All of lore.kernel.org
 help / color / mirror / Atom feed
From: Marc Zyngier <maz@kernel.org>
To: kvmarm@lists.linux.dev, kvm@vger.kernel.org,
	linux-arm-kernel@lists.infradead.org
Cc: Alexandru Elisei <alexandru.elisei@arm.com>,
	Andre Przywara <andre.przywara@arm.com>,
	Chase Conklin <chase.conklin@arm.com>,
	Christoffer Dall <christoffer.dall@arm.com>,
	Ganapatrao Kulkarni <gankulkarni@os.amperecomputing.com>,
	Jintack Lim <jintack@cs.columbia.edu>,
	Russell King <rmk+kernel@armlinux.org.uk>,
	James Morse <james.morse@arm.com>,
	Suzuki K Poulose <suzuki.poulose@arm.com>,
	Oliver Upton <oliver.upton@linux.dev>,
	Zenghui Yu <yuzenghui@huawei.com>
Subject: [PATCH v8 41/69] KVM: arm64: nv: Trap and emulate AT instructions from virtual EL2
Date: Tue, 31 Jan 2023 09:24:36 +0000	[thread overview]
Message-ID: <20230131092504.2880505-42-maz@kernel.org> (raw)
In-Reply-To: <20230131092504.2880505-1-maz@kernel.org>

When supporting nested virtualization a guest hypervisor executing AT
instructions must be trapped and emulated by the host hypervisor,
because untrapped AT instructions operating on S1E1 will use the wrong
translation regieme (the one used to emulate virtual EL2 in EL1 instead
of virtual EL1) and AT instructions operating on S12 will not work from
EL1.

This patch does several things.

1. List and define all AT system instructions to emulate and document
the emulation design.

2. Implement AT instruction handling logic in EL2. This will be used to
emulate AT instructions executed in the virtual EL2.

AT instruction emulation works by loading the proper processor
context, which depends on the trapped instruction and the virtual
HCR_EL2, to the EL1 virtual memory control registers and executing AT
instructions. Note that ctxt->hw_sys_regs is expected to have the
proper processor context before calling the handling
function(__kvm_at_insn) implemented in this patch.

4. Emulate AT S1E[01] instructions by issuing the same instructions in
EL2. We set the physical EL1 registers, NV and NV1 bits as described in
the AT instruction emulation overview.

5. Emulate AT A12E[01] instructions in two steps: First, do the stage-1
translation by reusing the existing AT emulation functions.  Second, do
the stage-2 translation by walking the guest hypervisor's stage-2 page
table in software. Record the translation result to PAR_EL1.

6. Emulate AT S1E2 instructions by issuing the corresponding S1E1
instructions in EL2. We set the physical EL1 registers and the HCR_EL2
register as described in the AT instruction emulation overview.

7. Forward system instruction traps to the virtual EL2 if the corresponding
virtual AT bit is set in the virtual HCR_EL2.

  [ Much logic above has been reworked by Marc Zyngier ]

Signed-off-by: Jintack Lim <jintack.lim@linaro.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
---
 arch/arm64/include/asm/kvm_arm.h |   2 +
 arch/arm64/include/asm/kvm_asm.h |   2 +
 arch/arm64/include/asm/sysreg.h  |  17 +++
 arch/arm64/kvm/Makefile          |   2 +-
 arch/arm64/kvm/at.c              | 221 ++++++++++++++++++++++++++++++
 arch/arm64/kvm/hyp/vhe/switch.c  |  13 +-
 arch/arm64/kvm/sys_regs.c        | 226 +++++++++++++++++++++++++++++++
 7 files changed, 480 insertions(+), 3 deletions(-)
 create mode 100644 arch/arm64/kvm/at.c

diff --git a/arch/arm64/include/asm/kvm_arm.h b/arch/arm64/include/asm/kvm_arm.h
index 680c02d8f38f..d446fccdca5a 100644
--- a/arch/arm64/include/asm/kvm_arm.h
+++ b/arch/arm64/include/asm/kvm_arm.h
@@ -20,6 +20,7 @@
 #define HCR_AMVOFFEN	(UL(1) << 51)
 #define HCR_FIEN	(UL(1) << 47)
 #define HCR_FWB		(UL(1) << 46)
+#define HCR_AT		(UL(1) << 44)
 #define HCR_NV1		(UL(1) << 43)
 #define HCR_NV		(UL(1) << 42)
 #define HCR_API		(UL(1) << 41)
@@ -120,6 +121,7 @@
 #define VTCR_EL2_TG0_16K	TCR_TG0_16K
 #define VTCR_EL2_TG0_64K	TCR_TG0_64K
 #define VTCR_EL2_SH0_MASK	TCR_SH0_MASK
+#define VTCR_EL2_SH0_SHIFT	TCR_SH0_SHIFT
 #define VTCR_EL2_SH0_INNER	TCR_SH0_INNER
 #define VTCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
 #define VTCR_EL2_ORGN0_WBWA	TCR_ORGN0_WBWA
diff --git a/arch/arm64/include/asm/kvm_asm.h b/arch/arm64/include/asm/kvm_asm.h
index 43c3bc0f9544..373558ea24d8 100644
--- a/arch/arm64/include/asm/kvm_asm.h
+++ b/arch/arm64/include/asm/kvm_asm.h
@@ -228,6 +228,8 @@ extern void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa,
 extern void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu);
 
 extern void __kvm_timer_set_cntvoff(u64 cntvoff);
+extern void __kvm_at_s1e01(struct kvm_vcpu *vcpu, u32 op, u64 vaddr);
+extern void __kvm_at_s1e2(struct kvm_vcpu *vcpu, u32 op, u64 vaddr);
 
 extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu);
 
diff --git a/arch/arm64/include/asm/sysreg.h b/arch/arm64/include/asm/sysreg.h
index 4b9024216eba..9c718f4af944 100644
--- a/arch/arm64/include/asm/sysreg.h
+++ b/arch/arm64/include/asm/sysreg.h
@@ -607,6 +607,23 @@
 
 #define SYS_SP_EL2			sys_reg(3, 6,  4, 1, 0)
 
+/* AT instructions */
+#define AT_Op0 1
+#define AT_CRn 7
+
+#define OP_AT_S1E1R	sys_insn(AT_Op0, 0, AT_CRn, 8, 0)
+#define OP_AT_S1E1W	sys_insn(AT_Op0, 0, AT_CRn, 8, 1)
+#define OP_AT_S1E0R	sys_insn(AT_Op0, 0, AT_CRn, 8, 2)
+#define OP_AT_S1E0W	sys_insn(AT_Op0, 0, AT_CRn, 8, 3)
+#define OP_AT_S1E1RP	sys_insn(AT_Op0, 0, AT_CRn, 9, 0)
+#define OP_AT_S1E1WP	sys_insn(AT_Op0, 0, AT_CRn, 9, 1)
+#define OP_AT_S1E2R	sys_insn(AT_Op0, 4, AT_CRn, 8, 0)
+#define OP_AT_S1E2W	sys_insn(AT_Op0, 4, AT_CRn, 8, 1)
+#define OP_AT_S12E1R	sys_insn(AT_Op0, 4, AT_CRn, 8, 4)
+#define OP_AT_S12E1W	sys_insn(AT_Op0, 4, AT_CRn, 8, 5)
+#define OP_AT_S12E0R	sys_insn(AT_Op0, 4, AT_CRn, 8, 6)
+#define OP_AT_S12E0W	sys_insn(AT_Op0, 4, AT_CRn, 8, 7)
+
 /* Common SCTLR_ELx flags. */
 #define SCTLR_ELx_ENTP2	(BIT(60))
 #define SCTLR_ELx_DSSBS	(BIT(44))
diff --git a/arch/arm64/kvm/Makefile b/arch/arm64/kvm/Makefile
index c0c050e53157..c2717a8f12f5 100644
--- a/arch/arm64/kvm/Makefile
+++ b/arch/arm64/kvm/Makefile
@@ -14,7 +14,7 @@ kvm-y += arm.o mmu.o mmio.o psci.o hypercalls.o pvtime.o \
 	 inject_fault.o va_layout.o handle_exit.o \
 	 guest.o debug.o reset.o sys_regs.o stacktrace.o \
 	 vgic-sys-reg-v3.o fpsimd.o pkvm.o \
-	 arch_timer.o trng.o vmid.o emulate-nested.o nested.o \
+	 arch_timer.o trng.o vmid.o emulate-nested.o nested.o at.o \
 	 vgic/vgic.o vgic/vgic-init.o \
 	 vgic/vgic-irqfd.o vgic/vgic-v2.o \
 	 vgic/vgic-v3.o vgic/vgic-v4.o \
diff --git a/arch/arm64/kvm/at.c b/arch/arm64/kvm/at.c
new file mode 100644
index 000000000000..d11059f9f077
--- /dev/null
+++ b/arch/arm64/kvm/at.c
@@ -0,0 +1,221 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2017 - Linaro Ltd
+ * Author: Jintack Lim <jintack.lim@linaro.org>
+ */
+
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+
+struct mmu_config {
+	u64	ttbr0;
+	u64	ttbr1;
+	u64	tcr;
+	u64	sctlr;
+	u64	vttbr;
+	u64	vtcr;
+	u64	hcr;
+};
+
+static void __mmu_config_save(struct mmu_config *config)
+{
+	config->ttbr0	= read_sysreg_el1(SYS_TTBR0);
+	config->ttbr1	= read_sysreg_el1(SYS_TTBR1);
+	config->tcr	= read_sysreg_el1(SYS_TCR);
+	config->sctlr	= read_sysreg_el1(SYS_SCTLR);
+	config->vttbr	= read_sysreg(vttbr_el2);
+	config->vtcr	= read_sysreg(vtcr_el2);
+	config->hcr	= read_sysreg(hcr_el2);
+}
+
+static void __mmu_config_restore(struct mmu_config *config)
+{
+	write_sysreg_el1(config->ttbr0,	SYS_TTBR0);
+	write_sysreg_el1(config->ttbr1,	SYS_TTBR1);
+	write_sysreg_el1(config->tcr,	SYS_TCR);
+	write_sysreg_el1(config->sctlr,	SYS_SCTLR);
+	write_sysreg(config->vttbr,	vttbr_el2);
+	write_sysreg(config->vtcr,	vtcr_el2);
+	write_sysreg(config->hcr,	hcr_el2);
+
+	isb();
+}
+
+void __kvm_at_s1e01(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
+{
+	struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
+	struct mmu_config config;
+	struct kvm_s2_mmu *mmu;
+	bool fail;
+
+	write_lock(&vcpu->kvm->mmu_lock);
+
+	/*
+	 * If HCR_EL2.{E2H,TGE} == {1,1}, the MMU context is already
+	 * the right one (as we trapped from vEL2).
+	 */
+	if (vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu))
+		goto skip_mmu_switch;
+
+	/*
+	 * FIXME: Obtaining the S2 MMU for a guest guest is horribly
+	 * racy, and we may not find it (evicted by another vcpu, for
+	 * example).
+	 */
+	mmu = lookup_s2_mmu(vcpu->kvm,
+			    vcpu_read_sys_reg(vcpu, VTTBR_EL2),
+			    vcpu_read_sys_reg(vcpu, HCR_EL2));
+
+	if (WARN_ON(!mmu))
+		goto out;
+
+	/* We've trapped, so everything is live on the CPU. */
+	__mmu_config_save(&config);
+
+	write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL1),	SYS_TTBR0);
+	write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR1_EL1),	SYS_TTBR1);
+	write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1),	SYS_TCR);
+	write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1),	SYS_SCTLR);
+	write_sysreg(kvm_get_vttbr(mmu),		vttbr_el2);
+	/*
+	 * REVISIT: do we need anything from the guest's VTCR_EL2? If
+	 * looks like keeping the hosts configuration is the right
+	 * thing to do at this stage (and we could avoid save/restore
+	 * it. Keep the host's version for now.
+	 */
+	write_sysreg((config.hcr & ~HCR_TGE) | HCR_VM,	hcr_el2);
+
+	isb();
+
+skip_mmu_switch:
+
+	switch (op) {
+	case OP_AT_S1E1R:
+	case OP_AT_S1E1RP:
+		fail = __kvm_at("s1e1r", vaddr);
+		break;
+	case OP_AT_S1E1W:
+	case OP_AT_S1E1WP:
+		fail = __kvm_at("s1e1w", vaddr);
+		break;
+	case OP_AT_S1E0R:
+		fail = __kvm_at("s1e0r", vaddr);
+		break;
+	case OP_AT_S1E0W:
+		fail = __kvm_at("s1e0w", vaddr);
+		break;
+	default:
+		WARN_ON_ONCE(1);
+		break;
+	}
+
+	if (!fail)
+		ctxt_sys_reg(ctxt, PAR_EL1) = read_sysreg(par_el1);
+	else
+		ctxt_sys_reg(ctxt, PAR_EL1) = SYS_PAR_EL1_F;
+
+	/*
+	 * Failed? let's leave the building now.
+	 *
+	 * FIXME: how about a failed translation because the shadow S2
+	 * wasn't populated? We may need to perform a SW PTW,
+	 * populating our shadow S2 and retry the instruction.
+	 */
+	if (ctxt_sys_reg(ctxt, PAR_EL1) & SYS_PAR_EL1_F)
+		goto nopan;
+
+	/* No PAN? No problem. */
+	if (!vcpu_el2_e2h_is_set(vcpu) || !(*vcpu_cpsr(vcpu) & PSR_PAN_BIT))
+		goto nopan;
+
+	/*
+	 * For PAN-involved AT operations, perform the same
+	 * translation, using EL0 this time.
+	 */
+	switch (op) {
+	case OP_AT_S1E1RP:
+		fail = __kvm_at("s1e0r", vaddr);
+		break;
+	case OP_AT_S1E1WP:
+		fail = __kvm_at("s1e0w", vaddr);
+		break;
+	default:
+		goto nopan;
+	}
+
+	/*
+	 * If the EL0 translation has succeeded, we need to pretend
+	 * the AT operation has failed, as the PAN setting forbids
+	 * such a translation.
+	 *
+	 * FIXME: we hardcode a Level-3 permission fault. We really
+	 * should return the real fault level.
+	 */
+	if (fail || !(read_sysreg(par_el1) & SYS_PAR_EL1_F))
+		ctxt_sys_reg(ctxt, PAR_EL1) = (0xf << 1) | SYS_PAR_EL1_F;
+
+nopan:
+	if (!(vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)))
+		__mmu_config_restore(&config);
+
+out:
+	write_unlock(&vcpu->kvm->mmu_lock);
+}
+
+void __kvm_at_s1e2(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
+{
+	struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
+	struct mmu_config config;
+	struct kvm_s2_mmu *mmu;
+	u64 val;
+
+	write_lock(&vcpu->kvm->mmu_lock);
+
+	mmu = &vcpu->kvm->arch.mmu;
+
+	/* We've trapped, so everything is live on the CPU. */
+	__mmu_config_save(&config);
+
+	if (vcpu_el2_e2h_is_set(vcpu)) {
+		write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL2),	SYS_TTBR0);
+		write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR1_EL2),	SYS_TTBR1);
+		write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL2),	SYS_TCR);
+		write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL2),	SYS_SCTLR);
+
+		val = config.hcr;
+	} else {
+		write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL2),	SYS_TTBR0);
+		val = translate_tcr_el2_to_tcr_el1(ctxt_sys_reg(ctxt, TCR_EL2));
+		write_sysreg_el1(val, SYS_TCR);
+		val = translate_sctlr_el2_to_sctlr_el1(ctxt_sys_reg(ctxt, SCTLR_EL2));
+		write_sysreg_el1(val, SYS_SCTLR);
+
+		val = config.hcr | HCR_NV | HCR_NV1;
+	}
+
+	write_sysreg(kvm_get_vttbr(mmu),		vttbr_el2);
+	/* FIXME: write S2 MMU VTCR_EL2? */
+	write_sysreg((val & ~HCR_TGE) | HCR_VM,		hcr_el2);
+
+	isb();
+
+	switch (op) {
+	case OP_AT_S1E2R:
+		asm volatile("at s1e1r, %0" : : "r" (vaddr));
+		break;
+	case OP_AT_S1E2W:
+		asm volatile("at s1e1w, %0" : : "r" (vaddr));
+		break;
+	default:
+		WARN_ON_ONCE(1);
+		break;
+	}
+
+	isb();
+
+	/* FIXME: handle failed translation due to shadow S2 */
+	ctxt_sys_reg(ctxt, PAR_EL1) = read_sysreg(par_el1);
+
+	__mmu_config_restore(&config);
+	write_unlock(&vcpu->kvm->mmu_lock);
+}
diff --git a/arch/arm64/kvm/hyp/vhe/switch.c b/arch/arm64/kvm/hyp/vhe/switch.c
index 36b50e315504..6d186a3e5e5f 100644
--- a/arch/arm64/kvm/hyp/vhe/switch.c
+++ b/arch/arm64/kvm/hyp/vhe/switch.c
@@ -44,9 +44,10 @@ static void __activate_traps(struct kvm_vcpu *vcpu)
 		if (!vcpu_el2_e2h_is_set(vcpu)) {
 			/*
 			 * For a guest hypervisor on v8.0, trap and emulate
-			 * the EL1 virtual memory control register accesses.
+			 * the EL1 virtual memory control register accesses
+			 * as well as the AT S1 operations.
 			 */
-			hcr |= HCR_TVM | HCR_TRVM | HCR_NV1;
+			hcr |= HCR_TVM | HCR_TRVM | HCR_AT | HCR_NV1;
 		} else {
 			/*
 			 * For a guest hypervisor on v8.1 (VHE), allow to
@@ -71,6 +72,14 @@ static void __activate_traps(struct kvm_vcpu *vcpu)
 			hcr &= ~HCR_TVM;
 
 			hcr |= vhcr_el2 & (HCR_TVM | HCR_TRVM);
+
+			/*
+			 * If we're using the EL1 translation regime
+			 * (TGE clear), then ensure that AT S1 ops are
+			 * trapped too.
+			 */
+			if (!vcpu_el2_tge_is_set(vcpu))
+				hcr |= HCR_AT;
 		}
 	}
 
diff --git a/arch/arm64/kvm/sys_regs.c b/arch/arm64/kvm/sys_regs.c
index f049f6f052bd..66a379baf8c7 100644
--- a/arch/arm64/kvm/sys_regs.c
+++ b/arch/arm64/kvm/sys_regs.c
@@ -2464,10 +2464,236 @@ static const struct sys_reg_desc sys_reg_descs[] = {
 	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
 };
 
+static bool handle_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+			 const struct sys_reg_desc *r)
+{
+	int sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
+
+	if (vcpu_has_nv(vcpu) && forward_traps(vcpu, HCR_AT))
+		return false;
+
+	__kvm_at_s1e01(vcpu, sys_encoding, p->regval);
+
+	return true;
+}
+
+static bool handle_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+			const struct sys_reg_desc *r)
+{
+	int sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
+
+	if (vcpu_has_nv(vcpu) && forward_nv_traps(vcpu))
+		return false;
+
+	__kvm_at_s1e2(vcpu, sys_encoding, p->regval);
+
+	return true;
+}
+
+static u64 setup_par_aborted(u32 esr)
+{
+	u64 par = 0;
+
+	/* S [9]: fault in the stage 2 translation */
+	par |= (1 << 9);
+	/* FST [6:1]: Fault status code  */
+	par |= (esr << 1);
+	/* F [0]: translation is aborted */
+	par |= 1;
+
+	return par;
+}
+
+static u64 setup_par_completed(struct kvm_vcpu *vcpu, struct kvm_s2_trans *out)
+{
+	u64 par, vtcr_sh0;
+
+	/* F [0]: Translation is completed successfully */
+	par = 0;
+	/* ATTR [63:56] */
+	par |= out->upper_attr;
+	/* PA [47:12] */
+	par |= out->output & GENMASK_ULL(11, 0);
+	/* RES1 [11] */
+	par |= (1UL << 11);
+	/* SH [8:7]: Shareability attribute */
+	vtcr_sh0 = vcpu_read_sys_reg(vcpu, VTCR_EL2) & VTCR_EL2_SH0_MASK;
+	par |= (vtcr_sh0 >> VTCR_EL2_SH0_SHIFT) << 7;
+
+	return par;
+}
+
+static bool handle_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+		       const struct sys_reg_desc *r, bool write)
+{
+	u64 par, va;
+	u32 esr, op;
+	phys_addr_t ipa;
+	struct kvm_s2_trans out;
+	int ret;
+
+	if (vcpu_has_nv(vcpu) && forward_nv_traps(vcpu))
+		return false;
+
+	/* Do the stage-1 translation */
+	va = p->regval;
+	op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
+	switch (op) {
+	case OP_AT_S12E1R:
+		op = OP_AT_S1E1R;
+		break;
+	case OP_AT_S12E1W:
+		op = OP_AT_S1E1W;
+		break;
+	case OP_AT_S12E0R:
+		op = OP_AT_S1E0R;
+		break;
+	case OP_AT_S12E0W:
+		op = OP_AT_S1E0W;
+		break;
+	default:
+		WARN_ON_ONCE(1);
+		return true;
+	}
+
+	__kvm_at_s1e01(vcpu, op, va);
+	par = vcpu_read_sys_reg(vcpu, PAR_EL1);
+	if (par & 1) {
+		/* The stage-1 translation aborted */
+		return true;
+	}
+
+	/* Do the stage-2 translation */
+	ipa = (par & GENMASK_ULL(47, 12)) | (va & GENMASK_ULL(11, 0));
+	out.esr = 0;
+	ret = kvm_walk_nested_s2(vcpu, ipa, &out);
+	if (ret < 0)
+		return false;
+
+	/* Check if the stage-2 PTW is aborted */
+	if (out.esr) {
+		esr = out.esr;
+		goto s2_trans_abort;
+	}
+
+	/* Check the access permission */
+	if ((!write && !out.readable) || (write && !out.writable)) {
+		esr = ESR_ELx_FSC_PERM;
+		esr |= out.level & 0x3;
+		goto s2_trans_abort;
+	}
+
+	vcpu_write_sys_reg(vcpu, setup_par_completed(vcpu, &out), PAR_EL1);
+	return true;
+
+s2_trans_abort:
+	vcpu_write_sys_reg(vcpu, setup_par_aborted(esr), PAR_EL1);
+	return true;
+}
+
+static bool handle_s12r(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+			const struct sys_reg_desc *r)
+{
+	return handle_s12(vcpu, p, r, false);
+}
+
+static bool handle_s12w(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+			const struct sys_reg_desc *r)
+{
+	return handle_s12(vcpu, p, r, true);
+}
+
+/*
+ * AT instruction emulation
+ *
+ * We emulate AT instructions executed in the virtual EL2.
+ * Basic strategy for the stage-1 translation emulation is to load proper
+ * context, which depends on the trapped instruction and the virtual HCR_EL2,
+ * to the EL1 virtual memory control registers and execute S1E[01] instructions
+ * in EL2. See below for more detail.
+ *
+ * For the stage-2 translation, which is necessary for S12E[01] emulation,
+ * we walk the guest hypervisor's stage-2 page table in software.
+ *
+ * The stage-1 translation emulations can be divided into two groups depending
+ * on the translation regime.
+ *
+ * 1. EL2 AT instructions: S1E2x
+ * +-----------------------------------------------------------------------+
+ * |                             |         Setting for the emulation       |
+ * | Virtual HCR_EL2.E2H on trap |-----------------------------------------+
+ * |                             | Phys EL1 regs | Phys NV, NV1 | Phys TGE |
+ * |-----------------------------------------------------------------------|
+ * |             0               |     vEL2      |    (1, 1)    |    0     |
+ * |             1               |     vEL2      |    (0, 0)    |    0     |
+ * +-----------------------------------------------------------------------+
+ *
+ * We emulate the EL2 AT instructions by loading virtual EL2 context
+ * to the EL1 virtual memory control registers and executing corresponding
+ * EL1 AT instructions.
+ *
+ * We set physical NV and NV1 bits to use EL2 page table format for non-VHE
+ * guest hypervisor (i.e. HCR_EL2.E2H == 0). As a VHE guest hypervisor uses the
+ * EL1 page table format, we don't set those bits.
+ *
+ * We should clear physical TGE bit not to use the EL2 translation regime when
+ * the host uses the VHE feature.
+ *
+ *
+ * 2. EL0/EL1 AT instructions: S1E[01]x, S12E1x
+ * +----------------------------------------------------------------------+
+ * |   Virtual HCR_EL2 on trap  |        Setting for the emulation        |
+ * |----------------------------------------------------------------------+
+ * | (vE2H, vTGE) | (vNV, vNV1) | Phys EL1 regs | Phys NV, NV1 | Phys TGE |
+ * |----------------------------------------------------------------------|
+ * |    (0, 0)*   |   (0, 0)    |      vEL1     |    (0, 0)    |    0     |
+ * |    (0, 0)    |   (1, 1)    |      vEL1     |    (1, 1)    |    0     |
+ * |    (1, 1)    |   (0, 0)    |      vEL2     |    (0, 0)    |    0     |
+ * |    (1, 1)    |   (1, 1)    |      vEL2     |    (1, 1)    |    0     |
+ * +----------------------------------------------------------------------+
+ *
+ * *For (0, 0) in the 'Virtual HCR_EL2 on trap' column, it actually means
+ *  (1, 1). Keep them (0, 0) just for the readability.
+ *
+ * We set physical EL1 virtual memory control registers depending on
+ * (vE2H, vTGE) pair. When the pair is (0, 0) where AT instructions are
+ * supposed to use EL0/EL1 translation regime, we load the EL1 registers with
+ * the virtual EL1 registers (i.e. EL1 registers from the guest hypervisor's
+ * point of view). When the pair is (1, 1), however, AT instructions are defined
+ * to apply EL2 translation regime. To emulate this behavior, we load the EL1
+ * registers with the virtual EL2 context. (i.e the shadow registers)
+ *
+ * We respect the virtual NV and NV1 bit for the emulation. When those bits are
+ * set, it means that a guest hypervisor would like to use EL2 page table format
+ * for the EL1 translation regime. We emulate this by setting the physical
+ * NV and NV1 bits.
+ */
+
+#define SYS_INSN(insn, access_fn)					\
+	{								\
+		SYS_DESC(OP_##insn),					\
+		.access = (access_fn),					\
+	}
+
 static struct sys_reg_desc sys_insn_descs[] = {
 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
+
+	SYS_INSN(AT_S1E1R, handle_s1e01),
+	SYS_INSN(AT_S1E1W, handle_s1e01),
+	SYS_INSN(AT_S1E0R, handle_s1e01),
+	SYS_INSN(AT_S1E0W, handle_s1e01),
+	SYS_INSN(AT_S1E1RP, handle_s1e01),
+	SYS_INSN(AT_S1E1WP, handle_s1e01),
+
 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
+
+	SYS_INSN(AT_S1E2R, handle_s1e2),
+	SYS_INSN(AT_S1E2W, handle_s1e2),
+	SYS_INSN(AT_S12E1R, handle_s12r),
+	SYS_INSN(AT_S12E1W, handle_s12w),
+	SYS_INSN(AT_S12E0R, handle_s12r),
+	SYS_INSN(AT_S12E0W, handle_s12w),
 };
 
 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
-- 
2.34.1


WARNING: multiple messages have this Message-ID (diff)
From: Marc Zyngier <maz@kernel.org>
To: kvmarm@lists.linux.dev, kvm@vger.kernel.org,
	linux-arm-kernel@lists.infradead.org
Cc: Alexandru Elisei <alexandru.elisei@arm.com>,
	Andre Przywara <andre.przywara@arm.com>,
	Chase Conklin <chase.conklin@arm.com>,
	Christoffer Dall <christoffer.dall@arm.com>,
	Ganapatrao Kulkarni <gankulkarni@os.amperecomputing.com>,
	Jintack Lim <jintack@cs.columbia.edu>,
	Russell King <rmk+kernel@armlinux.org.uk>,
	James Morse <james.morse@arm.com>,
	Suzuki K Poulose <suzuki.poulose@arm.com>,
	Oliver Upton <oliver.upton@linux.dev>,
	Zenghui Yu <yuzenghui@huawei.com>
Subject: [PATCH v8 41/69] KVM: arm64: nv: Trap and emulate AT instructions from virtual EL2
Date: Tue, 31 Jan 2023 09:24:36 +0000	[thread overview]
Message-ID: <20230131092504.2880505-42-maz@kernel.org> (raw)
In-Reply-To: <20230131092504.2880505-1-maz@kernel.org>

When supporting nested virtualization a guest hypervisor executing AT
instructions must be trapped and emulated by the host hypervisor,
because untrapped AT instructions operating on S1E1 will use the wrong
translation regieme (the one used to emulate virtual EL2 in EL1 instead
of virtual EL1) and AT instructions operating on S12 will not work from
EL1.

This patch does several things.

1. List and define all AT system instructions to emulate and document
the emulation design.

2. Implement AT instruction handling logic in EL2. This will be used to
emulate AT instructions executed in the virtual EL2.

AT instruction emulation works by loading the proper processor
context, which depends on the trapped instruction and the virtual
HCR_EL2, to the EL1 virtual memory control registers and executing AT
instructions. Note that ctxt->hw_sys_regs is expected to have the
proper processor context before calling the handling
function(__kvm_at_insn) implemented in this patch.

4. Emulate AT S1E[01] instructions by issuing the same instructions in
EL2. We set the physical EL1 registers, NV and NV1 bits as described in
the AT instruction emulation overview.

5. Emulate AT A12E[01] instructions in two steps: First, do the stage-1
translation by reusing the existing AT emulation functions.  Second, do
the stage-2 translation by walking the guest hypervisor's stage-2 page
table in software. Record the translation result to PAR_EL1.

6. Emulate AT S1E2 instructions by issuing the corresponding S1E1
instructions in EL2. We set the physical EL1 registers and the HCR_EL2
register as described in the AT instruction emulation overview.

7. Forward system instruction traps to the virtual EL2 if the corresponding
virtual AT bit is set in the virtual HCR_EL2.

  [ Much logic above has been reworked by Marc Zyngier ]

Signed-off-by: Jintack Lim <jintack.lim@linaro.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
---
 arch/arm64/include/asm/kvm_arm.h |   2 +
 arch/arm64/include/asm/kvm_asm.h |   2 +
 arch/arm64/include/asm/sysreg.h  |  17 +++
 arch/arm64/kvm/Makefile          |   2 +-
 arch/arm64/kvm/at.c              | 221 ++++++++++++++++++++++++++++++
 arch/arm64/kvm/hyp/vhe/switch.c  |  13 +-
 arch/arm64/kvm/sys_regs.c        | 226 +++++++++++++++++++++++++++++++
 7 files changed, 480 insertions(+), 3 deletions(-)
 create mode 100644 arch/arm64/kvm/at.c

diff --git a/arch/arm64/include/asm/kvm_arm.h b/arch/arm64/include/asm/kvm_arm.h
index 680c02d8f38f..d446fccdca5a 100644
--- a/arch/arm64/include/asm/kvm_arm.h
+++ b/arch/arm64/include/asm/kvm_arm.h
@@ -20,6 +20,7 @@
 #define HCR_AMVOFFEN	(UL(1) << 51)
 #define HCR_FIEN	(UL(1) << 47)
 #define HCR_FWB		(UL(1) << 46)
+#define HCR_AT		(UL(1) << 44)
 #define HCR_NV1		(UL(1) << 43)
 #define HCR_NV		(UL(1) << 42)
 #define HCR_API		(UL(1) << 41)
@@ -120,6 +121,7 @@
 #define VTCR_EL2_TG0_16K	TCR_TG0_16K
 #define VTCR_EL2_TG0_64K	TCR_TG0_64K
 #define VTCR_EL2_SH0_MASK	TCR_SH0_MASK
+#define VTCR_EL2_SH0_SHIFT	TCR_SH0_SHIFT
 #define VTCR_EL2_SH0_INNER	TCR_SH0_INNER
 #define VTCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
 #define VTCR_EL2_ORGN0_WBWA	TCR_ORGN0_WBWA
diff --git a/arch/arm64/include/asm/kvm_asm.h b/arch/arm64/include/asm/kvm_asm.h
index 43c3bc0f9544..373558ea24d8 100644
--- a/arch/arm64/include/asm/kvm_asm.h
+++ b/arch/arm64/include/asm/kvm_asm.h
@@ -228,6 +228,8 @@ extern void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa,
 extern void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu);
 
 extern void __kvm_timer_set_cntvoff(u64 cntvoff);
+extern void __kvm_at_s1e01(struct kvm_vcpu *vcpu, u32 op, u64 vaddr);
+extern void __kvm_at_s1e2(struct kvm_vcpu *vcpu, u32 op, u64 vaddr);
 
 extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu);
 
diff --git a/arch/arm64/include/asm/sysreg.h b/arch/arm64/include/asm/sysreg.h
index 4b9024216eba..9c718f4af944 100644
--- a/arch/arm64/include/asm/sysreg.h
+++ b/arch/arm64/include/asm/sysreg.h
@@ -607,6 +607,23 @@
 
 #define SYS_SP_EL2			sys_reg(3, 6,  4, 1, 0)
 
+/* AT instructions */
+#define AT_Op0 1
+#define AT_CRn 7
+
+#define OP_AT_S1E1R	sys_insn(AT_Op0, 0, AT_CRn, 8, 0)
+#define OP_AT_S1E1W	sys_insn(AT_Op0, 0, AT_CRn, 8, 1)
+#define OP_AT_S1E0R	sys_insn(AT_Op0, 0, AT_CRn, 8, 2)
+#define OP_AT_S1E0W	sys_insn(AT_Op0, 0, AT_CRn, 8, 3)
+#define OP_AT_S1E1RP	sys_insn(AT_Op0, 0, AT_CRn, 9, 0)
+#define OP_AT_S1E1WP	sys_insn(AT_Op0, 0, AT_CRn, 9, 1)
+#define OP_AT_S1E2R	sys_insn(AT_Op0, 4, AT_CRn, 8, 0)
+#define OP_AT_S1E2W	sys_insn(AT_Op0, 4, AT_CRn, 8, 1)
+#define OP_AT_S12E1R	sys_insn(AT_Op0, 4, AT_CRn, 8, 4)
+#define OP_AT_S12E1W	sys_insn(AT_Op0, 4, AT_CRn, 8, 5)
+#define OP_AT_S12E0R	sys_insn(AT_Op0, 4, AT_CRn, 8, 6)
+#define OP_AT_S12E0W	sys_insn(AT_Op0, 4, AT_CRn, 8, 7)
+
 /* Common SCTLR_ELx flags. */
 #define SCTLR_ELx_ENTP2	(BIT(60))
 #define SCTLR_ELx_DSSBS	(BIT(44))
diff --git a/arch/arm64/kvm/Makefile b/arch/arm64/kvm/Makefile
index c0c050e53157..c2717a8f12f5 100644
--- a/arch/arm64/kvm/Makefile
+++ b/arch/arm64/kvm/Makefile
@@ -14,7 +14,7 @@ kvm-y += arm.o mmu.o mmio.o psci.o hypercalls.o pvtime.o \
 	 inject_fault.o va_layout.o handle_exit.o \
 	 guest.o debug.o reset.o sys_regs.o stacktrace.o \
 	 vgic-sys-reg-v3.o fpsimd.o pkvm.o \
-	 arch_timer.o trng.o vmid.o emulate-nested.o nested.o \
+	 arch_timer.o trng.o vmid.o emulate-nested.o nested.o at.o \
 	 vgic/vgic.o vgic/vgic-init.o \
 	 vgic/vgic-irqfd.o vgic/vgic-v2.o \
 	 vgic/vgic-v3.o vgic/vgic-v4.o \
diff --git a/arch/arm64/kvm/at.c b/arch/arm64/kvm/at.c
new file mode 100644
index 000000000000..d11059f9f077
--- /dev/null
+++ b/arch/arm64/kvm/at.c
@@ -0,0 +1,221 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2017 - Linaro Ltd
+ * Author: Jintack Lim <jintack.lim@linaro.org>
+ */
+
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+
+struct mmu_config {
+	u64	ttbr0;
+	u64	ttbr1;
+	u64	tcr;
+	u64	sctlr;
+	u64	vttbr;
+	u64	vtcr;
+	u64	hcr;
+};
+
+static void __mmu_config_save(struct mmu_config *config)
+{
+	config->ttbr0	= read_sysreg_el1(SYS_TTBR0);
+	config->ttbr1	= read_sysreg_el1(SYS_TTBR1);
+	config->tcr	= read_sysreg_el1(SYS_TCR);
+	config->sctlr	= read_sysreg_el1(SYS_SCTLR);
+	config->vttbr	= read_sysreg(vttbr_el2);
+	config->vtcr	= read_sysreg(vtcr_el2);
+	config->hcr	= read_sysreg(hcr_el2);
+}
+
+static void __mmu_config_restore(struct mmu_config *config)
+{
+	write_sysreg_el1(config->ttbr0,	SYS_TTBR0);
+	write_sysreg_el1(config->ttbr1,	SYS_TTBR1);
+	write_sysreg_el1(config->tcr,	SYS_TCR);
+	write_sysreg_el1(config->sctlr,	SYS_SCTLR);
+	write_sysreg(config->vttbr,	vttbr_el2);
+	write_sysreg(config->vtcr,	vtcr_el2);
+	write_sysreg(config->hcr,	hcr_el2);
+
+	isb();
+}
+
+void __kvm_at_s1e01(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
+{
+	struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
+	struct mmu_config config;
+	struct kvm_s2_mmu *mmu;
+	bool fail;
+
+	write_lock(&vcpu->kvm->mmu_lock);
+
+	/*
+	 * If HCR_EL2.{E2H,TGE} == {1,1}, the MMU context is already
+	 * the right one (as we trapped from vEL2).
+	 */
+	if (vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu))
+		goto skip_mmu_switch;
+
+	/*
+	 * FIXME: Obtaining the S2 MMU for a guest guest is horribly
+	 * racy, and we may not find it (evicted by another vcpu, for
+	 * example).
+	 */
+	mmu = lookup_s2_mmu(vcpu->kvm,
+			    vcpu_read_sys_reg(vcpu, VTTBR_EL2),
+			    vcpu_read_sys_reg(vcpu, HCR_EL2));
+
+	if (WARN_ON(!mmu))
+		goto out;
+
+	/* We've trapped, so everything is live on the CPU. */
+	__mmu_config_save(&config);
+
+	write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL1),	SYS_TTBR0);
+	write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR1_EL1),	SYS_TTBR1);
+	write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1),	SYS_TCR);
+	write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1),	SYS_SCTLR);
+	write_sysreg(kvm_get_vttbr(mmu),		vttbr_el2);
+	/*
+	 * REVISIT: do we need anything from the guest's VTCR_EL2? If
+	 * looks like keeping the hosts configuration is the right
+	 * thing to do at this stage (and we could avoid save/restore
+	 * it. Keep the host's version for now.
+	 */
+	write_sysreg((config.hcr & ~HCR_TGE) | HCR_VM,	hcr_el2);
+
+	isb();
+
+skip_mmu_switch:
+
+	switch (op) {
+	case OP_AT_S1E1R:
+	case OP_AT_S1E1RP:
+		fail = __kvm_at("s1e1r", vaddr);
+		break;
+	case OP_AT_S1E1W:
+	case OP_AT_S1E1WP:
+		fail = __kvm_at("s1e1w", vaddr);
+		break;
+	case OP_AT_S1E0R:
+		fail = __kvm_at("s1e0r", vaddr);
+		break;
+	case OP_AT_S1E0W:
+		fail = __kvm_at("s1e0w", vaddr);
+		break;
+	default:
+		WARN_ON_ONCE(1);
+		break;
+	}
+
+	if (!fail)
+		ctxt_sys_reg(ctxt, PAR_EL1) = read_sysreg(par_el1);
+	else
+		ctxt_sys_reg(ctxt, PAR_EL1) = SYS_PAR_EL1_F;
+
+	/*
+	 * Failed? let's leave the building now.
+	 *
+	 * FIXME: how about a failed translation because the shadow S2
+	 * wasn't populated? We may need to perform a SW PTW,
+	 * populating our shadow S2 and retry the instruction.
+	 */
+	if (ctxt_sys_reg(ctxt, PAR_EL1) & SYS_PAR_EL1_F)
+		goto nopan;
+
+	/* No PAN? No problem. */
+	if (!vcpu_el2_e2h_is_set(vcpu) || !(*vcpu_cpsr(vcpu) & PSR_PAN_BIT))
+		goto nopan;
+
+	/*
+	 * For PAN-involved AT operations, perform the same
+	 * translation, using EL0 this time.
+	 */
+	switch (op) {
+	case OP_AT_S1E1RP:
+		fail = __kvm_at("s1e0r", vaddr);
+		break;
+	case OP_AT_S1E1WP:
+		fail = __kvm_at("s1e0w", vaddr);
+		break;
+	default:
+		goto nopan;
+	}
+
+	/*
+	 * If the EL0 translation has succeeded, we need to pretend
+	 * the AT operation has failed, as the PAN setting forbids
+	 * such a translation.
+	 *
+	 * FIXME: we hardcode a Level-3 permission fault. We really
+	 * should return the real fault level.
+	 */
+	if (fail || !(read_sysreg(par_el1) & SYS_PAR_EL1_F))
+		ctxt_sys_reg(ctxt, PAR_EL1) = (0xf << 1) | SYS_PAR_EL1_F;
+
+nopan:
+	if (!(vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)))
+		__mmu_config_restore(&config);
+
+out:
+	write_unlock(&vcpu->kvm->mmu_lock);
+}
+
+void __kvm_at_s1e2(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
+{
+	struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
+	struct mmu_config config;
+	struct kvm_s2_mmu *mmu;
+	u64 val;
+
+	write_lock(&vcpu->kvm->mmu_lock);
+
+	mmu = &vcpu->kvm->arch.mmu;
+
+	/* We've trapped, so everything is live on the CPU. */
+	__mmu_config_save(&config);
+
+	if (vcpu_el2_e2h_is_set(vcpu)) {
+		write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL2),	SYS_TTBR0);
+		write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR1_EL2),	SYS_TTBR1);
+		write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL2),	SYS_TCR);
+		write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL2),	SYS_SCTLR);
+
+		val = config.hcr;
+	} else {
+		write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL2),	SYS_TTBR0);
+		val = translate_tcr_el2_to_tcr_el1(ctxt_sys_reg(ctxt, TCR_EL2));
+		write_sysreg_el1(val, SYS_TCR);
+		val = translate_sctlr_el2_to_sctlr_el1(ctxt_sys_reg(ctxt, SCTLR_EL2));
+		write_sysreg_el1(val, SYS_SCTLR);
+
+		val = config.hcr | HCR_NV | HCR_NV1;
+	}
+
+	write_sysreg(kvm_get_vttbr(mmu),		vttbr_el2);
+	/* FIXME: write S2 MMU VTCR_EL2? */
+	write_sysreg((val & ~HCR_TGE) | HCR_VM,		hcr_el2);
+
+	isb();
+
+	switch (op) {
+	case OP_AT_S1E2R:
+		asm volatile("at s1e1r, %0" : : "r" (vaddr));
+		break;
+	case OP_AT_S1E2W:
+		asm volatile("at s1e1w, %0" : : "r" (vaddr));
+		break;
+	default:
+		WARN_ON_ONCE(1);
+		break;
+	}
+
+	isb();
+
+	/* FIXME: handle failed translation due to shadow S2 */
+	ctxt_sys_reg(ctxt, PAR_EL1) = read_sysreg(par_el1);
+
+	__mmu_config_restore(&config);
+	write_unlock(&vcpu->kvm->mmu_lock);
+}
diff --git a/arch/arm64/kvm/hyp/vhe/switch.c b/arch/arm64/kvm/hyp/vhe/switch.c
index 36b50e315504..6d186a3e5e5f 100644
--- a/arch/arm64/kvm/hyp/vhe/switch.c
+++ b/arch/arm64/kvm/hyp/vhe/switch.c
@@ -44,9 +44,10 @@ static void __activate_traps(struct kvm_vcpu *vcpu)
 		if (!vcpu_el2_e2h_is_set(vcpu)) {
 			/*
 			 * For a guest hypervisor on v8.0, trap and emulate
-			 * the EL1 virtual memory control register accesses.
+			 * the EL1 virtual memory control register accesses
+			 * as well as the AT S1 operations.
 			 */
-			hcr |= HCR_TVM | HCR_TRVM | HCR_NV1;
+			hcr |= HCR_TVM | HCR_TRVM | HCR_AT | HCR_NV1;
 		} else {
 			/*
 			 * For a guest hypervisor on v8.1 (VHE), allow to
@@ -71,6 +72,14 @@ static void __activate_traps(struct kvm_vcpu *vcpu)
 			hcr &= ~HCR_TVM;
 
 			hcr |= vhcr_el2 & (HCR_TVM | HCR_TRVM);
+
+			/*
+			 * If we're using the EL1 translation regime
+			 * (TGE clear), then ensure that AT S1 ops are
+			 * trapped too.
+			 */
+			if (!vcpu_el2_tge_is_set(vcpu))
+				hcr |= HCR_AT;
 		}
 	}
 
diff --git a/arch/arm64/kvm/sys_regs.c b/arch/arm64/kvm/sys_regs.c
index f049f6f052bd..66a379baf8c7 100644
--- a/arch/arm64/kvm/sys_regs.c
+++ b/arch/arm64/kvm/sys_regs.c
@@ -2464,10 +2464,236 @@ static const struct sys_reg_desc sys_reg_descs[] = {
 	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
 };
 
+static bool handle_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+			 const struct sys_reg_desc *r)
+{
+	int sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
+
+	if (vcpu_has_nv(vcpu) && forward_traps(vcpu, HCR_AT))
+		return false;
+
+	__kvm_at_s1e01(vcpu, sys_encoding, p->regval);
+
+	return true;
+}
+
+static bool handle_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+			const struct sys_reg_desc *r)
+{
+	int sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
+
+	if (vcpu_has_nv(vcpu) && forward_nv_traps(vcpu))
+		return false;
+
+	__kvm_at_s1e2(vcpu, sys_encoding, p->regval);
+
+	return true;
+}
+
+static u64 setup_par_aborted(u32 esr)
+{
+	u64 par = 0;
+
+	/* S [9]: fault in the stage 2 translation */
+	par |= (1 << 9);
+	/* FST [6:1]: Fault status code  */
+	par |= (esr << 1);
+	/* F [0]: translation is aborted */
+	par |= 1;
+
+	return par;
+}
+
+static u64 setup_par_completed(struct kvm_vcpu *vcpu, struct kvm_s2_trans *out)
+{
+	u64 par, vtcr_sh0;
+
+	/* F [0]: Translation is completed successfully */
+	par = 0;
+	/* ATTR [63:56] */
+	par |= out->upper_attr;
+	/* PA [47:12] */
+	par |= out->output & GENMASK_ULL(11, 0);
+	/* RES1 [11] */
+	par |= (1UL << 11);
+	/* SH [8:7]: Shareability attribute */
+	vtcr_sh0 = vcpu_read_sys_reg(vcpu, VTCR_EL2) & VTCR_EL2_SH0_MASK;
+	par |= (vtcr_sh0 >> VTCR_EL2_SH0_SHIFT) << 7;
+
+	return par;
+}
+
+static bool handle_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+		       const struct sys_reg_desc *r, bool write)
+{
+	u64 par, va;
+	u32 esr, op;
+	phys_addr_t ipa;
+	struct kvm_s2_trans out;
+	int ret;
+
+	if (vcpu_has_nv(vcpu) && forward_nv_traps(vcpu))
+		return false;
+
+	/* Do the stage-1 translation */
+	va = p->regval;
+	op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
+	switch (op) {
+	case OP_AT_S12E1R:
+		op = OP_AT_S1E1R;
+		break;
+	case OP_AT_S12E1W:
+		op = OP_AT_S1E1W;
+		break;
+	case OP_AT_S12E0R:
+		op = OP_AT_S1E0R;
+		break;
+	case OP_AT_S12E0W:
+		op = OP_AT_S1E0W;
+		break;
+	default:
+		WARN_ON_ONCE(1);
+		return true;
+	}
+
+	__kvm_at_s1e01(vcpu, op, va);
+	par = vcpu_read_sys_reg(vcpu, PAR_EL1);
+	if (par & 1) {
+		/* The stage-1 translation aborted */
+		return true;
+	}
+
+	/* Do the stage-2 translation */
+	ipa = (par & GENMASK_ULL(47, 12)) | (va & GENMASK_ULL(11, 0));
+	out.esr = 0;
+	ret = kvm_walk_nested_s2(vcpu, ipa, &out);
+	if (ret < 0)
+		return false;
+
+	/* Check if the stage-2 PTW is aborted */
+	if (out.esr) {
+		esr = out.esr;
+		goto s2_trans_abort;
+	}
+
+	/* Check the access permission */
+	if ((!write && !out.readable) || (write && !out.writable)) {
+		esr = ESR_ELx_FSC_PERM;
+		esr |= out.level & 0x3;
+		goto s2_trans_abort;
+	}
+
+	vcpu_write_sys_reg(vcpu, setup_par_completed(vcpu, &out), PAR_EL1);
+	return true;
+
+s2_trans_abort:
+	vcpu_write_sys_reg(vcpu, setup_par_aborted(esr), PAR_EL1);
+	return true;
+}
+
+static bool handle_s12r(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+			const struct sys_reg_desc *r)
+{
+	return handle_s12(vcpu, p, r, false);
+}
+
+static bool handle_s12w(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+			const struct sys_reg_desc *r)
+{
+	return handle_s12(vcpu, p, r, true);
+}
+
+/*
+ * AT instruction emulation
+ *
+ * We emulate AT instructions executed in the virtual EL2.
+ * Basic strategy for the stage-1 translation emulation is to load proper
+ * context, which depends on the trapped instruction and the virtual HCR_EL2,
+ * to the EL1 virtual memory control registers and execute S1E[01] instructions
+ * in EL2. See below for more detail.
+ *
+ * For the stage-2 translation, which is necessary for S12E[01] emulation,
+ * we walk the guest hypervisor's stage-2 page table in software.
+ *
+ * The stage-1 translation emulations can be divided into two groups depending
+ * on the translation regime.
+ *
+ * 1. EL2 AT instructions: S1E2x
+ * +-----------------------------------------------------------------------+
+ * |                             |         Setting for the emulation       |
+ * | Virtual HCR_EL2.E2H on trap |-----------------------------------------+
+ * |                             | Phys EL1 regs | Phys NV, NV1 | Phys TGE |
+ * |-----------------------------------------------------------------------|
+ * |             0               |     vEL2      |    (1, 1)    |    0     |
+ * |             1               |     vEL2      |    (0, 0)    |    0     |
+ * +-----------------------------------------------------------------------+
+ *
+ * We emulate the EL2 AT instructions by loading virtual EL2 context
+ * to the EL1 virtual memory control registers and executing corresponding
+ * EL1 AT instructions.
+ *
+ * We set physical NV and NV1 bits to use EL2 page table format for non-VHE
+ * guest hypervisor (i.e. HCR_EL2.E2H == 0). As a VHE guest hypervisor uses the
+ * EL1 page table format, we don't set those bits.
+ *
+ * We should clear physical TGE bit not to use the EL2 translation regime when
+ * the host uses the VHE feature.
+ *
+ *
+ * 2. EL0/EL1 AT instructions: S1E[01]x, S12E1x
+ * +----------------------------------------------------------------------+
+ * |   Virtual HCR_EL2 on trap  |        Setting for the emulation        |
+ * |----------------------------------------------------------------------+
+ * | (vE2H, vTGE) | (vNV, vNV1) | Phys EL1 regs | Phys NV, NV1 | Phys TGE |
+ * |----------------------------------------------------------------------|
+ * |    (0, 0)*   |   (0, 0)    |      vEL1     |    (0, 0)    |    0     |
+ * |    (0, 0)    |   (1, 1)    |      vEL1     |    (1, 1)    |    0     |
+ * |    (1, 1)    |   (0, 0)    |      vEL2     |    (0, 0)    |    0     |
+ * |    (1, 1)    |   (1, 1)    |      vEL2     |    (1, 1)    |    0     |
+ * +----------------------------------------------------------------------+
+ *
+ * *For (0, 0) in the 'Virtual HCR_EL2 on trap' column, it actually means
+ *  (1, 1). Keep them (0, 0) just for the readability.
+ *
+ * We set physical EL1 virtual memory control registers depending on
+ * (vE2H, vTGE) pair. When the pair is (0, 0) where AT instructions are
+ * supposed to use EL0/EL1 translation regime, we load the EL1 registers with
+ * the virtual EL1 registers (i.e. EL1 registers from the guest hypervisor's
+ * point of view). When the pair is (1, 1), however, AT instructions are defined
+ * to apply EL2 translation regime. To emulate this behavior, we load the EL1
+ * registers with the virtual EL2 context. (i.e the shadow registers)
+ *
+ * We respect the virtual NV and NV1 bit for the emulation. When those bits are
+ * set, it means that a guest hypervisor would like to use EL2 page table format
+ * for the EL1 translation regime. We emulate this by setting the physical
+ * NV and NV1 bits.
+ */
+
+#define SYS_INSN(insn, access_fn)					\
+	{								\
+		SYS_DESC(OP_##insn),					\
+		.access = (access_fn),					\
+	}
+
 static struct sys_reg_desc sys_insn_descs[] = {
 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
+
+	SYS_INSN(AT_S1E1R, handle_s1e01),
+	SYS_INSN(AT_S1E1W, handle_s1e01),
+	SYS_INSN(AT_S1E0R, handle_s1e01),
+	SYS_INSN(AT_S1E0W, handle_s1e01),
+	SYS_INSN(AT_S1E1RP, handle_s1e01),
+	SYS_INSN(AT_S1E1WP, handle_s1e01),
+
 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
+
+	SYS_INSN(AT_S1E2R, handle_s1e2),
+	SYS_INSN(AT_S1E2W, handle_s1e2),
+	SYS_INSN(AT_S12E1R, handle_s12r),
+	SYS_INSN(AT_S12E1W, handle_s12w),
+	SYS_INSN(AT_S12E0R, handle_s12r),
+	SYS_INSN(AT_S12E0W, handle_s12w),
 };
 
 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
-- 
2.34.1


_______________________________________________
linux-arm-kernel mailing list
linux-arm-kernel@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/linux-arm-kernel

  parent reply	other threads:[~2023-01-31  9:48 UTC|newest]

Thread overview: 170+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2023-01-31  9:23 [PATCH v8 00/69] KVM: arm64: ARMv8.3/8.4 Nested Virtualization support Marc Zyngier
2023-01-31  9:23 ` Marc Zyngier
2023-01-31  9:23 ` [PATCH v8 01/69] arm64: Add ARM64_HAS_NESTED_VIRT cpufeature Marc Zyngier
2023-01-31  9:23   ` Marc Zyngier
2023-01-31 12:03   ` Catalin Marinas
2023-01-31 12:03     ` Catalin Marinas
2023-01-31 13:21     ` Marc Zyngier
2023-01-31 13:21       ` Marc Zyngier
2023-01-31 13:47   ` Suzuki K Poulose
2023-01-31 13:47     ` Suzuki K Poulose
2023-01-31 14:00     ` Marc Zyngier
2023-01-31 14:00       ` Marc Zyngier
2023-01-31 17:34       ` Suzuki K Poulose
2023-01-31 17:34         ` Suzuki K Poulose
2023-01-31 20:04         ` Oliver Upton
2023-01-31 20:04           ` Oliver Upton
2023-01-31 21:26           ` Marc Zyngier
2023-01-31 21:26             ` Marc Zyngier
2023-01-31 22:01             ` Oliver Upton
2023-01-31 22:01               ` Oliver Upton
2023-01-31 20:44         ` Marc Zyngier
2023-01-31 20:44           ` Marc Zyngier
2023-01-31  9:23 ` [PATCH v8 02/69] KVM: arm64: Use the S2 MMU context to iterate over S2 table Marc Zyngier
2023-01-31  9:23   ` Marc Zyngier
2023-01-31  9:23 ` [PATCH v8 03/69] KVM: arm64: nv: Introduce nested virtualization VCPU feature Marc Zyngier
2023-01-31  9:23   ` Marc Zyngier
2023-01-31  9:23 ` [PATCH v8 04/69] KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set Marc Zyngier
2023-01-31  9:23   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 05/69] KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 06/69] KVM: arm64: nv: Add EL2 system registers to vcpu context Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 07/69] KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 08/69] KVM: arm64: nv: Handle HCR_EL2.NV system register traps Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 09/69] KVM: arm64: nv: Reset VMPIDR_EL2 and VPIDR_EL2 to sane values Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31 20:17   ` Oliver Upton
2023-01-31 20:17     ` Oliver Upton
2023-01-31 22:04     ` Marc Zyngier
2023-01-31 22:04       ` Marc Zyngier
2023-01-31 22:09       ` Oliver Upton
2023-01-31 22:09         ` Oliver Upton
2023-01-31 22:16         ` Marc Zyngier
2023-01-31 22:16           ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 10/69] KVM: arm64: nv: Support virtual EL2 exceptions Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 11/69] KVM: arm64: nv: Inject HVC exceptions to the virtual EL2 Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 12/69] KVM: arm64: nv: Handle trapped ERET from " Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 13/69] KVM: arm64: nv: Add non-VHE-EL2->EL1 translation helpers Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 14/69] KVM: arm64: nv: Handle virtual EL2 registers in vcpu_read/write_sys_reg() Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 15/69] KVM: arm64: nv: Handle SPSR_EL2 specially Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 16/69] KVM: arm64: nv: Handle HCR_EL2.E2H specially Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 17/69] KVM: arm64: nv: Save/Restore vEL2 sysregs Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 18/69] KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 19/69] KVM: arm64: nv: Trap EL1 VM register accesses in virtual EL2 Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 20/69] KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from " Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 21/69] KVM: arm64: nv: Trap CPACR_EL1 access in " Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 22/69] KVM: arm64: nv: Handle PSCI call via smc from the guest Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 23/69] KVM: arm64: nv: Respect virtual HCR_EL2.TWX setting Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 24/69] KVM: arm64: nv: Respect virtual CPTR_EL2.{TFP,FPEN} settings Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 25/69] KVM: arm64: nv: Respect the virtual HCR_EL2.NV bit setting Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 26/69] KVM: arm64: nv: Respect virtual HCR_EL2.TVM and TRVM settings Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 27/69] KVM: arm64: nv: Respect the virtual HCR_EL2.NV1 bit setting Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 28/69] KVM: arm64: nv: Allow a sysreg to be hidden from userspace only Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 29/69] KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2 Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 30/69] KVM: arm64: nv: Forward debug traps to the nested guest Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 31/69] KVM: arm64: nv: Configure HCR_EL2 for nested virtualization Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 32/69] KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 33/69] KVM: arm64: nv: Filter out unsupported features from ID regs Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 34/69] KVM: arm64: nv: Hide RAS from nested guests Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 35/69] KVM: arm64: nv: Support multiple nested Stage-2 mmu structures Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 36/69] KVM: arm64: nv: Implement nested Stage-2 page table walk logic Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 37/69] KVM: arm64: nv: Handle shadow stage 2 page faults Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 38/69] KVM: arm64: nv: Restrict S2 RD/WR permissions to match the guest's Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 39/69] KVM: arm64: nv: Unmap/flush shadow stage 2 page tables Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 40/69] KVM: arm64: nv: Set a handler for the system instruction traps Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` Marc Zyngier [this message]
2023-01-31  9:24   ` [PATCH v8 41/69] KVM: arm64: nv: Trap and emulate AT instructions from virtual EL2 Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 42/69] KVM: arm64: nv: Trap and emulate TLBI " Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 43/69] KVM: arm64: nv: Fold guest's HCR_EL2 configuration into the host's Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 44/69] KVM: arm64: nv: arch_timer: Support hyp timer emulation Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 45/69] KVM: arm64: nv: Add handling of EL2-specific timer registers Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 46/69] KVM: arm64: nv: Load timer before the GIC Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 47/69] KVM: arm64: nv: Nested GICv3 Support Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 48/69] KVM: arm64: nv: Don't load the GICv4 context on entering a nested guest Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 49/69] KVM: arm64: nv: vgic: Emulate the HW bit in software Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 50/69] KVM: arm64: nv: vgic: Allow userland to set VGIC maintenance IRQ Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 51/69] KVM: arm64: nv: Implement maintenance interrupt forwarding Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 52/69] KVM: arm64: nv: Deal with broken VGIC on maintenance interrupt delivery Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 53/69] KVM: arm64: nv: Add nested GICv3 tracepoints Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 54/69] KVM: arm64: nv: Allow userspace to request KVM_ARM_VCPU_NESTED_VIRT Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 55/69] KVM: arm64: nv: Add handling of FEAT_TTL TLB invalidation Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 56/69] KVM: arm64: nv: Invalidate TLBs based on shadow S2 TTL-like information Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 57/69] KVM: arm64: nv: Tag shadow S2 entries with nested level Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 58/69] KVM: arm64: nv: Add include containing the VNCR_EL2 offsets Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 59/69] KVM: arm64: nv: Map VNCR-capable registers to a separate page Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 60/69] KVM: arm64: nv: Move nested vgic state into the sysreg file Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 61/69] KVM: arm64: Add FEAT_NV2 cpu feature Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 62/69] KVM: arm64: nv: Sync nested timer state with FEAT_NV2 Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 63/69] KVM: arm64: nv: Publish emulated timer interrupt state in the in-memory state Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:24 ` [PATCH v8 64/69] KVM: arm64: nv: Allocate VNCR page when required Marc Zyngier
2023-01-31  9:24   ` Marc Zyngier
2023-01-31  9:25 ` [PATCH v8 65/69] KVM: arm64: nv: Enable ARMv8.4-NV support Marc Zyngier
2023-01-31  9:25   ` Marc Zyngier
2023-01-31  9:25 ` [PATCH v8 66/69] KVM: arm64: nv: Fast-track 'InHost' exception returns Marc Zyngier
2023-01-31  9:25   ` Marc Zyngier
2023-01-31  9:25 ` [PATCH v8 67/69] KVM: arm64: nv: Fast-track EL1 TLBIs for VHE guests Marc Zyngier
2023-01-31  9:25   ` Marc Zyngier
2023-01-31  9:25 ` [PATCH v8 68/69] KVM: arm64: nv: Use FEAT_ECV to trap access to EL0 timers Marc Zyngier
2023-01-31  9:25   ` Marc Zyngier
2023-01-31  9:25 ` [PATCH v8 69/69] KVM: arm64: nv: Accelerate EL0 timer read accesses when FEAT_ECV is on Marc Zyngier
2023-01-31  9:25   ` Marc Zyngier
2023-01-31 22:13 ` [PATCH v8 00/69] KVM: arm64: ARMv8.3/8.4 Nested Virtualization support Oliver Upton
2023-01-31 22:13   ` Oliver Upton
2023-01-31 22:20   ` Marc Zyngier
2023-01-31 22:20     ` Marc Zyngier

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20230131092504.2880505-42-maz@kernel.org \
    --to=maz@kernel.org \
    --cc=alexandru.elisei@arm.com \
    --cc=andre.przywara@arm.com \
    --cc=chase.conklin@arm.com \
    --cc=christoffer.dall@arm.com \
    --cc=gankulkarni@os.amperecomputing.com \
    --cc=james.morse@arm.com \
    --cc=jintack@cs.columbia.edu \
    --cc=kvm@vger.kernel.org \
    --cc=kvmarm@lists.linux.dev \
    --cc=linux-arm-kernel@lists.infradead.org \
    --cc=oliver.upton@linux.dev \
    --cc=rmk+kernel@armlinux.org.uk \
    --cc=suzuki.poulose@arm.com \
    --cc=yuzenghui@huawei.com \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.