_port Wu Hao
2018-06-30  0:53 ` [PATCH v7 09/29] fpga: dfl: add feature device infrastructure Wu Hao
2018-06-30  0:53 ` [PATCH v7 10/29] fpga: dfl: add dfl_fpga_port_ops support Wu Hao
2018-06-30  0:53 ` [PATCH v7 11/29] fpga: dfl: add dfl_fpga_check_port_id function Wu Hao
2018-06-30  0:53 ` [PATCH v7 12/29] fpga: add FPGA DFL PCIe device driver Wu Hao
2018-06-30  0:53 ` [PATCH v7 13/29] fpga: dfl-pci: add enumeration for feature devices Wu Hao
2018-06-30  0:53 ` [PATCH v7 14/29] fpga: dfl: add FPGA Management Engine driver basic framework Wu Hao
2018-06-30  0:53 ` [PATCH v7 15/29] fpga: dfl: fme: add header sub feature support Wu Hao
2018-06-30  0:53 ` [PATCH v7 16/29] fpga: dfl: fme: add DFL_FPGA_GET_API_VERSION/CHECK_EXTENSION ioctls support Wu Hao
2018-06-30  0:53 ` [PATCH v7 17/29] fpga: dfl: fme: add partial reconfiguration sub feature support Wu Hao
2018-06-30  0:53 ` [PATCH v7 18/29] fpga: dfl: add fpga manager platform driver for FME Wu Hao
2018-06-30  0:53 ` [PATCH v7 19/29] fpga: dfl: fme-mgr: add compat_id support Wu Hao
2018-06-30  0:53 ` [PATCH v7 20/29] fpga: dfl: add fpga bridge platform driver for FME Wu Hao
2018-06-30  0:53 ` [PATCH v7 21/29] fpga: dfl: add fpga region " Wu Hao
2018-06-30  0:53 ` [PATCH v7 22/29] fpga: dfl: fme-region: add support for compat_id Wu Hao
2018-06-30  0:53 ` [PATCH v7 23/29] fpga: dfl: add FPGA Accelerated Function Unit driver basic framework Wu Hao
2018-06-30  0:53 ` [PATCH v7 24/29] fpga: dfl: afu: add port ops support Wu Hao
2018-06-30  0:53 ` [PATCH v7 25/29] fpga: dfl: afu: add header sub feature support Wu Hao
2018-06-30  0:53 ` [PATCH v7 26/29] fpga: dfl: afu: add DFL_FPGA_GET_API_VERSION/CHECK_EXTENSION ioctls support Wu Hao
2018-06-30  0:53 ` [PATCH v7 27/29] fpga: dfl: afu: add afu sub feature support Wu Hao
2018-06-30  0:53 ` [PATCH v7 28/29] fpga: dfl: afu: add DFL_FPGA_PORT_DMA_MAP/UNMAP ioctls support Wu Hao
2018-06-30  0:53 ` [PATCH v7 29/29] MAINTAINERS: add entry for FPGA DFL drivers Wu Hao
2018-07-02 13:09 ` [PATCH v7 00/29] FPGA Device Feature List (DFL) Device Drivers Alan Tull
2018-07-09 16:34 ` Alan Tull
2018-07-15 12:01   ` Greg Kroah-Hartman
2018-07-16 14:55     ` Alan Tull

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=1530320016-24712-2-git-send-email-hao.wu@intel.com \
    --to=hao.wu@intel.com \
    --cc=atull@kernel.org \
    --cc=enno.luebbers@intel.com \
    --cc=guangrong.xiao@linux.intel.com \
    --cc=linux-api@vger.kernel.org \
    --cc=linux-fpga@vger.kernel.org \
    --cc=linux-kernel@vger.kernel.org \
    --cc=luwei.kang@intel.com \
    --cc=mdf@kernel.org \
    --cc=yi.z.zhang@intel.com \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.