All of lore.kernel.org
 help / color / mirror / Atom feed
From: Andre Przywara <andre.przywara@arm.com>
To: Catalin Marinas <catalin.marinas@arm.com>,
	Will Deacon <will@kernel.org>, Shuah Khan <shuah@kernel.org>
Cc: Mark Brown <broonie@kernel.org>,
	Dave Martin <dave.martin@arm.com>,
	linux-arm-kernel@lists.infradead.org,
	linux-kselftest@vger.kernel.org
Subject: [PATCH] kselftest/arm64: sve: Do not use non-canonical FFR register value
Date: Fri, 19 Mar 2021 12:01:28 +0000	[thread overview]
Message-ID: <20210319120128.29452-1-andre.przywara@arm.com> (raw)

The "First Fault Register" (FFR) is an SVE register that mimics a
predicate register, but clears bits when a load or store fails to handle
an element of a vector. The supposed usage scenario is to initialise
this register (using SETFFR), then *read* it later on to learn about
elements that failed to load or store. Explicit writes to this register
using the WRFFR instruction are only supposed to *restore* values
previously read from the register (for context-switching only).
As the manual describes, this register holds only certain values, it:
"... contains a monotonic predicate value, in which starting from bit 0
there are zero or more 1 bits, followed only by 0 bits in any remaining
bit positions."
Any other value is UNPREDICTABLE and is not supposed to be "restored"
into the register.

The SVE test currently tries to write a signature pattern into the
register, which is *not* a canonical FFR value. Apparently the existing
setups treat UNPREDICTABLE as "read-as-written", but a new
implementation actually only stores canonical values. As a consequence,
the sve-test fails immediately when comparing the FFR value:
-----------
 # ./sve-test
Vector length:  128 bits
PID:    207
Mismatch: PID=207, iteration=0, reg=48
        Expected [cf00]
        Got      [0f00]
Aborted
-----------

Fix this by only populating the FFR with proper canonical values.
Effectively the requirement described above limits us to 17 unique
values over 16 bits worth of FFR, so we condense our signature down to 4
bits (2 bits from the PID, 2 bits from the generation) and generate the
canonical pattern from it. Any bits describing elements above the
minimum 128 bit are set to 0.

This aligns the FFR usage to the architecture and fixes the test on
microarchitectures implementing FFR in a more restricted way.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
---
 tools/testing/selftests/arm64/fp/sve-test.S | 22 ++++++++++++++++-----
 1 file changed, 17 insertions(+), 5 deletions(-)

diff --git a/tools/testing/selftests/arm64/fp/sve-test.S b/tools/testing/selftests/arm64/fp/sve-test.S
index 9210691aa998..e3e08d9c7020 100644
--- a/tools/testing/selftests/arm64/fp/sve-test.S
+++ b/tools/testing/selftests/arm64/fp/sve-test.S
@@ -284,16 +284,28 @@ endfunction
 // Set up test pattern in the FFR
 // x0: pid
 // x2: generation
+//
+// We need to generate a canonical FFR value, which consists of a number of
+// low "1" bits, followed by a number of zeros. This gives us 17 unique values
+// per 16 bits of FFR, so we create a 4 bit signature out of the PID and
+// generation, and use that as the initial number of ones in the pattern.
+// We fill the upper lanes of FFR with zeros.
 // Beware: corrupts P0.
 function setup_ffr
 	mov	x4, x30
 
-	bl	pattern
+	and	w0, w0, #0x3
+	bfi	w0, w2, #2, #2
+	mov	w1, #1
+	lsl	w1, w1, w0
+	sub	w1, w1, #1
+
 	ldr	x0, =ffrref
-	ldr	x1, =scratch
-	rdvl	x2, #1
-	lsr	x2, x2, #3
-	bl	memcpy
+	strh	w1, [x0], 2
+	rdvl	x1, #1
+	lsr	x1, x1, #3
+	sub	x1, x1, #2
+	bl	memclr
 
 	mov	x0, #0
 	ldr	x1, =ffrref
-- 
2.25.1


WARNING: multiple messages have this Message-ID (diff)
From: Andre Przywara <andre.przywara@arm.com>
To: Catalin Marinas <catalin.marinas@arm.com>,
	Will Deacon <will@kernel.org>, Shuah Khan <shuah@kernel.org>
Cc: Mark Brown <broonie@kernel.org>,
	Dave Martin <dave.martin@arm.com>,
	linux-arm-kernel@lists.infradead.org,
	linux-kselftest@vger.kernel.org
Subject: [PATCH] kselftest/arm64: sve: Do not use non-canonical FFR register value
Date: Fri, 19 Mar 2021 12:01:28 +0000	[thread overview]
Message-ID: <20210319120128.29452-1-andre.przywara@arm.com> (raw)

The "First Fault Register" (FFR) is an SVE register that mimics a
predicate register, but clears bits when a load or store fails to handle
an element of a vector. The supposed usage scenario is to initialise
this register (using SETFFR), then *read* it later on to learn about
elements that failed to load or store. Explicit writes to this register
using the WRFFR instruction are only supposed to *restore* values
previously read from the register (for context-switching only).
As the manual describes, this register holds only certain values, it:
"... contains a monotonic predicate value, in which starting from bit 0
there are zero or more 1 bits, followed only by 0 bits in any remaining
bit positions."
Any other value is UNPREDICTABLE and is not supposed to be "restored"
into the register.

The SVE test currently tries to write a signature pattern into the
register, which is *not* a canonical FFR value. Apparently the existing
setups treat UNPREDICTABLE as "read-as-written", but a new
implementation actually only stores canonical values. As a consequence,
the sve-test fails immediately when comparing the FFR value:
-----------
 # ./sve-test
Vector length:  128 bits
PID:    207
Mismatch: PID=207, iteration=0, reg=48
        Expected [cf00]
        Got      [0f00]
Aborted
-----------

Fix this by only populating the FFR with proper canonical values.
Effectively the requirement described above limits us to 17 unique
values over 16 bits worth of FFR, so we condense our signature down to 4
bits (2 bits from the PID, 2 bits from the generation) and generate the
canonical pattern from it. Any bits describing elements above the
minimum 128 bit are set to 0.

This aligns the FFR usage to the architecture and fixes the test on
microarchitectures implementing FFR in a more restricted way.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
---
 tools/testing/selftests/arm64/fp/sve-test.S | 22 ++++++++++++++++-----
 1 file changed, 17 insertions(+), 5 deletions(-)

diff --git a/tools/testing/selftests/arm64/fp/sve-test.S b/tools/testing/selftests/arm64/fp/sve-test.S
index 9210691aa998..e3e08d9c7020 100644
--- a/tools/testing/selftests/arm64/fp/sve-test.S
+++ b/tools/testing/selftests/arm64/fp/sve-test.S
@@ -284,16 +284,28 @@ endfunction
 // Set up test pattern in the FFR
 // x0: pid
 // x2: generation
+//
+// We need to generate a canonical FFR value, which consists of a number of
+// low "1" bits, followed by a number of zeros. This gives us 17 unique values
+// per 16 bits of FFR, so we create a 4 bit signature out of the PID and
+// generation, and use that as the initial number of ones in the pattern.
+// We fill the upper lanes of FFR with zeros.
 // Beware: corrupts P0.
 function setup_ffr
 	mov	x4, x30
 
-	bl	pattern
+	and	w0, w0, #0x3
+	bfi	w0, w2, #2, #2
+	mov	w1, #1
+	lsl	w1, w1, w0
+	sub	w1, w1, #1
+
 	ldr	x0, =ffrref
-	ldr	x1, =scratch
-	rdvl	x2, #1
-	lsr	x2, x2, #3
-	bl	memcpy
+	strh	w1, [x0], 2
+	rdvl	x1, #1
+	lsr	x1, x1, #3
+	sub	x1, x1, #2
+	bl	memclr
 
 	mov	x0, #0
 	ldr	x1, =ffrref
-- 
2.25.1


_______________________________________________
linux-arm-kernel mailing list
linux-arm-kernel@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/linux-arm-kernel

             reply	other threads:[~2021-03-19 12:02 UTC|newest]

Thread overview: 6+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2021-03-19 12:01 Andre Przywara [this message]
2021-03-19 12:01 ` [PATCH] kselftest/arm64: sve: Do not use non-canonical FFR register value Andre Przywara
2021-03-19 12:20 ` Mark Brown
2021-03-19 12:20   ` Mark Brown
2021-03-22 13:19 ` Will Deacon
2021-03-22 13:19   ` Will Deacon

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20210319120128.29452-1-andre.przywara@arm.com \
    --to=andre.przywara@arm.com \
    --cc=broonie@kernel.org \
    --cc=catalin.marinas@arm.com \
    --cc=dave.martin@arm.com \
    --cc=linux-arm-kernel@lists.infradead.org \
    --cc=linux-kselftest@vger.kernel.org \
    --cc=shuah@kernel.org \
    --cc=will@kernel.org \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.