All of lore.kernel.org
 help / color / mirror / Atom feed
From: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
To: "Mark Brown" <broonie@kernel.org>,
	"Cristian Ciocaltea" <cristian.ciocaltea@collabora.com>,
	"Yang Yingliang" <yangyingliang@huawei.com>,
	"Andy Shevchenko" <andriy.shevchenko@linux.intel.com>,
	"Amit Kumar Mahapatra via Alsa-devel"
	<alsa-devel@alsa-project.org>,
	"Serge Semin" <fancer.lancer@gmail.com>,
	"Neil Armstrong" <neil.armstrong@linaro.org>,
	"Tharun Kumar P" <tharunkumar.pasumarthi@microchip.com>,
	"Vijaya Krishna Nivarthi" <quic_vnivarth@quicinc.com>,
	"Uwe Kleine-König" <u.kleine-koenig@pengutronix.de>,
	linux-spi@vger.kernel.org, linux-kernel@vger.kernel.org,
	linux-arm-kernel@lists.infradead.org,
	linux-amlogic@lists.infradead.org,
	linux-mediatek@lists.infradead.org,
	linux-arm-msm@vger.kernel.org,
	linux-rockchip@lists.infradead.org,
	linux-riscv@lists.infradead.org,
	linux-stm32@st-md-mailman.stormreply.com,
	linux-trace-kernel@vger.kernel.org, netdev@vger.kernel.org
Cc: Sanjay R Mehta <sanju.mehta@amd.com>,
	Radu Pirea <radu_nicolae.pirea@upb.ro>,
	Nicolas Ferre <nicolas.ferre@microchip.com>,
	Alexandre Belloni <alexandre.belloni@bootlin.com>,
	Claudiu Beznea <claudiu.beznea@microchip.com>,
	Tudor Ambarus <tudor.ambarus@linaro.org>,
	Shawn Guo <shawnguo@kernel.org>,
	Sascha Hauer <s.hauer@pengutronix.de>,
	Pengutronix Kernel Team <kernel@pengutronix.de>,
	Fabio Estevam <festevam@gmail.com>,
	NXP Linux Team <linux-imx@nxp.com>,
	Kevin Hilman <khilman@baylibre.com>,
	Jerome Brunet <jbrunet@baylibre.com>,
	Martin Blumenstingl <martin.blumenstingl@googlemail.com>,
	Matthias Brugger <matthias.bgg@gmail.com>,
	AngeloGioacchino Del Regno 
	<angelogioacchino.delregno@collabora.com>,
	Andy Gross <agross@kernel.org>,
	Bjorn Andersson <andersson@kernel.org>,
	Konrad Dybcio <konrad.dybcio@linaro.org>,
	Heiko Stuebner <heiko@sntech.de>,
	Palmer Dabbelt <palmer@dabbelt.com>,
	Paul Walmsley <paul.walmsley@sifive.com>,
	Orson Zhai <orsonzhai@gmail.com>,
	Baolin Wang <baolin.wang@linux.alibaba.com>,
	Chunyan Zhang <zhang.lyra@gmail.com>,
	Alain Volmat <alain.volmat@foss.st.com>,
	Maxime Coquelin <mcoquelin.stm32@gmail.com>,
	Alexandre Torgue <alexandre.torgue@foss.st.com>,
	Max Filippov <jcmvbkbc@gmail.com>,
	Steven Rostedt <rostedt@goodmis.org>,
	Masami Hiramatsu <mhiramat@kernel.org>,
	Richard Cochran <richardcochran@gmail.com>,
	Sebastian Reichel <sebastian.reichel@collabora.com>
Subject: [PATCH v3 14/14] spi: Fix spelling typos and acronyms capitalization
Date: Tue, 11 Jul 2023 20:17:56 +0300	[thread overview]
Message-ID: <20230711171756.86736-15-andriy.shevchenko@linux.intel.com> (raw)
In-Reply-To: <20230711171756.86736-1-andriy.shevchenko@linux.intel.com>

Fix
  - spelling typos
  - capitalization of acronyms
in the comments.

While at it, fix the multi-line comment style.

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
---
 drivers/spi/spi.c          |  54 ++++++++-------
 include/linux/spi/spi.h    | 137 ++++++++++++++++++++-----------------
 include/trace/events/spi.h |   2 +-
 3 files changed, 104 insertions(+), 89 deletions(-)

diff --git a/drivers/spi/spi.c b/drivers/spi/spi.c
index 0612610a091a..e656696e3d99 100644
--- a/drivers/spi/spi.c
+++ b/drivers/spi/spi.c
@@ -692,7 +692,7 @@ static int __spi_add_device(struct spi_device *spi)
  * @spi: spi_device to register
  *
  * Companion function to spi_alloc_device.  Devices allocated with
- * spi_alloc_device can be added onto the spi bus with this function.
+ * spi_alloc_device can be added onto the SPI bus with this function.
  *
  * Return: 0 on success; negative errno on failure
  */
@@ -869,7 +869,7 @@ int spi_register_board_info(struct spi_board_info const *info, unsigned n)
  * spi_res_alloc - allocate a spi resource that is life-cycle managed
  *                 during the processing of a spi_message while using
  *                 spi_transfer_one
- * @spi:     the spi device for which we allocate memory
+ * @spi:     the SPI device for which we allocate memory
  * @release: the release code to execute for this resource
  * @size:    size to alloc and return
  * @gfp:     GFP allocation flags
@@ -895,7 +895,7 @@ static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
 }
 
 /**
- * spi_res_free - free an spi resource
+ * spi_res_free - free an SPI resource
  * @res: pointer to the custom data of a resource
  */
 static void spi_res_free(void *res)
@@ -911,7 +911,7 @@ static void spi_res_free(void *res)
 
 /**
  * spi_res_add - add a spi_res to the spi_message
- * @message: the spi message
+ * @message: the SPI message
  * @res:     the spi_resource
  */
 static void spi_res_add(struct spi_message *message, void *res)
@@ -923,7 +923,7 @@ static void spi_res_add(struct spi_message *message, void *res)
 }
 
 /**
- * spi_res_release - release all spi resources for this message
+ * spi_res_release - release all SPI resources for this message
  * @ctlr:  the @spi_controller
  * @message: the @spi_message
  */
@@ -1404,7 +1404,7 @@ int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
 			return -EINVAL;
 		/*
 		 * If there is unknown effective speed, approximate it
-		 * by underestimating with half of the requested hz.
+		 * by underestimating with half of the requested Hz.
 		 */
 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
 		if (!hz)
@@ -1719,11 +1719,11 @@ static int __spi_pump_transfer_message(struct spi_controller *ctlr,
 }
 
 /**
- * __spi_pump_messages - function which processes spi message queue
+ * __spi_pump_messages - function which processes SPI message queue
  * @ctlr: controller to process queue for
  * @in_kthread: true if we are in the context of the message pump thread
  *
- * This function checks if there is any spi message in the queue that
+ * This function checks if there is any SPI message in the queue that
  * needs processing and if so call out to the driver to initialize hardware
  * and transfer each message.
  *
@@ -1738,7 +1738,7 @@ static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
 	unsigned long flags;
 	int ret;
 
-	/* Take the IO mutex */
+	/* Take the I/O mutex */
 	mutex_lock(&ctlr->io_mutex);
 
 	/* Lock queue */
@@ -2149,8 +2149,8 @@ static int __spi_queued_transfer(struct spi_device *spi,
 
 /**
  * spi_queued_transfer - transfer function for queued transfers
- * @spi: spi device which is requesting transfer
- * @msg: spi message which is to handled is queued to driver queue
+ * @spi: SPI device which is requesting transfer
+ * @msg: SPI message which is to handled is queued to driver queue
  *
  * Return: zero on success, else a negative error code.
  */
@@ -2479,7 +2479,7 @@ static int acpi_spi_count(struct acpi_resource *ares, void *data)
  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
  * @adev:	ACPI device
  *
- * Returns the number of SpiSerialBus resources in the ACPI-device's
+ * Return: the number of SpiSerialBus resources in the ACPI-device's
  * resource-list; or a negative error code.
  */
 int acpi_spi_count_resources(struct acpi_device *adev)
@@ -2613,10 +2613,10 @@ static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
  * @adev: ACPI Device for the spi device
  * @index: Index of the spi resource inside the ACPI Node
  *
- * This should be used to allocate a new spi device from and ACPI Node.
- * The caller is responsible for calling spi_add_device to register the spi device.
+ * This should be used to allocate a new SPI device from and ACPI Device node.
+ * The caller is responsible for calling spi_add_device to register the SPI device.
  *
- * If ctlr is set to NULL, the Controller for the spi device will be looked up
+ * If ctlr is set to NULL, the Controller for the SPI device will be looked up
  * using the resource.
  * If index is set to -1, index is not used.
  * Note: If index is -1, ctlr must be set.
@@ -3314,7 +3314,8 @@ void spi_unregister_controller(struct spi_controller *ctlr)
 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
 		mutex_unlock(&ctlr->add_lock);
 
-	/* Release the last reference on the controller if its driver
+	/*
+	 * Release the last reference on the controller if its driver
 	 * has not yet been converted to devm_spi_alloc_master/slave().
 	 */
 	if (!ctlr->devm_allocated)
@@ -3527,7 +3528,7 @@ static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
 
 	/* All the others need rx_buf/tx_buf also set */
 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
-		/* Update rx_buf, tx_buf and dma */
+		/* Update rx_buf, tx_buf and DMA */
 		if (xfers[i].rx_buf)
 			xfers[i].rx_buf += offset;
 		if (xfers[i].rx_dma)
@@ -3597,7 +3598,7 @@ EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
 
 
 /**
- * spi_split_transfers_maxwords - split spi transfers into multiple transfers
+ * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
  *                                when an individual transfer exceeds a
  *                                certain number of SPI words
  * @ctlr:     the @spi_controller for this transfer
@@ -3646,7 +3647,8 @@ EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
 
 /*-------------------------------------------------------------------------*/
 
-/* Core methods for SPI controller protocol drivers.  Some of the
+/*
+ * Core methods for SPI controller protocol drivers. Some of the
  * other core methods are currently defined as inline functions.
  */
 
@@ -3706,7 +3708,7 @@ static int spi_set_cs_timing(struct spi_device *spi)
  * changes those settings, and must be called from a context that can sleep.
  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
  * effect the next time the device is selected and data is transferred to
- * or from it.  When this function returns, the spi device is deselected.
+ * or from it.  When this function returns, the SPI device is deselected.
  *
  * Note that this call will fail if the protocol driver specifies an option
  * that the underlying controller or its driver does not support.  For
@@ -4044,7 +4046,7 @@ static int __spi_async(struct spi_device *spi, struct spi_message *message)
  * spi_async - asynchronous SPI transfer
  * @spi: device with which data will be exchanged
  * @message: describes the data transfers, including completion callback
- * Context: any (irqs may be blocked, etc)
+ * Context: any (IRQs may be blocked, etc)
  *
  * This call may be used in_irq and other contexts which can't sleep,
  * as well as from task contexts which can sleep.
@@ -4098,7 +4100,7 @@ EXPORT_SYMBOL_GPL(spi_async);
  * spi_async_locked - version of spi_async with exclusive bus usage
  * @spi: device with which data will be exchanged
  * @message: describes the data transfers, including completion callback
- * Context: any (irqs may be blocked, etc)
+ * Context: any (IRQs may be blocked, etc)
  *
  * This call may be used in_irq and other contexts which can't sleep,
  * as well as from task contexts which can sleep.
@@ -4361,9 +4363,9 @@ static u8	*buf;
 /**
  * spi_write_then_read - SPI synchronous write followed by read
  * @spi: device with which data will be exchanged
- * @txbuf: data to be written (need not be dma-safe)
+ * @txbuf: data to be written (need not be DMA-safe)
  * @n_tx: size of txbuf, in bytes
- * @rxbuf: buffer into which data will be read (need not be dma-safe)
+ * @rxbuf: buffer into which data will be read (need not be DMA-safe)
  * @n_rx: size of rxbuf, in bytes
  * Context: can sleep
  *
@@ -4374,7 +4376,7 @@ static u8	*buf;
  *
  * Parameters to this routine are always copied using a small buffer.
  * Performance-sensitive or bulk transfer code should instead use
- * spi_{async,sync}() calls with dma-safe buffers.
+ * spi_{async,sync}() calls with DMA-safe buffers.
  *
  * Return: zero on success, else a negative error code.
  */
@@ -4419,7 +4421,7 @@ int spi_write_then_read(struct spi_device *spi,
 	x[0].tx_buf = local_buf;
 	x[1].rx_buf = local_buf + n_tx;
 
-	/* Do the i/o */
+	/* Do the I/O */
 	status = spi_sync(spi, &message);
 	if (status == 0)
 		memcpy(rxbuf, x[1].rx_buf, n_rx);
diff --git a/include/linux/spi/spi.h b/include/linux/spi/spi.h
index 458369939fa5..7f8b478fdeb3 100644
--- a/include/linux/spi/spi.h
+++ b/include/linux/spi/spi.h
@@ -37,7 +37,7 @@ extern struct bus_type spi_bus_type;
 
 /**
  * struct spi_statistics - statistics for spi transfers
- * @syncp:         seqcount to protect members in this struct for per-cpu udate
+ * @syncp:         seqcount to protect members in this struct for per-cpu update
  *                 on 32-bit systems
  *
  * @messages:      number of spi-messages handled
@@ -56,7 +56,7 @@ extern struct bus_type spi_bus_type;
  * @bytes_rx:      number of bytes received from device
  *
  * @transfer_bytes_histo:
- *                 transfer bytes histogramm
+ *                 transfer bytes histogram
  *
  * @transfers_split_maxsize:
  *                 number of transfers that have been split because of
@@ -157,7 +157,7 @@ extern void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
  *	the device will bind to the named driver and only the named driver.
  *	Do not set directly, because core frees it; use driver_set_override() to
  *	set or clear it.
- * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
+ * @cs_gpiod: GPIO descriptor of the chipselect line (optional, NULL when
  *	not using a GPIO line)
  * @word_delay: delay to be inserted between consecutive
  *	words of a transfer
@@ -213,7 +213,7 @@ struct spi_device {
 	void			*controller_data;
 	char			modalias[SPI_NAME_SIZE];
 	const char		*driver_override;
-	struct gpio_desc	*cs_gpiod;	/* Chip select gpio desc */
+	struct gpio_desc	*cs_gpiod;	/* Chip select GPIO descriptor */
 	struct spi_delay	word_delay; /* Inter-word delay */
 	/* CS delays */
 	struct spi_delay	cs_setup;
@@ -224,7 +224,7 @@ struct spi_device {
 	struct spi_statistics __percpu	*pcpu_statistics;
 
 	/*
-	 * likely need more hooks for more protocol options affecting how
+	 * Likely need more hooks for more protocol options affecting how
 	 * the controller talks to each chip, like:
 	 *  - memory packing (12 bit samples into low bits, others zeroed)
 	 *  - priority
@@ -300,11 +300,11 @@ static inline void spi_set_csgpiod(struct spi_device *spi, u8 idx, struct gpio_d
 /**
  * struct spi_driver - Host side "protocol" driver
  * @id_table: List of SPI devices supported by this driver
- * @probe: Binds this driver to the spi device.  Drivers can verify
+ * @probe: Binds this driver to the SPI device.  Drivers can verify
  *	that the device is actually present, and may need to configure
  *	characteristics (such as bits_per_word) which weren't needed for
  *	the initial configuration done during system setup.
- * @remove: Unbinds this driver from the spi device
+ * @remove: Unbinds this driver from the SPI device
  * @shutdown: Standard shutdown callback used during system state
  *	transitions such as powerdown/halt and kexec
  * @driver: SPI device drivers should initialize the name and owner
@@ -416,7 +416,7 @@ extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 ch
  * @queued: whether this controller is providing an internal message queue
  * @kworker: pointer to thread struct for message pump
  * @pump_messages: work struct for scheduling work to the message pump
- * @queue_lock: spinlock to syncronise access to message queue
+ * @queue_lock: spinlock to synchronise access to message queue
  * @queue: message queue
  * @cur_msg: the currently in-flight message
  * @cur_msg_completion: a completion for the current in-flight message
@@ -474,7 +474,7 @@ extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 ch
  * @unprepare_message: undo any work done by prepare_message().
  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
  * @target_abort: abort the ongoing transfer request on an SPI target controller
- * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
+ * @cs_gpiods: Array of GPIO descriptors to use as chip select lines; one per CS
  *	number. Any individual value may be NULL for CS lines that
  *	are not GPIOs (driven by the SPI controller itself).
  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
@@ -501,7 +501,7 @@ extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 ch
  *	If the driver does not set this, the SPI core takes the snapshot as
  *	close to the driver hand-over as possible.
  * @irq_flags: Interrupt enable state during PTP system timestamping
- * @fallback: fallback to pio if dma transfer return failure with
+ * @fallback: fallback to PIO if DMA transfer return failure with
  *	SPI_TRANS_FAIL_NO_START.
  * @queue_empty: signal green light for opportunistically skipping the queue
  *	for spi_sync transfers.
@@ -523,15 +523,17 @@ struct spi_controller {
 
 	struct list_head list;
 
-	/* Other than negative (== assign one dynamically), bus_num is fully
-	 * board-specific.  usually that simplifies to being SOC-specific.
-	 * example:  one SOC has three SPI controllers, numbered 0..2,
-	 * and one board's schematics might show it using SPI-2.  software
+	/*
+	 * Other than negative (== assign one dynamically), bus_num is fully
+	 * board-specific. Usually that simplifies to being SoC-specific.
+	 * example: one SoC has three SPI controllers, numbered 0..2,
+	 * and one board's schematics might show it using SPI-2. Software
 	 * would normally use bus_num=2 for that controller.
 	 */
 	s16			bus_num;
 
-	/* chipselects will be integral to many controllers; some others
+	/*
+	 * Chipselects will be integral to many controllers; some others
 	 * might use board-specific GPIOs.
 	 */
 	u16			num_chipselect;
@@ -576,8 +578,8 @@ struct spi_controller {
 	};
 
 	/*
-	 * on some hardware transfer / message size may be constrained
-	 * the limit may depend on device transfer settings
+	 * On some hardware transfer / message size may be constrained
+	 * the limit may depend on device transfer settings.
 	 */
 	size_t (*max_transfer_size)(struct spi_device *spi);
 	size_t (*max_message_size)(struct spi_device *spi);
@@ -595,7 +597,8 @@ struct spi_controller {
 	/* Flag indicating that the SPI bus is locked for exclusive use */
 	bool			bus_lock_flag;
 
-	/* Setup mode and clock, etc (spi driver may call many times).
+	/*
+	 * Setup mode and clock, etc (SPI driver may call many times).
 	 *
 	 * IMPORTANT:  this may be called when transfers to another
 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
@@ -613,18 +616,19 @@ struct spi_controller {
 	 */
 	int (*set_cs_timing)(struct spi_device *spi);
 
-	/* Bidirectional bulk transfers
+	/*
+	 * Bidirectional bulk transfers
 	 *
 	 * + The transfer() method may not sleep; its main role is
 	 *   just to add the message to the queue.
 	 * + For now there's no remove-from-queue operation, or
 	 *   any other request management
-	 * + To a given spi_device, message queueing is pure fifo
+	 * + To a given spi_device, message queueing is pure FIFO
 	 *
 	 * + The controller's main job is to process its message queue,
 	 *   selecting a chip (for masters), then transferring data
 	 * + If there are multiple spi_device children, the i/o queue
-	 *   arbitration algorithm is unspecified (round robin, fifo,
+	 *   arbitration algorithm is unspecified (round robin, FIFO,
 	 *   priority, reservations, preemption, etc)
 	 *
 	 * + Chipselect stays active during the entire message
@@ -705,7 +709,7 @@ struct spi_controller {
 	const struct spi_controller_mem_ops *mem_ops;
 	const struct spi_controller_mem_caps *mem_caps;
 
-	/* gpio chip select */
+	/* GPIO chip select */
 	struct gpio_desc	**cs_gpiods;
 	bool			use_gpio_descriptors;
 	s8			unused_native_cs;
@@ -789,7 +793,7 @@ void spi_take_timestamp_post(struct spi_controller *ctlr,
 			     struct spi_transfer *xfer,
 			     size_t progress, bool irqs_off);
 
-/* The spi driver core manages memory for the spi_controller classdev */
+/* The SPI driver core manages memory for the spi_controller classdev */
 extern struct spi_controller *__spi_alloc_controller(struct device *host,
 						unsigned int size, bool slave);
 
@@ -878,13 +882,13 @@ typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
 				  void *res);
 
 /**
- * struct spi_res - spi resource management structure
+ * struct spi_res - SPI resource management structure
  * @entry:   list entry
  * @release: release code called prior to freeing this resource
  * @data:    extra data allocated for the specific use-case
  *
- * this is based on ideas from devres, but focused on life-cycle
- * management during spi_message processing
+ * This is based on ideas from devres, but focused on life-cycle
+ * management during spi_message processing.
  */
 struct spi_res {
 	struct list_head        entry;
@@ -902,7 +906,7 @@ struct spi_res {
  *
  * The spi_messages themselves consist of a series of read+write transfer
  * segments.  Those segments always read the same number of bits as they
- * write; but one or the other is easily ignored by passing a null buffer
+ * write; but one or the other is easily ignored by passing a NULL buffer
  * pointer.  (This is unlike most types of I/O API, because SPI hardware
  * is full duplex.)
  *
@@ -913,8 +917,8 @@ struct spi_res {
 
 /**
  * struct spi_transfer - a read/write buffer pair
- * @tx_buf: data to be written (dma-safe memory), or NULL
- * @rx_buf: data to be read (dma-safe memory), or NULL
+ * @tx_buf: data to be written (DMA-safe memory), or NULL
+ * @rx_buf: data to be read (DMA-safe memory), or NULL
  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
  * @tx_nbits: number of bits used for writing. If 0 the default
@@ -937,7 +941,7 @@ struct spi_res {
  * @word_delay: inter word delay to be introduced after each word size
  *	(set by bits_per_word) transmission.
  * @effective_speed_hz: the effective SCK-speed that was used to
- *      transfer this transfer. Set to 0 if the spi bus driver does
+ *      transfer this transfer. Set to 0 if the SPI bus driver does
  *      not support it.
  * @transfer_list: transfers are sequenced through @spi_message.transfers
  * @tx_sg: Scatterlist for transmit, currently not for client use
@@ -966,16 +970,16 @@ struct spi_res {
  *	transmitting the "pre" word, and the "post" timestamp after receiving
  *	transmit confirmation from the controller for the "post" word.
  * @timestamped: true if the transfer has been timestamped
- * @error: Error status logged by spi controller driver.
+ * @error: Error status logged by SPI controller driver.
  *
  * SPI transfers always write the same number of bytes as they read.
  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
  * In some cases, they may also want to provide DMA addresses for
  * the data being transferred; that may reduce overhead, when the
- * underlying driver uses dma.
+ * underlying driver uses DMA.
  *
- * If the transmit buffer is null, zeroes will be shifted out
- * while filling @rx_buf.  If the receive buffer is null, the data
+ * If the transmit buffer is NULL, zeroes will be shifted out
+ * while filling @rx_buf.  If the receive buffer is NULL, the data
  * shifted in will be discarded.  Only "len" bytes shift out (or in).
  * It's an error to try to shift out a partial word.  (For example, by
  * shifting out three bytes with word size of sixteen or twenty bits;
@@ -1009,7 +1013,7 @@ struct spi_res {
  * Some devices need protocol transactions to be built from a series of
  * spi_message submissions, where the content of one message is determined
  * by the results of previous messages and where the whole transaction
- * ends when the chipselect goes intactive.
+ * ends when the chipselect goes inactive.
  *
  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
@@ -1023,10 +1027,11 @@ struct spi_res {
  * and its transfers, ignore them until its completion callback.
  */
 struct spi_transfer {
-	/* It's ok if tx_buf == rx_buf (right?)
-	 * for MicroWire, one buffer must be null
-	 * buffers must work with dma_*map_single() calls, unless
-	 *   spi_message.is_dma_mapped reports a pre-existing mapping
+	/*
+	 * It's okay if tx_buf == rx_buf (right?).
+	 * For MicroWire, one buffer must be NULL.
+	 * Buffers must work with dma_*map_single() calls, unless
+	 * spi_message.is_dma_mapped reports a pre-existing mapping.
 	 */
 	const void	*tx_buf;
 	void		*rx_buf;
@@ -1046,9 +1051,9 @@ struct spi_transfer {
 	unsigned	tx_nbits:3;
 	unsigned	rx_nbits:3;
 	unsigned	timestamped:1;
-#define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
-#define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
-#define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
+#define	SPI_NBITS_SINGLE	0x01 /* 1-bit transfer */
+#define	SPI_NBITS_DUAL		0x02 /* 2-bit transfer */
+#define	SPI_NBITS_QUAD		0x04 /* 4-bit transfer */
 	u8		bits_per_word;
 	struct spi_delay	delay;
 	struct spi_delay	cs_change_delay;
@@ -1069,7 +1074,7 @@ struct spi_transfer {
  * struct spi_message - one multi-segment SPI transaction
  * @transfers: list of transfer segments in this transaction
  * @spi: SPI device to which the transaction is queued
- * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
+ * @is_dma_mapped: if true, the caller provided both DMA and CPU virtual
  *	addresses for each transfer buffer
  * @complete: called to report transaction completions
  * @context: the argument to complete() when it's called
@@ -1079,7 +1084,7 @@ struct spi_transfer {
  * @status: zero for success, else negative errno
  * @queue: for use by whichever driver currently owns the message
  * @state: for use by whichever driver currently owns the message
- * @resources: for resource management when the spi message is processed
+ * @resources: for resource management when the SPI message is processed
  * @prepared: spi_prepare_message was called for the this message
  * @t: for use with spi_message_alloc() when message and transfers have
  *	been allocated together
@@ -1108,7 +1113,8 @@ struct spi_message {
 	/* spi_prepare_message() was called for this message */
 	bool			prepared;
 
-	/* REVISIT:  we might want a flag affecting the behavior of the
+	/*
+	 * REVISIT: we might want a flag affecting the behavior of the
 	 * last transfer ... allowing things like "read 16 bit length L"
 	 * immediately followed by "read L bytes".  Basically imposing
 	 * a specific message scheduling algorithm.
@@ -1126,14 +1132,15 @@ struct spi_message {
 	unsigned		frame_length;
 	unsigned		actual_length;
 
-	/* For optional use by whatever driver currently owns the
+	/*
+	 * For optional use by whatever driver currently owns the
 	 * spi_message ...  between calls to spi_async and then later
 	 * complete(), that's the spi_controller controller driver.
 	 */
 	struct list_head	queue;
 	void			*state;
 
-	/* List of spi_res reources when the spi message is processed */
+	/* List of spi_res resources when the SPI message is processed */
 	struct list_head        resources;
 
 	/* For embedding transfers into the memory of the message */
@@ -1173,7 +1180,7 @@ spi_transfer_delay_exec(struct spi_transfer *t)
 /**
  * spi_message_init_with_transfers - Initialize spi_message and append transfers
  * @m: spi_message to be initialized
- * @xfers: An array of spi transfers
+ * @xfers: An array of SPI transfers
  * @num_xfers: Number of items in the xfer array
  *
  * This function initializes the given spi_message and adds each spi_transfer in
@@ -1190,10 +1197,10 @@ struct spi_transfer *xfers, unsigned int num_xfers)
 		spi_message_add_tail(&xfers[i], m);
 }
 
-/* It's fine to embed message and transaction structures in other data
+/*
+ * It's fine to embed message and transaction structures in other data
  * structures so long as you don't free them while they're in use.
  */
-
 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
 {
 	struct spi_message *m;
@@ -1293,7 +1300,7 @@ typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
  *                                 replacements that have occurred
  *                                 so that they can get reverted
  * @release:            some extra release code to get executed prior to
- *                      relasing this structure
+ *                      releasing this structure
  * @extradata:          pointer to some extra data if requested or NULL
  * @replaced_transfers: transfers that have been replaced and which need
  *                      to get restored
@@ -1303,9 +1310,9 @@ typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
  * @inserted_transfers: array of spi_transfers of array-size @inserted,
  *                      that have been replacing replaced_transfers
  *
- * note: that @extradata will point to @inserted_transfers[@inserted]
+ * Note: that @extradata will point to @inserted_transfers[@inserted]
  * if some extra allocation is requested, so alignment will be the same
- * as for spi_transfers
+ * as for spi_transfers.
  */
 struct spi_replaced_transfers {
 	spi_replaced_release_t release;
@@ -1331,7 +1338,8 @@ extern int spi_split_transfers_maxwords(struct spi_controller *ctlr,
 
 /*---------------------------------------------------------------------------*/
 
-/* All these synchronous SPI transfer routines are utilities layered
+/*
+ * All these synchronous SPI transfer routines are utilities layered
  * over the core async transfer primitive.  Here, "synchronous" means
  * they will sleep uninterruptibly until the async transfer completes.
  */
@@ -1474,7 +1482,7 @@ static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
  *
  * Callable only from contexts that can sleep.
  *
- * Return: the (unsigned) sixteen bit number returned by the device in cpu
+ * Return: the (unsigned) sixteen bit number returned by the device in CPU
  * endianness, or else a negative error code.
  */
 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
@@ -1502,7 +1510,7 @@ static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
  * As a rule, SPI devices can't be probed.  Instead, board init code
  * provides a table listing the devices which are present, with enough
  * information to bind and set up the device's driver.  There's basic
- * support for nonstatic configurations too; enough to handle adding
+ * support for non-static configurations too; enough to handle adding
  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
  */
 
@@ -1539,12 +1547,13 @@ static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
  * are active in some dynamic board configuration models.
  */
 struct spi_board_info {
-	/* The device name and module name are coupled, like platform_bus;
+	/*
+	 * The device name and module name are coupled, like platform_bus;
 	 * "modalias" is normally the driver name.
 	 *
 	 * platform_data goes to spi_device.dev.platform_data,
 	 * controller_data goes to spi_device.controller_data,
-	 * irq is copied too
+	 * IRQ is copied too.
 	 */
 	char		modalias[SPI_NAME_SIZE];
 	const void	*platform_data;
@@ -1556,7 +1565,8 @@ struct spi_board_info {
 	u32		max_speed_hz;
 
 
-	/* bus_num is board specific and matches the bus_num of some
+	/*
+	 * bus_num is board specific and matches the bus_num of some
 	 * spi_controller that will probably be registered later.
 	 *
 	 * chip_select reflects how this chip is wired to that master;
@@ -1565,12 +1575,14 @@ struct spi_board_info {
 	u16		bus_num;
 	u16		chip_select;
 
-	/* mode becomes spi_device.mode, and is essential for chips
+	/*
+	 * mode becomes spi_device.mode, and is essential for chips
 	 * where the default of SPI_CS_HIGH = 0 is wrong.
 	 */
 	u32		mode;
 
-	/* ... may need additional spi_device chip config data here.
+	/*
+	 * ... may need additional spi_device chip config data here.
 	 * avoid stuff protocol drivers can set; but include stuff
 	 * needed to behave without being bound to a driver:
 	 *  - quirks like clock rate mattering when not selected
@@ -1587,7 +1599,8 @@ spi_register_board_info(struct spi_board_info const *info, unsigned n)
 	{ return 0; }
 #endif
 
-/* If you're hotplugging an adapter with devices (parport, usb, etc)
+/*
+ * If you're hotplugging an adapter with devices (parport, USB, etc)
  * use spi_new_device() to describe each device.  You can also call
  * spi_unregister_device() to start making that device vanish, but
  * normally that would be handled by spi_unregister_controller().
diff --git a/include/trace/events/spi.h b/include/trace/events/spi.h
index c0248a8fa79c..e63d4a24d879 100644
--- a/include/trace/events/spi.h
+++ b/include/trace/events/spi.h
@@ -167,7 +167,7 @@ TRACE_EVENT(spi_message_done,
 );
 
 /*
- * consider a buffer valid if non-NULL and if it doesn't match the dummy buffer
+ * Consider a buffer valid if non-NULL and if it doesn't match the dummy buffer
  * that only exist to work with controllers that have SPI_CONTROLLER_MUST_TX or
  * SPI_CONTROLLER_MUST_RX.
  */
-- 
2.40.0.1.gaa8946217a0b


WARNING: multiple messages have this Message-ID (diff)
From: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
To: "Mark Brown" <broonie@kernel.org>,
	"Cristian Ciocaltea" <cristian.ciocaltea@collabora.com>,
	"Yang Yingliang" <yangyingliang@huawei.com>,
	"Andy Shevchenko" <andriy.shevchenko@linux.intel.com>,
	"Amit Kumar Mahapatra via Alsa-devel"
	<alsa-devel@alsa-project.org>,
	"Serge Semin" <fancer.lancer@gmail.com>,
	"Neil Armstrong" <neil.armstrong@linaro.org>,
	"Tharun Kumar P" <tharunkumar.pasumarthi@microchip.com>,
	"Vijaya Krishna Nivarthi" <quic_vnivarth@quicinc.com>,
	"Uwe Kleine-König" <u.kleine-koenig@pengutronix.de>,
	linux-spi@vger.kernel.org, linux-kernel@vger.kernel.org,
	linux-arm-kernel@lists.infradead.org,
	linux-amlogic@lists.infradead.org,
	linux-mediatek@lists.infradead.org,
	linux-arm-msm@vger.kernel.org,
	linux-rockchip@lists.infradead.org,
	linux-riscv@lists.infradead.org,
	linux-stm32@st-md-mailman.stormreply.com,
	linux-trace-kernel@vger.kernel.org, netdev@vger.kernel.org
Cc: Sanjay R Mehta <sanju.mehta@amd.com>,
	Radu Pirea <radu_nicolae.pirea@upb.ro>,
	Nicolas Ferre <nicolas.ferre@microchip.com>,
	Alexandre Belloni <alexandre.belloni@bootlin.com>,
	Claudiu Beznea <claudiu.beznea@microchip.com>,
	Tudor Ambarus <tudor.ambarus@linaro.org>,
	Shawn Guo <shawnguo@kernel.org>,
	Sascha Hauer <s.hauer@pengutronix.de>,
	Pengutronix Kernel Team <kernel@pengutronix.de>,
	Fabio Estevam <festevam@gmail.com>,
	NXP Linux Team <linux-imx@nxp.com>,
	Kevin Hilman <khilman@baylibre.com>,
	Jerome Brunet <jbrunet@baylibre.com>,
	Martin Blumenstingl <martin.blumenstingl@googlemail.com>,
	Matthias Brugger <matthias.bgg@gmail.com>,
	AngeloGioacchino Del Regno
	<angelogioacchino.delregno@collabora.com>,
	Andy Gross <agross@kernel.org>,
	Bjorn Andersson <andersson@kernel.org>,
	Konrad Dybcio <konrad.dybcio@linaro.org>,
	Heiko Stuebner <heiko@sntech.de>,
	Palmer Dabbelt <palmer@dabbelt.com>,
	Paul Walmsley <paul.walmsley@sifive.com>,
	Orson Zhai <orsonzhai@gmail.com>,
	Baolin Wang <baolin.wang@linux.alibaba.com>,
	Chunyan Zhang <zhang.lyra@gmail.com>,
	Alain Volmat <alain.volmat@foss.st.com>,
	Maxime Coquelin <mcoquelin.stm32@gmail.com>,
	Alexandre Torgue <alexandre.torgue@foss.st.com>,
	Max Filippov <jcmvbkbc@gmail.com>,
	Steven Rostedt <rostedt@goodmis.org>,
	Masami Hiramatsu <mhiramat@kernel.org>,
	Richard Cochran <richardcochran@gmail.com>,
	Sebastian Reichel <sebastian.reichel@collabora.com>
Subject: [PATCH v3 14/14] spi: Fix spelling typos and acronyms capitalization
Date: Tue, 11 Jul 2023 20:17:56 +0300	[thread overview]
Message-ID: <20230711171756.86736-15-andriy.shevchenko@linux.intel.com> (raw)
In-Reply-To: <20230711171756.86736-1-andriy.shevchenko@linux.intel.com>

Fix
  - spelling typos
  - capitalization of acronyms
in the comments.

While at it, fix the multi-line comment style.

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
---
 drivers/spi/spi.c          |  54 ++++++++-------
 include/linux/spi/spi.h    | 137 ++++++++++++++++++++-----------------
 include/trace/events/spi.h |   2 +-
 3 files changed, 104 insertions(+), 89 deletions(-)

diff --git a/drivers/spi/spi.c b/drivers/spi/spi.c
index 0612610a091a..e656696e3d99 100644
--- a/drivers/spi/spi.c
+++ b/drivers/spi/spi.c
@@ -692,7 +692,7 @@ static int __spi_add_device(struct spi_device *spi)
  * @spi: spi_device to register
  *
  * Companion function to spi_alloc_device.  Devices allocated with
- * spi_alloc_device can be added onto the spi bus with this function.
+ * spi_alloc_device can be added onto the SPI bus with this function.
  *
  * Return: 0 on success; negative errno on failure
  */
@@ -869,7 +869,7 @@ int spi_register_board_info(struct spi_board_info const *info, unsigned n)
  * spi_res_alloc - allocate a spi resource that is life-cycle managed
  *                 during the processing of a spi_message while using
  *                 spi_transfer_one
- * @spi:     the spi device for which we allocate memory
+ * @spi:     the SPI device for which we allocate memory
  * @release: the release code to execute for this resource
  * @size:    size to alloc and return
  * @gfp:     GFP allocation flags
@@ -895,7 +895,7 @@ static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
 }
 
 /**
- * spi_res_free - free an spi resource
+ * spi_res_free - free an SPI resource
  * @res: pointer to the custom data of a resource
  */
 static void spi_res_free(void *res)
@@ -911,7 +911,7 @@ static void spi_res_free(void *res)
 
 /**
  * spi_res_add - add a spi_res to the spi_message
- * @message: the spi message
+ * @message: the SPI message
  * @res:     the spi_resource
  */
 static void spi_res_add(struct spi_message *message, void *res)
@@ -923,7 +923,7 @@ static void spi_res_add(struct spi_message *message, void *res)
 }
 
 /**
- * spi_res_release - release all spi resources for this message
+ * spi_res_release - release all SPI resources for this message
  * @ctlr:  the @spi_controller
  * @message: the @spi_message
  */
@@ -1404,7 +1404,7 @@ int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
 			return -EINVAL;
 		/*
 		 * If there is unknown effective speed, approximate it
-		 * by underestimating with half of the requested hz.
+		 * by underestimating with half of the requested Hz.
 		 */
 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
 		if (!hz)
@@ -1719,11 +1719,11 @@ static int __spi_pump_transfer_message(struct spi_controller *ctlr,
 }
 
 /**
- * __spi_pump_messages - function which processes spi message queue
+ * __spi_pump_messages - function which processes SPI message queue
  * @ctlr: controller to process queue for
  * @in_kthread: true if we are in the context of the message pump thread
  *
- * This function checks if there is any spi message in the queue that
+ * This function checks if there is any SPI message in the queue that
  * needs processing and if so call out to the driver to initialize hardware
  * and transfer each message.
  *
@@ -1738,7 +1738,7 @@ static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
 	unsigned long flags;
 	int ret;
 
-	/* Take the IO mutex */
+	/* Take the I/O mutex */
 	mutex_lock(&ctlr->io_mutex);
 
 	/* Lock queue */
@@ -2149,8 +2149,8 @@ static int __spi_queued_transfer(struct spi_device *spi,
 
 /**
  * spi_queued_transfer - transfer function for queued transfers
- * @spi: spi device which is requesting transfer
- * @msg: spi message which is to handled is queued to driver queue
+ * @spi: SPI device which is requesting transfer
+ * @msg: SPI message which is to handled is queued to driver queue
  *
  * Return: zero on success, else a negative error code.
  */
@@ -2479,7 +2479,7 @@ static int acpi_spi_count(struct acpi_resource *ares, void *data)
  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
  * @adev:	ACPI device
  *
- * Returns the number of SpiSerialBus resources in the ACPI-device's
+ * Return: the number of SpiSerialBus resources in the ACPI-device's
  * resource-list; or a negative error code.
  */
 int acpi_spi_count_resources(struct acpi_device *adev)
@@ -2613,10 +2613,10 @@ static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
  * @adev: ACPI Device for the spi device
  * @index: Index of the spi resource inside the ACPI Node
  *
- * This should be used to allocate a new spi device from and ACPI Node.
- * The caller is responsible for calling spi_add_device to register the spi device.
+ * This should be used to allocate a new SPI device from and ACPI Device node.
+ * The caller is responsible for calling spi_add_device to register the SPI device.
  *
- * If ctlr is set to NULL, the Controller for the spi device will be looked up
+ * If ctlr is set to NULL, the Controller for the SPI device will be looked up
  * using the resource.
  * If index is set to -1, index is not used.
  * Note: If index is -1, ctlr must be set.
@@ -3314,7 +3314,8 @@ void spi_unregister_controller(struct spi_controller *ctlr)
 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
 		mutex_unlock(&ctlr->add_lock);
 
-	/* Release the last reference on the controller if its driver
+	/*
+	 * Release the last reference on the controller if its driver
 	 * has not yet been converted to devm_spi_alloc_master/slave().
 	 */
 	if (!ctlr->devm_allocated)
@@ -3527,7 +3528,7 @@ static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
 
 	/* All the others need rx_buf/tx_buf also set */
 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
-		/* Update rx_buf, tx_buf and dma */
+		/* Update rx_buf, tx_buf and DMA */
 		if (xfers[i].rx_buf)
 			xfers[i].rx_buf += offset;
 		if (xfers[i].rx_dma)
@@ -3597,7 +3598,7 @@ EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
 
 
 /**
- * spi_split_transfers_maxwords - split spi transfers into multiple transfers
+ * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
  *                                when an individual transfer exceeds a
  *                                certain number of SPI words
  * @ctlr:     the @spi_controller for this transfer
@@ -3646,7 +3647,8 @@ EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
 
 /*-------------------------------------------------------------------------*/
 
-/* Core methods for SPI controller protocol drivers.  Some of the
+/*
+ * Core methods for SPI controller protocol drivers. Some of the
  * other core methods are currently defined as inline functions.
  */
 
@@ -3706,7 +3708,7 @@ static int spi_set_cs_timing(struct spi_device *spi)
  * changes those settings, and must be called from a context that can sleep.
  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
  * effect the next time the device is selected and data is transferred to
- * or from it.  When this function returns, the spi device is deselected.
+ * or from it.  When this function returns, the SPI device is deselected.
  *
  * Note that this call will fail if the protocol driver specifies an option
  * that the underlying controller or its driver does not support.  For
@@ -4044,7 +4046,7 @@ static int __spi_async(struct spi_device *spi, struct spi_message *message)
  * spi_async - asynchronous SPI transfer
  * @spi: device with which data will be exchanged
  * @message: describes the data transfers, including completion callback
- * Context: any (irqs may be blocked, etc)
+ * Context: any (IRQs may be blocked, etc)
  *
  * This call may be used in_irq and other contexts which can't sleep,
  * as well as from task contexts which can sleep.
@@ -4098,7 +4100,7 @@ EXPORT_SYMBOL_GPL(spi_async);
  * spi_async_locked - version of spi_async with exclusive bus usage
  * @spi: device with which data will be exchanged
  * @message: describes the data transfers, including completion callback
- * Context: any (irqs may be blocked, etc)
+ * Context: any (IRQs may be blocked, etc)
  *
  * This call may be used in_irq and other contexts which can't sleep,
  * as well as from task contexts which can sleep.
@@ -4361,9 +4363,9 @@ static u8	*buf;
 /**
  * spi_write_then_read - SPI synchronous write followed by read
  * @spi: device with which data will be exchanged
- * @txbuf: data to be written (need not be dma-safe)
+ * @txbuf: data to be written (need not be DMA-safe)
  * @n_tx: size of txbuf, in bytes
- * @rxbuf: buffer into which data will be read (need not be dma-safe)
+ * @rxbuf: buffer into which data will be read (need not be DMA-safe)
  * @n_rx: size of rxbuf, in bytes
  * Context: can sleep
  *
@@ -4374,7 +4376,7 @@ static u8	*buf;
  *
  * Parameters to this routine are always copied using a small buffer.
  * Performance-sensitive or bulk transfer code should instead use
- * spi_{async,sync}() calls with dma-safe buffers.
+ * spi_{async,sync}() calls with DMA-safe buffers.
  *
  * Return: zero on success, else a negative error code.
  */
@@ -4419,7 +4421,7 @@ int spi_write_then_read(struct spi_device *spi,
 	x[0].tx_buf = local_buf;
 	x[1].rx_buf = local_buf + n_tx;
 
-	/* Do the i/o */
+	/* Do the I/O */
 	status = spi_sync(spi, &message);
 	if (status == 0)
 		memcpy(rxbuf, x[1].rx_buf, n_rx);
diff --git a/include/linux/spi/spi.h b/include/linux/spi/spi.h
index 458369939fa5..7f8b478fdeb3 100644
--- a/include/linux/spi/spi.h
+++ b/include/linux/spi/spi.h
@@ -37,7 +37,7 @@ extern struct bus_type spi_bus_type;
 
 /**
  * struct spi_statistics - statistics for spi transfers
- * @syncp:         seqcount to protect members in this struct for per-cpu udate
+ * @syncp:         seqcount to protect members in this struct for per-cpu update
  *                 on 32-bit systems
  *
  * @messages:      number of spi-messages handled
@@ -56,7 +56,7 @@ extern struct bus_type spi_bus_type;
  * @bytes_rx:      number of bytes received from device
  *
  * @transfer_bytes_histo:
- *                 transfer bytes histogramm
+ *                 transfer bytes histogram
  *
  * @transfers_split_maxsize:
  *                 number of transfers that have been split because of
@@ -157,7 +157,7 @@ extern void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
  *	the device will bind to the named driver and only the named driver.
  *	Do not set directly, because core frees it; use driver_set_override() to
  *	set or clear it.
- * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
+ * @cs_gpiod: GPIO descriptor of the chipselect line (optional, NULL when
  *	not using a GPIO line)
  * @word_delay: delay to be inserted between consecutive
  *	words of a transfer
@@ -213,7 +213,7 @@ struct spi_device {
 	void			*controller_data;
 	char			modalias[SPI_NAME_SIZE];
 	const char		*driver_override;
-	struct gpio_desc	*cs_gpiod;	/* Chip select gpio desc */
+	struct gpio_desc	*cs_gpiod;	/* Chip select GPIO descriptor */
 	struct spi_delay	word_delay; /* Inter-word delay */
 	/* CS delays */
 	struct spi_delay	cs_setup;
@@ -224,7 +224,7 @@ struct spi_device {
 	struct spi_statistics __percpu	*pcpu_statistics;
 
 	/*
-	 * likely need more hooks for more protocol options affecting how
+	 * Likely need more hooks for more protocol options affecting how
 	 * the controller talks to each chip, like:
 	 *  - memory packing (12 bit samples into low bits, others zeroed)
 	 *  - priority
@@ -300,11 +300,11 @@ static inline void spi_set_csgpiod(struct spi_device *spi, u8 idx, struct gpio_d
 /**
  * struct spi_driver - Host side "protocol" driver
  * @id_table: List of SPI devices supported by this driver
- * @probe: Binds this driver to the spi device.  Drivers can verify
+ * @probe: Binds this driver to the SPI device.  Drivers can verify
  *	that the device is actually present, and may need to configure
  *	characteristics (such as bits_per_word) which weren't needed for
  *	the initial configuration done during system setup.
- * @remove: Unbinds this driver from the spi device
+ * @remove: Unbinds this driver from the SPI device
  * @shutdown: Standard shutdown callback used during system state
  *	transitions such as powerdown/halt and kexec
  * @driver: SPI device drivers should initialize the name and owner
@@ -416,7 +416,7 @@ extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 ch
  * @queued: whether this controller is providing an internal message queue
  * @kworker: pointer to thread struct for message pump
  * @pump_messages: work struct for scheduling work to the message pump
- * @queue_lock: spinlock to syncronise access to message queue
+ * @queue_lock: spinlock to synchronise access to message queue
  * @queue: message queue
  * @cur_msg: the currently in-flight message
  * @cur_msg_completion: a completion for the current in-flight message
@@ -474,7 +474,7 @@ extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 ch
  * @unprepare_message: undo any work done by prepare_message().
  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
  * @target_abort: abort the ongoing transfer request on an SPI target controller
- * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
+ * @cs_gpiods: Array of GPIO descriptors to use as chip select lines; one per CS
  *	number. Any individual value may be NULL for CS lines that
  *	are not GPIOs (driven by the SPI controller itself).
  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
@@ -501,7 +501,7 @@ extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 ch
  *	If the driver does not set this, the SPI core takes the snapshot as
  *	close to the driver hand-over as possible.
  * @irq_flags: Interrupt enable state during PTP system timestamping
- * @fallback: fallback to pio if dma transfer return failure with
+ * @fallback: fallback to PIO if DMA transfer return failure with
  *	SPI_TRANS_FAIL_NO_START.
  * @queue_empty: signal green light for opportunistically skipping the queue
  *	for spi_sync transfers.
@@ -523,15 +523,17 @@ struct spi_controller {
 
 	struct list_head list;
 
-	/* Other than negative (== assign one dynamically), bus_num is fully
-	 * board-specific.  usually that simplifies to being SOC-specific.
-	 * example:  one SOC has three SPI controllers, numbered 0..2,
-	 * and one board's schematics might show it using SPI-2.  software
+	/*
+	 * Other than negative (== assign one dynamically), bus_num is fully
+	 * board-specific. Usually that simplifies to being SoC-specific.
+	 * example: one SoC has three SPI controllers, numbered 0..2,
+	 * and one board's schematics might show it using SPI-2. Software
 	 * would normally use bus_num=2 for that controller.
 	 */
 	s16			bus_num;
 
-	/* chipselects will be integral to many controllers; some others
+	/*
+	 * Chipselects will be integral to many controllers; some others
 	 * might use board-specific GPIOs.
 	 */
 	u16			num_chipselect;
@@ -576,8 +578,8 @@ struct spi_controller {
 	};
 
 	/*
-	 * on some hardware transfer / message size may be constrained
-	 * the limit may depend on device transfer settings
+	 * On some hardware transfer / message size may be constrained
+	 * the limit may depend on device transfer settings.
 	 */
 	size_t (*max_transfer_size)(struct spi_device *spi);
 	size_t (*max_message_size)(struct spi_device *spi);
@@ -595,7 +597,8 @@ struct spi_controller {
 	/* Flag indicating that the SPI bus is locked for exclusive use */
 	bool			bus_lock_flag;
 
-	/* Setup mode and clock, etc (spi driver may call many times).
+	/*
+	 * Setup mode and clock, etc (SPI driver may call many times).
 	 *
 	 * IMPORTANT:  this may be called when transfers to another
 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
@@ -613,18 +616,19 @@ struct spi_controller {
 	 */
 	int (*set_cs_timing)(struct spi_device *spi);
 
-	/* Bidirectional bulk transfers
+	/*
+	 * Bidirectional bulk transfers
 	 *
 	 * + The transfer() method may not sleep; its main role is
 	 *   just to add the message to the queue.
 	 * + For now there's no remove-from-queue operation, or
 	 *   any other request management
-	 * + To a given spi_device, message queueing is pure fifo
+	 * + To a given spi_device, message queueing is pure FIFO
 	 *
 	 * + The controller's main job is to process its message queue,
 	 *   selecting a chip (for masters), then transferring data
 	 * + If there are multiple spi_device children, the i/o queue
-	 *   arbitration algorithm is unspecified (round robin, fifo,
+	 *   arbitration algorithm is unspecified (round robin, FIFO,
 	 *   priority, reservations, preemption, etc)
 	 *
 	 * + Chipselect stays active during the entire message
@@ -705,7 +709,7 @@ struct spi_controller {
 	const struct spi_controller_mem_ops *mem_ops;
 	const struct spi_controller_mem_caps *mem_caps;
 
-	/* gpio chip select */
+	/* GPIO chip select */
 	struct gpio_desc	**cs_gpiods;
 	bool			use_gpio_descriptors;
 	s8			unused_native_cs;
@@ -789,7 +793,7 @@ void spi_take_timestamp_post(struct spi_controller *ctlr,
 			     struct spi_transfer *xfer,
 			     size_t progress, bool irqs_off);
 
-/* The spi driver core manages memory for the spi_controller classdev */
+/* The SPI driver core manages memory for the spi_controller classdev */
 extern struct spi_controller *__spi_alloc_controller(struct device *host,
 						unsigned int size, bool slave);
 
@@ -878,13 +882,13 @@ typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
 				  void *res);
 
 /**
- * struct spi_res - spi resource management structure
+ * struct spi_res - SPI resource management structure
  * @entry:   list entry
  * @release: release code called prior to freeing this resource
  * @data:    extra data allocated for the specific use-case
  *
- * this is based on ideas from devres, but focused on life-cycle
- * management during spi_message processing
+ * This is based on ideas from devres, but focused on life-cycle
+ * management during spi_message processing.
  */
 struct spi_res {
 	struct list_head        entry;
@@ -902,7 +906,7 @@ struct spi_res {
  *
  * The spi_messages themselves consist of a series of read+write transfer
  * segments.  Those segments always read the same number of bits as they
- * write; but one or the other is easily ignored by passing a null buffer
+ * write; but one or the other is easily ignored by passing a NULL buffer
  * pointer.  (This is unlike most types of I/O API, because SPI hardware
  * is full duplex.)
  *
@@ -913,8 +917,8 @@ struct spi_res {
 
 /**
  * struct spi_transfer - a read/write buffer pair
- * @tx_buf: data to be written (dma-safe memory), or NULL
- * @rx_buf: data to be read (dma-safe memory), or NULL
+ * @tx_buf: data to be written (DMA-safe memory), or NULL
+ * @rx_buf: data to be read (DMA-safe memory), or NULL
  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
  * @tx_nbits: number of bits used for writing. If 0 the default
@@ -937,7 +941,7 @@ struct spi_res {
  * @word_delay: inter word delay to be introduced after each word size
  *	(set by bits_per_word) transmission.
  * @effective_speed_hz: the effective SCK-speed that was used to
- *      transfer this transfer. Set to 0 if the spi bus driver does
+ *      transfer this transfer. Set to 0 if the SPI bus driver does
  *      not support it.
  * @transfer_list: transfers are sequenced through @spi_message.transfers
  * @tx_sg: Scatterlist for transmit, currently not for client use
@@ -966,16 +970,16 @@ struct spi_res {
  *	transmitting the "pre" word, and the "post" timestamp after receiving
  *	transmit confirmation from the controller for the "post" word.
  * @timestamped: true if the transfer has been timestamped
- * @error: Error status logged by spi controller driver.
+ * @error: Error status logged by SPI controller driver.
  *
  * SPI transfers always write the same number of bytes as they read.
  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
  * In some cases, they may also want to provide DMA addresses for
  * the data being transferred; that may reduce overhead, when the
- * underlying driver uses dma.
+ * underlying driver uses DMA.
  *
- * If the transmit buffer is null, zeroes will be shifted out
- * while filling @rx_buf.  If the receive buffer is null, the data
+ * If the transmit buffer is NULL, zeroes will be shifted out
+ * while filling @rx_buf.  If the receive buffer is NULL, the data
  * shifted in will be discarded.  Only "len" bytes shift out (or in).
  * It's an error to try to shift out a partial word.  (For example, by
  * shifting out three bytes with word size of sixteen or twenty bits;
@@ -1009,7 +1013,7 @@ struct spi_res {
  * Some devices need protocol transactions to be built from a series of
  * spi_message submissions, where the content of one message is determined
  * by the results of previous messages and where the whole transaction
- * ends when the chipselect goes intactive.
+ * ends when the chipselect goes inactive.
  *
  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
@@ -1023,10 +1027,11 @@ struct spi_res {
  * and its transfers, ignore them until its completion callback.
  */
 struct spi_transfer {
-	/* It's ok if tx_buf == rx_buf (right?)
-	 * for MicroWire, one buffer must be null
-	 * buffers must work with dma_*map_single() calls, unless
-	 *   spi_message.is_dma_mapped reports a pre-existing mapping
+	/*
+	 * It's okay if tx_buf == rx_buf (right?).
+	 * For MicroWire, one buffer must be NULL.
+	 * Buffers must work with dma_*map_single() calls, unless
+	 * spi_message.is_dma_mapped reports a pre-existing mapping.
 	 */
 	const void	*tx_buf;
 	void		*rx_buf;
@@ -1046,9 +1051,9 @@ struct spi_transfer {
 	unsigned	tx_nbits:3;
 	unsigned	rx_nbits:3;
 	unsigned	timestamped:1;
-#define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
-#define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
-#define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
+#define	SPI_NBITS_SINGLE	0x01 /* 1-bit transfer */
+#define	SPI_NBITS_DUAL		0x02 /* 2-bit transfer */
+#define	SPI_NBITS_QUAD		0x04 /* 4-bit transfer */
 	u8		bits_per_word;
 	struct spi_delay	delay;
 	struct spi_delay	cs_change_delay;
@@ -1069,7 +1074,7 @@ struct spi_transfer {
  * struct spi_message - one multi-segment SPI transaction
  * @transfers: list of transfer segments in this transaction
  * @spi: SPI device to which the transaction is queued
- * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
+ * @is_dma_mapped: if true, the caller provided both DMA and CPU virtual
  *	addresses for each transfer buffer
  * @complete: called to report transaction completions
  * @context: the argument to complete() when it's called
@@ -1079,7 +1084,7 @@ struct spi_transfer {
  * @status: zero for success, else negative errno
  * @queue: for use by whichever driver currently owns the message
  * @state: for use by whichever driver currently owns the message
- * @resources: for resource management when the spi message is processed
+ * @resources: for resource management when the SPI message is processed
  * @prepared: spi_prepare_message was called for the this message
  * @t: for use with spi_message_alloc() when message and transfers have
  *	been allocated together
@@ -1108,7 +1113,8 @@ struct spi_message {
 	/* spi_prepare_message() was called for this message */
 	bool			prepared;
 
-	/* REVISIT:  we might want a flag affecting the behavior of the
+	/*
+	 * REVISIT: we might want a flag affecting the behavior of the
 	 * last transfer ... allowing things like "read 16 bit length L"
 	 * immediately followed by "read L bytes".  Basically imposing
 	 * a specific message scheduling algorithm.
@@ -1126,14 +1132,15 @@ struct spi_message {
 	unsigned		frame_length;
 	unsigned		actual_length;
 
-	/* For optional use by whatever driver currently owns the
+	/*
+	 * For optional use by whatever driver currently owns the
 	 * spi_message ...  between calls to spi_async and then later
 	 * complete(), that's the spi_controller controller driver.
 	 */
 	struct list_head	queue;
 	void			*state;
 
-	/* List of spi_res reources when the spi message is processed */
+	/* List of spi_res resources when the SPI message is processed */
 	struct list_head        resources;
 
 	/* For embedding transfers into the memory of the message */
@@ -1173,7 +1180,7 @@ spi_transfer_delay_exec(struct spi_transfer *t)
 /**
  * spi_message_init_with_transfers - Initialize spi_message and append transfers
  * @m: spi_message to be initialized
- * @xfers: An array of spi transfers
+ * @xfers: An array of SPI transfers
  * @num_xfers: Number of items in the xfer array
  *
  * This function initializes the given spi_message and adds each spi_transfer in
@@ -1190,10 +1197,10 @@ struct spi_transfer *xfers, unsigned int num_xfers)
 		spi_message_add_tail(&xfers[i], m);
 }
 
-/* It's fine to embed message and transaction structures in other data
+/*
+ * It's fine to embed message and transaction structures in other data
  * structures so long as you don't free them while they're in use.
  */
-
 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
 {
 	struct spi_message *m;
@@ -1293,7 +1300,7 @@ typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
  *                                 replacements that have occurred
  *                                 so that they can get reverted
  * @release:            some extra release code to get executed prior to
- *                      relasing this structure
+ *                      releasing this structure
  * @extradata:          pointer to some extra data if requested or NULL
  * @replaced_transfers: transfers that have been replaced and which need
  *                      to get restored
@@ -1303,9 +1310,9 @@ typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
  * @inserted_transfers: array of spi_transfers of array-size @inserted,
  *                      that have been replacing replaced_transfers
  *
- * note: that @extradata will point to @inserted_transfers[@inserted]
+ * Note: that @extradata will point to @inserted_transfers[@inserted]
  * if some extra allocation is requested, so alignment will be the same
- * as for spi_transfers
+ * as for spi_transfers.
  */
 struct spi_replaced_transfers {
 	spi_replaced_release_t release;
@@ -1331,7 +1338,8 @@ extern int spi_split_transfers_maxwords(struct spi_controller *ctlr,
 
 /*---------------------------------------------------------------------------*/
 
-/* All these synchronous SPI transfer routines are utilities layered
+/*
+ * All these synchronous SPI transfer routines are utilities layered
  * over the core async transfer primitive.  Here, "synchronous" means
  * they will sleep uninterruptibly until the async transfer completes.
  */
@@ -1474,7 +1482,7 @@ static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
  *
  * Callable only from contexts that can sleep.
  *
- * Return: the (unsigned) sixteen bit number returned by the device in cpu
+ * Return: the (unsigned) sixteen bit number returned by the device in CPU
  * endianness, or else a negative error code.
  */
 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
@@ -1502,7 +1510,7 @@ static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
  * As a rule, SPI devices can't be probed.  Instead, board init code
  * provides a table listing the devices which are present, with enough
  * information to bind and set up the device's driver.  There's basic
- * support for nonstatic configurations too; enough to handle adding
+ * support for non-static configurations too; enough to handle adding
  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
  */
 
@@ -1539,12 +1547,13 @@ static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
  * are active in some dynamic board configuration models.
  */
 struct spi_board_info {
-	/* The device name and module name are coupled, like platform_bus;
+	/*
+	 * The device name and module name are coupled, like platform_bus;
 	 * "modalias" is normally the driver name.
 	 *
 	 * platform_data goes to spi_device.dev.platform_data,
 	 * controller_data goes to spi_device.controller_data,
-	 * irq is copied too
+	 * IRQ is copied too.
 	 */
 	char		modalias[SPI_NAME_SIZE];
 	const void	*platform_data;
@@ -1556,7 +1565,8 @@ struct spi_board_info {
 	u32		max_speed_hz;
 
 
-	/* bus_num is board specific and matches the bus_num of some
+	/*
+	 * bus_num is board specific and matches the bus_num of some
 	 * spi_controller that will probably be registered later.
 	 *
 	 * chip_select reflects how this chip is wired to that master;
@@ -1565,12 +1575,14 @@ struct spi_board_info {
 	u16		bus_num;
 	u16		chip_select;
 
-	/* mode becomes spi_device.mode, and is essential for chips
+	/*
+	 * mode becomes spi_device.mode, and is essential for chips
 	 * where the default of SPI_CS_HIGH = 0 is wrong.
 	 */
 	u32		mode;
 
-	/* ... may need additional spi_device chip config data here.
+	/*
+	 * ... may need additional spi_device chip config data here.
 	 * avoid stuff protocol drivers can set; but include stuff
 	 * needed to behave without being bound to a driver:
 	 *  - quirks like clock rate mattering when not selected
@@ -1587,7 +1599,8 @@ spi_register_board_info(struct spi_board_info const *info, unsigned n)
 	{ return 0; }
 #endif
 
-/* If you're hotplugging an adapter with devices (parport, usb, etc)
+/*
+ * If you're hotplugging an adapter with devices (parport, USB, etc)
  * use spi_new_device() to describe each device.  You can also call
  * spi_unregister_device() to start making that device vanish, but
  * normally that would be handled by spi_unregister_controller().
diff --git a/include/trace/events/spi.h b/include/trace/events/spi.h
index c0248a8fa79c..e63d4a24d879 100644
--- a/include/trace/events/spi.h
+++ b/include/trace/events/spi.h
@@ -167,7 +167,7 @@ TRACE_EVENT(spi_message_done,
 );
 
 /*
- * consider a buffer valid if non-NULL and if it doesn't match the dummy buffer
+ * Consider a buffer valid if non-NULL and if it doesn't match the dummy buffer
  * that only exist to work with controllers that have SPI_CONTROLLER_MUST_TX or
  * SPI_CONTROLLER_MUST_RX.
  */
-- 
2.40.0.1.gaa8946217a0b


_______________________________________________
linux-riscv mailing list
linux-riscv@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/linux-riscv

WARNING: multiple messages have this Message-ID (diff)
From: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
To: "Mark Brown" <broonie@kernel.org>,
	"Cristian Ciocaltea" <cristian.ciocaltea@collabora.com>,
	"Yang Yingliang" <yangyingliang@huawei.com>,
	"Andy Shevchenko" <andriy.shevchenko@linux.intel.com>,
	"Amit Kumar Mahapatra via Alsa-devel"
	<alsa-devel@alsa-project.org>,
	"Serge Semin" <fancer.lancer@gmail.com>,
	"Neil Armstrong" <neil.armstrong@linaro.org>,
	"Tharun Kumar P" <tharunkumar.pasumarthi@microchip.com>,
	"Vijaya Krishna Nivarthi" <quic_vnivarth@quicinc.com>,
	"Uwe Kleine-König" <u.kleine-koenig@pengutronix.de>,
	linux-spi@vger.kernel.org, linux-kernel@vger.kernel.org,
	linux-arm-kernel@lists.infradead.org,
	linux-amlogic@lists.infradead.org,
	linux-mediatek@lists.infradead.org,
	linux-arm-msm@vger.kernel.org,
	linux-rockchip@lists.infradead.org,
	linux-riscv@lists.infradead.org,
	linux-stm32@st-md-mailman.stormreply.com,
	linux-trace-kernel@vger.kernel.org, netdev@vger.kernel.org
Cc: Sanjay R Mehta <sanju.mehta@amd.com>,
	Radu Pirea <radu_nicolae.pirea@upb.ro>,
	Nicolas Ferre <nicolas.ferre@microchip.com>,
	Alexandre Belloni <alexandre.belloni@bootlin.com>,
	Claudiu Beznea <claudiu.beznea@microchip.com>,
	Tudor Ambarus <tudor.ambarus@linaro.org>,
	Shawn Guo <shawnguo@kernel.org>,
	Sascha Hauer <s.hauer@pengutronix.de>,
	Pengutronix Kernel Team <kernel@pengutronix.de>,
	Fabio Estevam <festevam@gmail.com>,
	NXP Linux Team <linux-imx@nxp.com>,
	Kevin Hilman <khilman@baylibre.com>,
	Jerome Brunet <jbrunet@baylibre.com>,
	Martin Blumenstingl <martin.blumenstingl@googlemail.com>,
	Matthias Brugger <matthias.bgg@gmail.com>,
	AngeloGioacchino Del Regno
	<angelogioacchino.delregno@collabora.com>,
	Andy Gross <agross@kernel.org>,
	Bjorn Andersson <andersson@kernel.org>,
	Konrad Dybcio <konrad.dybcio@linaro.org>,
	Heiko Stuebner <heiko@sntech.de>,
	Palmer Dabbelt <palmer@dabbelt.com>,
	Paul Walmsley <paul.walmsley@sifive.com>,
	Orson Zhai <orsonzhai@gmail.com>,
	Baolin Wang <baolin.wang@linux.alibaba.com>,
	Chunyan Zhang <zhang.lyra@gmail.com>,
	Alain Volmat <alain.volmat@foss.st.com>,
	Maxime Coquelin <mcoquelin.stm32@gmail.com>,
	Alexandre Torgue <alexandre.torgue@foss.st.com>,
	Max Filippov <jcmvbkbc@gmail.com>,
	Steven Rostedt <rostedt@goodmis.org>,
	Masami Hiramatsu <mhiramat@kernel.org>,
	Richard Cochran <richardcochran@gmail.com>,
	Sebastian Reichel <sebastian.reichel@collabora.com>
Subject: [PATCH v3 14/14] spi: Fix spelling typos and acronyms capitalization
Date: Tue, 11 Jul 2023 20:17:56 +0300	[thread overview]
Message-ID: <20230711171756.86736-15-andriy.shevchenko@linux.intel.com> (raw)
In-Reply-To: <20230711171756.86736-1-andriy.shevchenko@linux.intel.com>

Fix
  - spelling typos
  - capitalization of acronyms
in the comments.

While at it, fix the multi-line comment style.

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
---
 drivers/spi/spi.c          |  54 ++++++++-------
 include/linux/spi/spi.h    | 137 ++++++++++++++++++++-----------------
 include/trace/events/spi.h |   2 +-
 3 files changed, 104 insertions(+), 89 deletions(-)

diff --git a/drivers/spi/spi.c b/drivers/spi/spi.c
index 0612610a091a..e656696e3d99 100644
--- a/drivers/spi/spi.c
+++ b/drivers/spi/spi.c
@@ -692,7 +692,7 @@ static int __spi_add_device(struct spi_device *spi)
  * @spi: spi_device to register
  *
  * Companion function to spi_alloc_device.  Devices allocated with
- * spi_alloc_device can be added onto the spi bus with this function.
+ * spi_alloc_device can be added onto the SPI bus with this function.
  *
  * Return: 0 on success; negative errno on failure
  */
@@ -869,7 +869,7 @@ int spi_register_board_info(struct spi_board_info const *info, unsigned n)
  * spi_res_alloc - allocate a spi resource that is life-cycle managed
  *                 during the processing of a spi_message while using
  *                 spi_transfer_one
- * @spi:     the spi device for which we allocate memory
+ * @spi:     the SPI device for which we allocate memory
  * @release: the release code to execute for this resource
  * @size:    size to alloc and return
  * @gfp:     GFP allocation flags
@@ -895,7 +895,7 @@ static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
 }
 
 /**
- * spi_res_free - free an spi resource
+ * spi_res_free - free an SPI resource
  * @res: pointer to the custom data of a resource
  */
 static void spi_res_free(void *res)
@@ -911,7 +911,7 @@ static void spi_res_free(void *res)
 
 /**
  * spi_res_add - add a spi_res to the spi_message
- * @message: the spi message
+ * @message: the SPI message
  * @res:     the spi_resource
  */
 static void spi_res_add(struct spi_message *message, void *res)
@@ -923,7 +923,7 @@ static void spi_res_add(struct spi_message *message, void *res)
 }
 
 /**
- * spi_res_release - release all spi resources for this message
+ * spi_res_release - release all SPI resources for this message
  * @ctlr:  the @spi_controller
  * @message: the @spi_message
  */
@@ -1404,7 +1404,7 @@ int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
 			return -EINVAL;
 		/*
 		 * If there is unknown effective speed, approximate it
-		 * by underestimating with half of the requested hz.
+		 * by underestimating with half of the requested Hz.
 		 */
 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
 		if (!hz)
@@ -1719,11 +1719,11 @@ static int __spi_pump_transfer_message(struct spi_controller *ctlr,
 }
 
 /**
- * __spi_pump_messages - function which processes spi message queue
+ * __spi_pump_messages - function which processes SPI message queue
  * @ctlr: controller to process queue for
  * @in_kthread: true if we are in the context of the message pump thread
  *
- * This function checks if there is any spi message in the queue that
+ * This function checks if there is any SPI message in the queue that
  * needs processing and if so call out to the driver to initialize hardware
  * and transfer each message.
  *
@@ -1738,7 +1738,7 @@ static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
 	unsigned long flags;
 	int ret;
 
-	/* Take the IO mutex */
+	/* Take the I/O mutex */
 	mutex_lock(&ctlr->io_mutex);
 
 	/* Lock queue */
@@ -2149,8 +2149,8 @@ static int __spi_queued_transfer(struct spi_device *spi,
 
 /**
  * spi_queued_transfer - transfer function for queued transfers
- * @spi: spi device which is requesting transfer
- * @msg: spi message which is to handled is queued to driver queue
+ * @spi: SPI device which is requesting transfer
+ * @msg: SPI message which is to handled is queued to driver queue
  *
  * Return: zero on success, else a negative error code.
  */
@@ -2479,7 +2479,7 @@ static int acpi_spi_count(struct acpi_resource *ares, void *data)
  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
  * @adev:	ACPI device
  *
- * Returns the number of SpiSerialBus resources in the ACPI-device's
+ * Return: the number of SpiSerialBus resources in the ACPI-device's
  * resource-list; or a negative error code.
  */
 int acpi_spi_count_resources(struct acpi_device *adev)
@@ -2613,10 +2613,10 @@ static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
  * @adev: ACPI Device for the spi device
  * @index: Index of the spi resource inside the ACPI Node
  *
- * This should be used to allocate a new spi device from and ACPI Node.
- * The caller is responsible for calling spi_add_device to register the spi device.
+ * This should be used to allocate a new SPI device from and ACPI Device node.
+ * The caller is responsible for calling spi_add_device to register the SPI device.
  *
- * If ctlr is set to NULL, the Controller for the spi device will be looked up
+ * If ctlr is set to NULL, the Controller for the SPI device will be looked up
  * using the resource.
  * If index is set to -1, index is not used.
  * Note: If index is -1, ctlr must be set.
@@ -3314,7 +3314,8 @@ void spi_unregister_controller(struct spi_controller *ctlr)
 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
 		mutex_unlock(&ctlr->add_lock);
 
-	/* Release the last reference on the controller if its driver
+	/*
+	 * Release the last reference on the controller if its driver
 	 * has not yet been converted to devm_spi_alloc_master/slave().
 	 */
 	if (!ctlr->devm_allocated)
@@ -3527,7 +3528,7 @@ static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
 
 	/* All the others need rx_buf/tx_buf also set */
 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
-		/* Update rx_buf, tx_buf and dma */
+		/* Update rx_buf, tx_buf and DMA */
 		if (xfers[i].rx_buf)
 			xfers[i].rx_buf += offset;
 		if (xfers[i].rx_dma)
@@ -3597,7 +3598,7 @@ EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
 
 
 /**
- * spi_split_transfers_maxwords - split spi transfers into multiple transfers
+ * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
  *                                when an individual transfer exceeds a
  *                                certain number of SPI words
  * @ctlr:     the @spi_controller for this transfer
@@ -3646,7 +3647,8 @@ EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
 
 /*-------------------------------------------------------------------------*/
 
-/* Core methods for SPI controller protocol drivers.  Some of the
+/*
+ * Core methods for SPI controller protocol drivers. Some of the
  * other core methods are currently defined as inline functions.
  */
 
@@ -3706,7 +3708,7 @@ static int spi_set_cs_timing(struct spi_device *spi)
  * changes those settings, and must be called from a context that can sleep.
  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
  * effect the next time the device is selected and data is transferred to
- * or from it.  When this function returns, the spi device is deselected.
+ * or from it.  When this function returns, the SPI device is deselected.
  *
  * Note that this call will fail if the protocol driver specifies an option
  * that the underlying controller or its driver does not support.  For
@@ -4044,7 +4046,7 @@ static int __spi_async(struct spi_device *spi, struct spi_message *message)
  * spi_async - asynchronous SPI transfer
  * @spi: device with which data will be exchanged
  * @message: describes the data transfers, including completion callback
- * Context: any (irqs may be blocked, etc)
+ * Context: any (IRQs may be blocked, etc)
  *
  * This call may be used in_irq and other contexts which can't sleep,
  * as well as from task contexts which can sleep.
@@ -4098,7 +4100,7 @@ EXPORT_SYMBOL_GPL(spi_async);
  * spi_async_locked - version of spi_async with exclusive bus usage
  * @spi: device with which data will be exchanged
  * @message: describes the data transfers, including completion callback
- * Context: any (irqs may be blocked, etc)
+ * Context: any (IRQs may be blocked, etc)
  *
  * This call may be used in_irq and other contexts which can't sleep,
  * as well as from task contexts which can sleep.
@@ -4361,9 +4363,9 @@ static u8	*buf;
 /**
  * spi_write_then_read - SPI synchronous write followed by read
  * @spi: device with which data will be exchanged
- * @txbuf: data to be written (need not be dma-safe)
+ * @txbuf: data to be written (need not be DMA-safe)
  * @n_tx: size of txbuf, in bytes
- * @rxbuf: buffer into which data will be read (need not be dma-safe)
+ * @rxbuf: buffer into which data will be read (need not be DMA-safe)
  * @n_rx: size of rxbuf, in bytes
  * Context: can sleep
  *
@@ -4374,7 +4376,7 @@ static u8	*buf;
  *
  * Parameters to this routine are always copied using a small buffer.
  * Performance-sensitive or bulk transfer code should instead use
- * spi_{async,sync}() calls with dma-safe buffers.
+ * spi_{async,sync}() calls with DMA-safe buffers.
  *
  * Return: zero on success, else a negative error code.
  */
@@ -4419,7 +4421,7 @@ int spi_write_then_read(struct spi_device *spi,
 	x[0].tx_buf = local_buf;
 	x[1].rx_buf = local_buf + n_tx;
 
-	/* Do the i/o */
+	/* Do the I/O */
 	status = spi_sync(spi, &message);
 	if (status == 0)
 		memcpy(rxbuf, x[1].rx_buf, n_rx);
diff --git a/include/linux/spi/spi.h b/include/linux/spi/spi.h
index 458369939fa5..7f8b478fdeb3 100644
--- a/include/linux/spi/spi.h
+++ b/include/linux/spi/spi.h
@@ -37,7 +37,7 @@ extern struct bus_type spi_bus_type;
 
 /**
  * struct spi_statistics - statistics for spi transfers
- * @syncp:         seqcount to protect members in this struct for per-cpu udate
+ * @syncp:         seqcount to protect members in this struct for per-cpu update
  *                 on 32-bit systems
  *
  * @messages:      number of spi-messages handled
@@ -56,7 +56,7 @@ extern struct bus_type spi_bus_type;
  * @bytes_rx:      number of bytes received from device
  *
  * @transfer_bytes_histo:
- *                 transfer bytes histogramm
+ *                 transfer bytes histogram
  *
  * @transfers_split_maxsize:
  *                 number of transfers that have been split because of
@@ -157,7 +157,7 @@ extern void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
  *	the device will bind to the named driver and only the named driver.
  *	Do not set directly, because core frees it; use driver_set_override() to
  *	set or clear it.
- * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
+ * @cs_gpiod: GPIO descriptor of the chipselect line (optional, NULL when
  *	not using a GPIO line)
  * @word_delay: delay to be inserted between consecutive
  *	words of a transfer
@@ -213,7 +213,7 @@ struct spi_device {
 	void			*controller_data;
 	char			modalias[SPI_NAME_SIZE];
 	const char		*driver_override;
-	struct gpio_desc	*cs_gpiod;	/* Chip select gpio desc */
+	struct gpio_desc	*cs_gpiod;	/* Chip select GPIO descriptor */
 	struct spi_delay	word_delay; /* Inter-word delay */
 	/* CS delays */
 	struct spi_delay	cs_setup;
@@ -224,7 +224,7 @@ struct spi_device {
 	struct spi_statistics __percpu	*pcpu_statistics;
 
 	/*
-	 * likely need more hooks for more protocol options affecting how
+	 * Likely need more hooks for more protocol options affecting how
 	 * the controller talks to each chip, like:
 	 *  - memory packing (12 bit samples into low bits, others zeroed)
 	 *  - priority
@@ -300,11 +300,11 @@ static inline void spi_set_csgpiod(struct spi_device *spi, u8 idx, struct gpio_d
 /**
  * struct spi_driver - Host side "protocol" driver
  * @id_table: List of SPI devices supported by this driver
- * @probe: Binds this driver to the spi device.  Drivers can verify
+ * @probe: Binds this driver to the SPI device.  Drivers can verify
  *	that the device is actually present, and may need to configure
  *	characteristics (such as bits_per_word) which weren't needed for
  *	the initial configuration done during system setup.
- * @remove: Unbinds this driver from the spi device
+ * @remove: Unbinds this driver from the SPI device
  * @shutdown: Standard shutdown callback used during system state
  *	transitions such as powerdown/halt and kexec
  * @driver: SPI device drivers should initialize the name and owner
@@ -416,7 +416,7 @@ extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 ch
  * @queued: whether this controller is providing an internal message queue
  * @kworker: pointer to thread struct for message pump
  * @pump_messages: work struct for scheduling work to the message pump
- * @queue_lock: spinlock to syncronise access to message queue
+ * @queue_lock: spinlock to synchronise access to message queue
  * @queue: message queue
  * @cur_msg: the currently in-flight message
  * @cur_msg_completion: a completion for the current in-flight message
@@ -474,7 +474,7 @@ extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 ch
  * @unprepare_message: undo any work done by prepare_message().
  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
  * @target_abort: abort the ongoing transfer request on an SPI target controller
- * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
+ * @cs_gpiods: Array of GPIO descriptors to use as chip select lines; one per CS
  *	number. Any individual value may be NULL for CS lines that
  *	are not GPIOs (driven by the SPI controller itself).
  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
@@ -501,7 +501,7 @@ extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 ch
  *	If the driver does not set this, the SPI core takes the snapshot as
  *	close to the driver hand-over as possible.
  * @irq_flags: Interrupt enable state during PTP system timestamping
- * @fallback: fallback to pio if dma transfer return failure with
+ * @fallback: fallback to PIO if DMA transfer return failure with
  *	SPI_TRANS_FAIL_NO_START.
  * @queue_empty: signal green light for opportunistically skipping the queue
  *	for spi_sync transfers.
@@ -523,15 +523,17 @@ struct spi_controller {
 
 	struct list_head list;
 
-	/* Other than negative (== assign one dynamically), bus_num is fully
-	 * board-specific.  usually that simplifies to being SOC-specific.
-	 * example:  one SOC has three SPI controllers, numbered 0..2,
-	 * and one board's schematics might show it using SPI-2.  software
+	/*
+	 * Other than negative (== assign one dynamically), bus_num is fully
+	 * board-specific. Usually that simplifies to being SoC-specific.
+	 * example: one SoC has three SPI controllers, numbered 0..2,
+	 * and one board's schematics might show it using SPI-2. Software
 	 * would normally use bus_num=2 for that controller.
 	 */
 	s16			bus_num;
 
-	/* chipselects will be integral to many controllers; some others
+	/*
+	 * Chipselects will be integral to many controllers; some others
 	 * might use board-specific GPIOs.
 	 */
 	u16			num_chipselect;
@@ -576,8 +578,8 @@ struct spi_controller {
 	};
 
 	/*
-	 * on some hardware transfer / message size may be constrained
-	 * the limit may depend on device transfer settings
+	 * On some hardware transfer / message size may be constrained
+	 * the limit may depend on device transfer settings.
 	 */
 	size_t (*max_transfer_size)(struct spi_device *spi);
 	size_t (*max_message_size)(struct spi_device *spi);
@@ -595,7 +597,8 @@ struct spi_controller {
 	/* Flag indicating that the SPI bus is locked for exclusive use */
 	bool			bus_lock_flag;
 
-	/* Setup mode and clock, etc (spi driver may call many times).
+	/*
+	 * Setup mode and clock, etc (SPI driver may call many times).
 	 *
 	 * IMPORTANT:  this may be called when transfers to another
 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
@@ -613,18 +616,19 @@ struct spi_controller {
 	 */
 	int (*set_cs_timing)(struct spi_device *spi);
 
-	/* Bidirectional bulk transfers
+	/*
+	 * Bidirectional bulk transfers
 	 *
 	 * + The transfer() method may not sleep; its main role is
 	 *   just to add the message to the queue.
 	 * + For now there's no remove-from-queue operation, or
 	 *   any other request management
-	 * + To a given spi_device, message queueing is pure fifo
+	 * + To a given spi_device, message queueing is pure FIFO
 	 *
 	 * + The controller's main job is to process its message queue,
 	 *   selecting a chip (for masters), then transferring data
 	 * + If there are multiple spi_device children, the i/o queue
-	 *   arbitration algorithm is unspecified (round robin, fifo,
+	 *   arbitration algorithm is unspecified (round robin, FIFO,
 	 *   priority, reservations, preemption, etc)
 	 *
 	 * + Chipselect stays active during the entire message
@@ -705,7 +709,7 @@ struct spi_controller {
 	const struct spi_controller_mem_ops *mem_ops;
 	const struct spi_controller_mem_caps *mem_caps;
 
-	/* gpio chip select */
+	/* GPIO chip select */
 	struct gpio_desc	**cs_gpiods;
 	bool			use_gpio_descriptors;
 	s8			unused_native_cs;
@@ -789,7 +793,7 @@ void spi_take_timestamp_post(struct spi_controller *ctlr,
 			     struct spi_transfer *xfer,
 			     size_t progress, bool irqs_off);
 
-/* The spi driver core manages memory for the spi_controller classdev */
+/* The SPI driver core manages memory for the spi_controller classdev */
 extern struct spi_controller *__spi_alloc_controller(struct device *host,
 						unsigned int size, bool slave);
 
@@ -878,13 +882,13 @@ typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
 				  void *res);
 
 /**
- * struct spi_res - spi resource management structure
+ * struct spi_res - SPI resource management structure
  * @entry:   list entry
  * @release: release code called prior to freeing this resource
  * @data:    extra data allocated for the specific use-case
  *
- * this is based on ideas from devres, but focused on life-cycle
- * management during spi_message processing
+ * This is based on ideas from devres, but focused on life-cycle
+ * management during spi_message processing.
  */
 struct spi_res {
 	struct list_head        entry;
@@ -902,7 +906,7 @@ struct spi_res {
  *
  * The spi_messages themselves consist of a series of read+write transfer
  * segments.  Those segments always read the same number of bits as they
- * write; but one or the other is easily ignored by passing a null buffer
+ * write; but one or the other is easily ignored by passing a NULL buffer
  * pointer.  (This is unlike most types of I/O API, because SPI hardware
  * is full duplex.)
  *
@@ -913,8 +917,8 @@ struct spi_res {
 
 /**
  * struct spi_transfer - a read/write buffer pair
- * @tx_buf: data to be written (dma-safe memory), or NULL
- * @rx_buf: data to be read (dma-safe memory), or NULL
+ * @tx_buf: data to be written (DMA-safe memory), or NULL
+ * @rx_buf: data to be read (DMA-safe memory), or NULL
  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
  * @tx_nbits: number of bits used for writing. If 0 the default
@@ -937,7 +941,7 @@ struct spi_res {
  * @word_delay: inter word delay to be introduced after each word size
  *	(set by bits_per_word) transmission.
  * @effective_speed_hz: the effective SCK-speed that was used to
- *      transfer this transfer. Set to 0 if the spi bus driver does
+ *      transfer this transfer. Set to 0 if the SPI bus driver does
  *      not support it.
  * @transfer_list: transfers are sequenced through @spi_message.transfers
  * @tx_sg: Scatterlist for transmit, currently not for client use
@@ -966,16 +970,16 @@ struct spi_res {
  *	transmitting the "pre" word, and the "post" timestamp after receiving
  *	transmit confirmation from the controller for the "post" word.
  * @timestamped: true if the transfer has been timestamped
- * @error: Error status logged by spi controller driver.
+ * @error: Error status logged by SPI controller driver.
  *
  * SPI transfers always write the same number of bytes as they read.
  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
  * In some cases, they may also want to provide DMA addresses for
  * the data being transferred; that may reduce overhead, when the
- * underlying driver uses dma.
+ * underlying driver uses DMA.
  *
- * If the transmit buffer is null, zeroes will be shifted out
- * while filling @rx_buf.  If the receive buffer is null, the data
+ * If the transmit buffer is NULL, zeroes will be shifted out
+ * while filling @rx_buf.  If the receive buffer is NULL, the data
  * shifted in will be discarded.  Only "len" bytes shift out (or in).
  * It's an error to try to shift out a partial word.  (For example, by
  * shifting out three bytes with word size of sixteen or twenty bits;
@@ -1009,7 +1013,7 @@ struct spi_res {
  * Some devices need protocol transactions to be built from a series of
  * spi_message submissions, where the content of one message is determined
  * by the results of previous messages and where the whole transaction
- * ends when the chipselect goes intactive.
+ * ends when the chipselect goes inactive.
  *
  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
@@ -1023,10 +1027,11 @@ struct spi_res {
  * and its transfers, ignore them until its completion callback.
  */
 struct spi_transfer {
-	/* It's ok if tx_buf == rx_buf (right?)
-	 * for MicroWire, one buffer must be null
-	 * buffers must work with dma_*map_single() calls, unless
-	 *   spi_message.is_dma_mapped reports a pre-existing mapping
+	/*
+	 * It's okay if tx_buf == rx_buf (right?).
+	 * For MicroWire, one buffer must be NULL.
+	 * Buffers must work with dma_*map_single() calls, unless
+	 * spi_message.is_dma_mapped reports a pre-existing mapping.
 	 */
 	const void	*tx_buf;
 	void		*rx_buf;
@@ -1046,9 +1051,9 @@ struct spi_transfer {
 	unsigned	tx_nbits:3;
 	unsigned	rx_nbits:3;
 	unsigned	timestamped:1;
-#define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
-#define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
-#define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
+#define	SPI_NBITS_SINGLE	0x01 /* 1-bit transfer */
+#define	SPI_NBITS_DUAL		0x02 /* 2-bit transfer */
+#define	SPI_NBITS_QUAD		0x04 /* 4-bit transfer */
 	u8		bits_per_word;
 	struct spi_delay	delay;
 	struct spi_delay	cs_change_delay;
@@ -1069,7 +1074,7 @@ struct spi_transfer {
  * struct spi_message - one multi-segment SPI transaction
  * @transfers: list of transfer segments in this transaction
  * @spi: SPI device to which the transaction is queued
- * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
+ * @is_dma_mapped: if true, the caller provided both DMA and CPU virtual
  *	addresses for each transfer buffer
  * @complete: called to report transaction completions
  * @context: the argument to complete() when it's called
@@ -1079,7 +1084,7 @@ struct spi_transfer {
  * @status: zero for success, else negative errno
  * @queue: for use by whichever driver currently owns the message
  * @state: for use by whichever driver currently owns the message
- * @resources: for resource management when the spi message is processed
+ * @resources: for resource management when the SPI message is processed
  * @prepared: spi_prepare_message was called for the this message
  * @t: for use with spi_message_alloc() when message and transfers have
  *	been allocated together
@@ -1108,7 +1113,8 @@ struct spi_message {
 	/* spi_prepare_message() was called for this message */
 	bool			prepared;
 
-	/* REVISIT:  we might want a flag affecting the behavior of the
+	/*
+	 * REVISIT: we might want a flag affecting the behavior of the
 	 * last transfer ... allowing things like "read 16 bit length L"
 	 * immediately followed by "read L bytes".  Basically imposing
 	 * a specific message scheduling algorithm.
@@ -1126,14 +1132,15 @@ struct spi_message {
 	unsigned		frame_length;
 	unsigned		actual_length;
 
-	/* For optional use by whatever driver currently owns the
+	/*
+	 * For optional use by whatever driver currently owns the
 	 * spi_message ...  between calls to spi_async and then later
 	 * complete(), that's the spi_controller controller driver.
 	 */
 	struct list_head	queue;
 	void			*state;
 
-	/* List of spi_res reources when the spi message is processed */
+	/* List of spi_res resources when the SPI message is processed */
 	struct list_head        resources;
 
 	/* For embedding transfers into the memory of the message */
@@ -1173,7 +1180,7 @@ spi_transfer_delay_exec(struct spi_transfer *t)
 /**
  * spi_message_init_with_transfers - Initialize spi_message and append transfers
  * @m: spi_message to be initialized
- * @xfers: An array of spi transfers
+ * @xfers: An array of SPI transfers
  * @num_xfers: Number of items in the xfer array
  *
  * This function initializes the given spi_message and adds each spi_transfer in
@@ -1190,10 +1197,10 @@ struct spi_transfer *xfers, unsigned int num_xfers)
 		spi_message_add_tail(&xfers[i], m);
 }
 
-/* It's fine to embed message and transaction structures in other data
+/*
+ * It's fine to embed message and transaction structures in other data
  * structures so long as you don't free them while they're in use.
  */
-
 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
 {
 	struct spi_message *m;
@@ -1293,7 +1300,7 @@ typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
  *                                 replacements that have occurred
  *                                 so that they can get reverted
  * @release:            some extra release code to get executed prior to
- *                      relasing this structure
+ *                      releasing this structure
  * @extradata:          pointer to some extra data if requested or NULL
  * @replaced_transfers: transfers that have been replaced and which need
  *                      to get restored
@@ -1303,9 +1310,9 @@ typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
  * @inserted_transfers: array of spi_transfers of array-size @inserted,
  *                      that have been replacing replaced_transfers
  *
- * note: that @extradata will point to @inserted_transfers[@inserted]
+ * Note: that @extradata will point to @inserted_transfers[@inserted]
  * if some extra allocation is requested, so alignment will be the same
- * as for spi_transfers
+ * as for spi_transfers.
  */
 struct spi_replaced_transfers {
 	spi_replaced_release_t release;
@@ -1331,7 +1338,8 @@ extern int spi_split_transfers_maxwords(struct spi_controller *ctlr,
 
 /*---------------------------------------------------------------------------*/
 
-/* All these synchronous SPI transfer routines are utilities layered
+/*
+ * All these synchronous SPI transfer routines are utilities layered
  * over the core async transfer primitive.  Here, "synchronous" means
  * they will sleep uninterruptibly until the async transfer completes.
  */
@@ -1474,7 +1482,7 @@ static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
  *
  * Callable only from contexts that can sleep.
  *
- * Return: the (unsigned) sixteen bit number returned by the device in cpu
+ * Return: the (unsigned) sixteen bit number returned by the device in CPU
  * endianness, or else a negative error code.
  */
 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
@@ -1502,7 +1510,7 @@ static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
  * As a rule, SPI devices can't be probed.  Instead, board init code
  * provides a table listing the devices which are present, with enough
  * information to bind and set up the device's driver.  There's basic
- * support for nonstatic configurations too; enough to handle adding
+ * support for non-static configurations too; enough to handle adding
  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
  */
 
@@ -1539,12 +1547,13 @@ static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
  * are active in some dynamic board configuration models.
  */
 struct spi_board_info {
-	/* The device name and module name are coupled, like platform_bus;
+	/*
+	 * The device name and module name are coupled, like platform_bus;
 	 * "modalias" is normally the driver name.
 	 *
 	 * platform_data goes to spi_device.dev.platform_data,
 	 * controller_data goes to spi_device.controller_data,
-	 * irq is copied too
+	 * IRQ is copied too.
 	 */
 	char		modalias[SPI_NAME_SIZE];
 	const void	*platform_data;
@@ -1556,7 +1565,8 @@ struct spi_board_info {
 	u32		max_speed_hz;
 
 
-	/* bus_num is board specific and matches the bus_num of some
+	/*
+	 * bus_num is board specific and matches the bus_num of some
 	 * spi_controller that will probably be registered later.
 	 *
 	 * chip_select reflects how this chip is wired to that master;
@@ -1565,12 +1575,14 @@ struct spi_board_info {
 	u16		bus_num;
 	u16		chip_select;
 
-	/* mode becomes spi_device.mode, and is essential for chips
+	/*
+	 * mode becomes spi_device.mode, and is essential for chips
 	 * where the default of SPI_CS_HIGH = 0 is wrong.
 	 */
 	u32		mode;
 
-	/* ... may need additional spi_device chip config data here.
+	/*
+	 * ... may need additional spi_device chip config data here.
 	 * avoid stuff protocol drivers can set; but include stuff
 	 * needed to behave without being bound to a driver:
 	 *  - quirks like clock rate mattering when not selected
@@ -1587,7 +1599,8 @@ spi_register_board_info(struct spi_board_info const *info, unsigned n)
 	{ return 0; }
 #endif
 
-/* If you're hotplugging an adapter with devices (parport, usb, etc)
+/*
+ * If you're hotplugging an adapter with devices (parport, USB, etc)
  * use spi_new_device() to describe each device.  You can also call
  * spi_unregister_device() to start making that device vanish, but
  * normally that would be handled by spi_unregister_controller().
diff --git a/include/trace/events/spi.h b/include/trace/events/spi.h
index c0248a8fa79c..e63d4a24d879 100644
--- a/include/trace/events/spi.h
+++ b/include/trace/events/spi.h
@@ -167,7 +167,7 @@ TRACE_EVENT(spi_message_done,
 );
 
 /*
- * consider a buffer valid if non-NULL and if it doesn't match the dummy buffer
+ * Consider a buffer valid if non-NULL and if it doesn't match the dummy buffer
  * that only exist to work with controllers that have SPI_CONTROLLER_MUST_TX or
  * SPI_CONTROLLER_MUST_RX.
  */
-- 
2.40.0.1.gaa8946217a0b


_______________________________________________
Linux-rockchip mailing list
Linux-rockchip@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/linux-rockchip

WARNING: multiple messages have this Message-ID (diff)
From: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
To: "Mark Brown" <broonie@kernel.org>,
	"Cristian Ciocaltea" <cristian.ciocaltea@collabora.com>,
	"Yang Yingliang" <yangyingliang@huawei.com>,
	"Andy Shevchenko" <andriy.shevchenko@linux.intel.com>,
	"Amit Kumar Mahapatra via Alsa-devel"
	<alsa-devel@alsa-project.org>,
	"Serge Semin" <fancer.lancer@gmail.com>,
	"Neil Armstrong" <neil.armstrong@linaro.org>,
	"Tharun Kumar P" <tharunkumar.pasumarthi@microchip.com>,
	"Vijaya Krishna Nivarthi" <quic_vnivarth@quicinc.com>,
	"Uwe Kleine-König" <u.kleine-koenig@pengutronix.de>,
	linux-spi@vger.kernel.org, linux-kernel@vger.kernel.org,
	linux-arm-kernel@lists.infradead.org,
	linux-amlogic@lists.infradead.org,
	linux-mediatek@lists.infradead.org,
	linux-arm-msm@vger.kernel.org,
	linux-rockchip@lists.infradead.org,
	linux-riscv@lists.infradead.org,
	linux-stm32@st-md-mailman.stormreply.com,
	linux-trace-kernel@vger.kernel.org, netdev@vger.kernel.org
Cc: Sanjay R Mehta <sanju.mehta@amd.com>,
	Radu Pirea <radu_nicolae.pirea@upb.ro>,
	Nicolas Ferre <nicolas.ferre@microchip.com>,
	Alexandre Belloni <alexandre.belloni@bootlin.com>,
	Claudiu Beznea <claudiu.beznea@microchip.com>,
	Tudor Ambarus <tudor.ambarus@linaro.org>,
	Shawn Guo <shawnguo@kernel.org>,
	Sascha Hauer <s.hauer@pengutronix.de>,
	Pengutronix Kernel Team <kernel@pengutronix.de>,
	Fabio Estevam <festevam@gmail.com>,
	NXP Linux Team <linux-imx@nxp.com>,
	Kevin Hilman <khilman@baylibre.com>,
	Jerome Brunet <jbrunet@baylibre.com>,
	Martin Blumenstingl <martin.blumenstingl@googlemail.com>,
	Matthias Brugger <matthias.bgg@gmail.com>,
	AngeloGioacchino Del Regno
	<angelogioacchino.delregno@collabora.com>,
	Andy Gross <agross@kernel.org>,
	Bjorn Andersson <andersson@kernel.org>,
	Konrad Dybcio <konrad.dybcio@linaro.org>,
	Heiko Stuebner <heiko@sntech.de>,
	Palmer Dabbelt <palmer@dabbelt.com>,
	Paul Walmsley <paul.walmsley@sifive.com>,
	Orson Zhai <orsonzhai@gmail.com>,
	Baolin Wang <baolin.wang@linux.alibaba.com>,
	Chunyan Zhang <zhang.lyra@gmail.com>,
	Alain Volmat <alain.volmat@foss.st.com>,
	Maxime Coquelin <mcoquelin.stm32@gmail.com>,
	Alexandre Torgue <alexandre.torgue@foss.st.com>,
	Max Filippov <jcmvbkbc@gmail.com>,
	Steven Rostedt <rostedt@goodmis.org>,
	Masami Hiramatsu <mhiramat@kernel.org>,
	Richard Cochran <richardcochran@gmail.com>,
	Sebastian Reichel <sebastian.reichel@collabora.com>
Subject: [PATCH v3 14/14] spi: Fix spelling typos and acronyms capitalization
Date: Tue, 11 Jul 2023 20:17:56 +0300	[thread overview]
Message-ID: <20230711171756.86736-15-andriy.shevchenko@linux.intel.com> (raw)
In-Reply-To: <20230711171756.86736-1-andriy.shevchenko@linux.intel.com>

Fix
  - spelling typos
  - capitalization of acronyms
in the comments.

While at it, fix the multi-line comment style.

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
---
 drivers/spi/spi.c          |  54 ++++++++-------
 include/linux/spi/spi.h    | 137 ++++++++++++++++++++-----------------
 include/trace/events/spi.h |   2 +-
 3 files changed, 104 insertions(+), 89 deletions(-)

diff --git a/drivers/spi/spi.c b/drivers/spi/spi.c
index 0612610a091a..e656696e3d99 100644
--- a/drivers/spi/spi.c
+++ b/drivers/spi/spi.c
@@ -692,7 +692,7 @@ static int __spi_add_device(struct spi_device *spi)
  * @spi: spi_device to register
  *
  * Companion function to spi_alloc_device.  Devices allocated with
- * spi_alloc_device can be added onto the spi bus with this function.
+ * spi_alloc_device can be added onto the SPI bus with this function.
  *
  * Return: 0 on success; negative errno on failure
  */
@@ -869,7 +869,7 @@ int spi_register_board_info(struct spi_board_info const *info, unsigned n)
  * spi_res_alloc - allocate a spi resource that is life-cycle managed
  *                 during the processing of a spi_message while using
  *                 spi_transfer_one
- * @spi:     the spi device for which we allocate memory
+ * @spi:     the SPI device for which we allocate memory
  * @release: the release code to execute for this resource
  * @size:    size to alloc and return
  * @gfp:     GFP allocation flags
@@ -895,7 +895,7 @@ static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
 }
 
 /**
- * spi_res_free - free an spi resource
+ * spi_res_free - free an SPI resource
  * @res: pointer to the custom data of a resource
  */
 static void spi_res_free(void *res)
@@ -911,7 +911,7 @@ static void spi_res_free(void *res)
 
 /**
  * spi_res_add - add a spi_res to the spi_message
- * @message: the spi message
+ * @message: the SPI message
  * @res:     the spi_resource
  */
 static void spi_res_add(struct spi_message *message, void *res)
@@ -923,7 +923,7 @@ static void spi_res_add(struct spi_message *message, void *res)
 }
 
 /**
- * spi_res_release - release all spi resources for this message
+ * spi_res_release - release all SPI resources for this message
  * @ctlr:  the @spi_controller
  * @message: the @spi_message
  */
@@ -1404,7 +1404,7 @@ int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
 			return -EINVAL;
 		/*
 		 * If there is unknown effective speed, approximate it
-		 * by underestimating with half of the requested hz.
+		 * by underestimating with half of the requested Hz.
 		 */
 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
 		if (!hz)
@@ -1719,11 +1719,11 @@ static int __spi_pump_transfer_message(struct spi_controller *ctlr,
 }
 
 /**
- * __spi_pump_messages - function which processes spi message queue
+ * __spi_pump_messages - function which processes SPI message queue
  * @ctlr: controller to process queue for
  * @in_kthread: true if we are in the context of the message pump thread
  *
- * This function checks if there is any spi message in the queue that
+ * This function checks if there is any SPI message in the queue that
  * needs processing and if so call out to the driver to initialize hardware
  * and transfer each message.
  *
@@ -1738,7 +1738,7 @@ static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
 	unsigned long flags;
 	int ret;
 
-	/* Take the IO mutex */
+	/* Take the I/O mutex */
 	mutex_lock(&ctlr->io_mutex);
 
 	/* Lock queue */
@@ -2149,8 +2149,8 @@ static int __spi_queued_transfer(struct spi_device *spi,
 
 /**
  * spi_queued_transfer - transfer function for queued transfers
- * @spi: spi device which is requesting transfer
- * @msg: spi message which is to handled is queued to driver queue
+ * @spi: SPI device which is requesting transfer
+ * @msg: SPI message which is to handled is queued to driver queue
  *
  * Return: zero on success, else a negative error code.
  */
@@ -2479,7 +2479,7 @@ static int acpi_spi_count(struct acpi_resource *ares, void *data)
  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
  * @adev:	ACPI device
  *
- * Returns the number of SpiSerialBus resources in the ACPI-device's
+ * Return: the number of SpiSerialBus resources in the ACPI-device's
  * resource-list; or a negative error code.
  */
 int acpi_spi_count_resources(struct acpi_device *adev)
@@ -2613,10 +2613,10 @@ static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
  * @adev: ACPI Device for the spi device
  * @index: Index of the spi resource inside the ACPI Node
  *
- * This should be used to allocate a new spi device from and ACPI Node.
- * The caller is responsible for calling spi_add_device to register the spi device.
+ * This should be used to allocate a new SPI device from and ACPI Device node.
+ * The caller is responsible for calling spi_add_device to register the SPI device.
  *
- * If ctlr is set to NULL, the Controller for the spi device will be looked up
+ * If ctlr is set to NULL, the Controller for the SPI device will be looked up
  * using the resource.
  * If index is set to -1, index is not used.
  * Note: If index is -1, ctlr must be set.
@@ -3314,7 +3314,8 @@ void spi_unregister_controller(struct spi_controller *ctlr)
 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
 		mutex_unlock(&ctlr->add_lock);
 
-	/* Release the last reference on the controller if its driver
+	/*
+	 * Release the last reference on the controller if its driver
 	 * has not yet been converted to devm_spi_alloc_master/slave().
 	 */
 	if (!ctlr->devm_allocated)
@@ -3527,7 +3528,7 @@ static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
 
 	/* All the others need rx_buf/tx_buf also set */
 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
-		/* Update rx_buf, tx_buf and dma */
+		/* Update rx_buf, tx_buf and DMA */
 		if (xfers[i].rx_buf)
 			xfers[i].rx_buf += offset;
 		if (xfers[i].rx_dma)
@@ -3597,7 +3598,7 @@ EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
 
 
 /**
- * spi_split_transfers_maxwords - split spi transfers into multiple transfers
+ * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
  *                                when an individual transfer exceeds a
  *                                certain number of SPI words
  * @ctlr:     the @spi_controller for this transfer
@@ -3646,7 +3647,8 @@ EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
 
 /*-------------------------------------------------------------------------*/
 
-/* Core methods for SPI controller protocol drivers.  Some of the
+/*
+ * Core methods for SPI controller protocol drivers. Some of the
  * other core methods are currently defined as inline functions.
  */
 
@@ -3706,7 +3708,7 @@ static int spi_set_cs_timing(struct spi_device *spi)
  * changes those settings, and must be called from a context that can sleep.
  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
  * effect the next time the device is selected and data is transferred to
- * or from it.  When this function returns, the spi device is deselected.
+ * or from it.  When this function returns, the SPI device is deselected.
  *
  * Note that this call will fail if the protocol driver specifies an option
  * that the underlying controller or its driver does not support.  For
@@ -4044,7 +4046,7 @@ static int __spi_async(struct spi_device *spi, struct spi_message *message)
  * spi_async - asynchronous SPI transfer
  * @spi: device with which data will be exchanged
  * @message: describes the data transfers, including completion callback
- * Context: any (irqs may be blocked, etc)
+ * Context: any (IRQs may be blocked, etc)
  *
  * This call may be used in_irq and other contexts which can't sleep,
  * as well as from task contexts which can sleep.
@@ -4098,7 +4100,7 @@ EXPORT_SYMBOL_GPL(spi_async);
  * spi_async_locked - version of spi_async with exclusive bus usage
  * @spi: device with which data will be exchanged
  * @message: describes the data transfers, including completion callback
- * Context: any (irqs may be blocked, etc)
+ * Context: any (IRQs may be blocked, etc)
  *
  * This call may be used in_irq and other contexts which can't sleep,
  * as well as from task contexts which can sleep.
@@ -4361,9 +4363,9 @@ static u8	*buf;
 /**
  * spi_write_then_read - SPI synchronous write followed by read
  * @spi: device with which data will be exchanged
- * @txbuf: data to be written (need not be dma-safe)
+ * @txbuf: data to be written (need not be DMA-safe)
  * @n_tx: size of txbuf, in bytes
- * @rxbuf: buffer into which data will be read (need not be dma-safe)
+ * @rxbuf: buffer into which data will be read (need not be DMA-safe)
  * @n_rx: size of rxbuf, in bytes
  * Context: can sleep
  *
@@ -4374,7 +4376,7 @@ static u8	*buf;
  *
  * Parameters to this routine are always copied using a small buffer.
  * Performance-sensitive or bulk transfer code should instead use
- * spi_{async,sync}() calls with dma-safe buffers.
+ * spi_{async,sync}() calls with DMA-safe buffers.
  *
  * Return: zero on success, else a negative error code.
  */
@@ -4419,7 +4421,7 @@ int spi_write_then_read(struct spi_device *spi,
 	x[0].tx_buf = local_buf;
 	x[1].rx_buf = local_buf + n_tx;
 
-	/* Do the i/o */
+	/* Do the I/O */
 	status = spi_sync(spi, &message);
 	if (status == 0)
 		memcpy(rxbuf, x[1].rx_buf, n_rx);
diff --git a/include/linux/spi/spi.h b/include/linux/spi/spi.h
index 458369939fa5..7f8b478fdeb3 100644
--- a/include/linux/spi/spi.h
+++ b/include/linux/spi/spi.h
@@ -37,7 +37,7 @@ extern struct bus_type spi_bus_type;
 
 /**
  * struct spi_statistics - statistics for spi transfers
- * @syncp:         seqcount to protect members in this struct for per-cpu udate
+ * @syncp:         seqcount to protect members in this struct for per-cpu update
  *                 on 32-bit systems
  *
  * @messages:      number of spi-messages handled
@@ -56,7 +56,7 @@ extern struct bus_type spi_bus_type;
  * @bytes_rx:      number of bytes received from device
  *
  * @transfer_bytes_histo:
- *                 transfer bytes histogramm
+ *                 transfer bytes histogram
  *
  * @transfers_split_maxsize:
  *                 number of transfers that have been split because of
@@ -157,7 +157,7 @@ extern void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
  *	the device will bind to the named driver and only the named driver.
  *	Do not set directly, because core frees it; use driver_set_override() to
  *	set or clear it.
- * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
+ * @cs_gpiod: GPIO descriptor of the chipselect line (optional, NULL when
  *	not using a GPIO line)
  * @word_delay: delay to be inserted between consecutive
  *	words of a transfer
@@ -213,7 +213,7 @@ struct spi_device {
 	void			*controller_data;
 	char			modalias[SPI_NAME_SIZE];
 	const char		*driver_override;
-	struct gpio_desc	*cs_gpiod;	/* Chip select gpio desc */
+	struct gpio_desc	*cs_gpiod;	/* Chip select GPIO descriptor */
 	struct spi_delay	word_delay; /* Inter-word delay */
 	/* CS delays */
 	struct spi_delay	cs_setup;
@@ -224,7 +224,7 @@ struct spi_device {
 	struct spi_statistics __percpu	*pcpu_statistics;
 
 	/*
-	 * likely need more hooks for more protocol options affecting how
+	 * Likely need more hooks for more protocol options affecting how
 	 * the controller talks to each chip, like:
 	 *  - memory packing (12 bit samples into low bits, others zeroed)
 	 *  - priority
@@ -300,11 +300,11 @@ static inline void spi_set_csgpiod(struct spi_device *spi, u8 idx, struct gpio_d
 /**
  * struct spi_driver - Host side "protocol" driver
  * @id_table: List of SPI devices supported by this driver
- * @probe: Binds this driver to the spi device.  Drivers can verify
+ * @probe: Binds this driver to the SPI device.  Drivers can verify
  *	that the device is actually present, and may need to configure
  *	characteristics (such as bits_per_word) which weren't needed for
  *	the initial configuration done during system setup.
- * @remove: Unbinds this driver from the spi device
+ * @remove: Unbinds this driver from the SPI device
  * @shutdown: Standard shutdown callback used during system state
  *	transitions such as powerdown/halt and kexec
  * @driver: SPI device drivers should initialize the name and owner
@@ -416,7 +416,7 @@ extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 ch
  * @queued: whether this controller is providing an internal message queue
  * @kworker: pointer to thread struct for message pump
  * @pump_messages: work struct for scheduling work to the message pump
- * @queue_lock: spinlock to syncronise access to message queue
+ * @queue_lock: spinlock to synchronise access to message queue
  * @queue: message queue
  * @cur_msg: the currently in-flight message
  * @cur_msg_completion: a completion for the current in-flight message
@@ -474,7 +474,7 @@ extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 ch
  * @unprepare_message: undo any work done by prepare_message().
  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
  * @target_abort: abort the ongoing transfer request on an SPI target controller
- * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
+ * @cs_gpiods: Array of GPIO descriptors to use as chip select lines; one per CS
  *	number. Any individual value may be NULL for CS lines that
  *	are not GPIOs (driven by the SPI controller itself).
  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
@@ -501,7 +501,7 @@ extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 ch
  *	If the driver does not set this, the SPI core takes the snapshot as
  *	close to the driver hand-over as possible.
  * @irq_flags: Interrupt enable state during PTP system timestamping
- * @fallback: fallback to pio if dma transfer return failure with
+ * @fallback: fallback to PIO if DMA transfer return failure with
  *	SPI_TRANS_FAIL_NO_START.
  * @queue_empty: signal green light for opportunistically skipping the queue
  *	for spi_sync transfers.
@@ -523,15 +523,17 @@ struct spi_controller {
 
 	struct list_head list;
 
-	/* Other than negative (== assign one dynamically), bus_num is fully
-	 * board-specific.  usually that simplifies to being SOC-specific.
-	 * example:  one SOC has three SPI controllers, numbered 0..2,
-	 * and one board's schematics might show it using SPI-2.  software
+	/*
+	 * Other than negative (== assign one dynamically), bus_num is fully
+	 * board-specific. Usually that simplifies to being SoC-specific.
+	 * example: one SoC has three SPI controllers, numbered 0..2,
+	 * and one board's schematics might show it using SPI-2. Software
 	 * would normally use bus_num=2 for that controller.
 	 */
 	s16			bus_num;
 
-	/* chipselects will be integral to many controllers; some others
+	/*
+	 * Chipselects will be integral to many controllers; some others
 	 * might use board-specific GPIOs.
 	 */
 	u16			num_chipselect;
@@ -576,8 +578,8 @@ struct spi_controller {
 	};
 
 	/*
-	 * on some hardware transfer / message size may be constrained
-	 * the limit may depend on device transfer settings
+	 * On some hardware transfer / message size may be constrained
+	 * the limit may depend on device transfer settings.
 	 */
 	size_t (*max_transfer_size)(struct spi_device *spi);
 	size_t (*max_message_size)(struct spi_device *spi);
@@ -595,7 +597,8 @@ struct spi_controller {
 	/* Flag indicating that the SPI bus is locked for exclusive use */
 	bool			bus_lock_flag;
 
-	/* Setup mode and clock, etc (spi driver may call many times).
+	/*
+	 * Setup mode and clock, etc (SPI driver may call many times).
 	 *
 	 * IMPORTANT:  this may be called when transfers to another
 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
@@ -613,18 +616,19 @@ struct spi_controller {
 	 */
 	int (*set_cs_timing)(struct spi_device *spi);
 
-	/* Bidirectional bulk transfers
+	/*
+	 * Bidirectional bulk transfers
 	 *
 	 * + The transfer() method may not sleep; its main role is
 	 *   just to add the message to the queue.
 	 * + For now there's no remove-from-queue operation, or
 	 *   any other request management
-	 * + To a given spi_device, message queueing is pure fifo
+	 * + To a given spi_device, message queueing is pure FIFO
 	 *
 	 * + The controller's main job is to process its message queue,
 	 *   selecting a chip (for masters), then transferring data
 	 * + If there are multiple spi_device children, the i/o queue
-	 *   arbitration algorithm is unspecified (round robin, fifo,
+	 *   arbitration algorithm is unspecified (round robin, FIFO,
 	 *   priority, reservations, preemption, etc)
 	 *
 	 * + Chipselect stays active during the entire message
@@ -705,7 +709,7 @@ struct spi_controller {
 	const struct spi_controller_mem_ops *mem_ops;
 	const struct spi_controller_mem_caps *mem_caps;
 
-	/* gpio chip select */
+	/* GPIO chip select */
 	struct gpio_desc	**cs_gpiods;
 	bool			use_gpio_descriptors;
 	s8			unused_native_cs;
@@ -789,7 +793,7 @@ void spi_take_timestamp_post(struct spi_controller *ctlr,
 			     struct spi_transfer *xfer,
 			     size_t progress, bool irqs_off);
 
-/* The spi driver core manages memory for the spi_controller classdev */
+/* The SPI driver core manages memory for the spi_controller classdev */
 extern struct spi_controller *__spi_alloc_controller(struct device *host,
 						unsigned int size, bool slave);
 
@@ -878,13 +882,13 @@ typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
 				  void *res);
 
 /**
- * struct spi_res - spi resource management structure
+ * struct spi_res - SPI resource management structure
  * @entry:   list entry
  * @release: release code called prior to freeing this resource
  * @data:    extra data allocated for the specific use-case
  *
- * this is based on ideas from devres, but focused on life-cycle
- * management during spi_message processing
+ * This is based on ideas from devres, but focused on life-cycle
+ * management during spi_message processing.
  */
 struct spi_res {
 	struct list_head        entry;
@@ -902,7 +906,7 @@ struct spi_res {
  *
  * The spi_messages themselves consist of a series of read+write transfer
  * segments.  Those segments always read the same number of bits as they
- * write; but one or the other is easily ignored by passing a null buffer
+ * write; but one or the other is easily ignored by passing a NULL buffer
  * pointer.  (This is unlike most types of I/O API, because SPI hardware
  * is full duplex.)
  *
@@ -913,8 +917,8 @@ struct spi_res {
 
 /**
  * struct spi_transfer - a read/write buffer pair
- * @tx_buf: data to be written (dma-safe memory), or NULL
- * @rx_buf: data to be read (dma-safe memory), or NULL
+ * @tx_buf: data to be written (DMA-safe memory), or NULL
+ * @rx_buf: data to be read (DMA-safe memory), or NULL
  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
  * @tx_nbits: number of bits used for writing. If 0 the default
@@ -937,7 +941,7 @@ struct spi_res {
  * @word_delay: inter word delay to be introduced after each word size
  *	(set by bits_per_word) transmission.
  * @effective_speed_hz: the effective SCK-speed that was used to
- *      transfer this transfer. Set to 0 if the spi bus driver does
+ *      transfer this transfer. Set to 0 if the SPI bus driver does
  *      not support it.
  * @transfer_list: transfers are sequenced through @spi_message.transfers
  * @tx_sg: Scatterlist for transmit, currently not for client use
@@ -966,16 +970,16 @@ struct spi_res {
  *	transmitting the "pre" word, and the "post" timestamp after receiving
  *	transmit confirmation from the controller for the "post" word.
  * @timestamped: true if the transfer has been timestamped
- * @error: Error status logged by spi controller driver.
+ * @error: Error status logged by SPI controller driver.
  *
  * SPI transfers always write the same number of bytes as they read.
  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
  * In some cases, they may also want to provide DMA addresses for
  * the data being transferred; that may reduce overhead, when the
- * underlying driver uses dma.
+ * underlying driver uses DMA.
  *
- * If the transmit buffer is null, zeroes will be shifted out
- * while filling @rx_buf.  If the receive buffer is null, the data
+ * If the transmit buffer is NULL, zeroes will be shifted out
+ * while filling @rx_buf.  If the receive buffer is NULL, the data
  * shifted in will be discarded.  Only "len" bytes shift out (or in).
  * It's an error to try to shift out a partial word.  (For example, by
  * shifting out three bytes with word size of sixteen or twenty bits;
@@ -1009,7 +1013,7 @@ struct spi_res {
  * Some devices need protocol transactions to be built from a series of
  * spi_message submissions, where the content of one message is determined
  * by the results of previous messages and where the whole transaction
- * ends when the chipselect goes intactive.
+ * ends when the chipselect goes inactive.
  *
  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
@@ -1023,10 +1027,11 @@ struct spi_res {
  * and its transfers, ignore them until its completion callback.
  */
 struct spi_transfer {
-	/* It's ok if tx_buf == rx_buf (right?)
-	 * for MicroWire, one buffer must be null
-	 * buffers must work with dma_*map_single() calls, unless
-	 *   spi_message.is_dma_mapped reports a pre-existing mapping
+	/*
+	 * It's okay if tx_buf == rx_buf (right?).
+	 * For MicroWire, one buffer must be NULL.
+	 * Buffers must work with dma_*map_single() calls, unless
+	 * spi_message.is_dma_mapped reports a pre-existing mapping.
 	 */
 	const void	*tx_buf;
 	void		*rx_buf;
@@ -1046,9 +1051,9 @@ struct spi_transfer {
 	unsigned	tx_nbits:3;
 	unsigned	rx_nbits:3;
 	unsigned	timestamped:1;
-#define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
-#define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
-#define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
+#define	SPI_NBITS_SINGLE	0x01 /* 1-bit transfer */
+#define	SPI_NBITS_DUAL		0x02 /* 2-bit transfer */
+#define	SPI_NBITS_QUAD		0x04 /* 4-bit transfer */
 	u8		bits_per_word;
 	struct spi_delay	delay;
 	struct spi_delay	cs_change_delay;
@@ -1069,7 +1074,7 @@ struct spi_transfer {
  * struct spi_message - one multi-segment SPI transaction
  * @transfers: list of transfer segments in this transaction
  * @spi: SPI device to which the transaction is queued
- * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
+ * @is_dma_mapped: if true, the caller provided both DMA and CPU virtual
  *	addresses for each transfer buffer
  * @complete: called to report transaction completions
  * @context: the argument to complete() when it's called
@@ -1079,7 +1084,7 @@ struct spi_transfer {
  * @status: zero for success, else negative errno
  * @queue: for use by whichever driver currently owns the message
  * @state: for use by whichever driver currently owns the message
- * @resources: for resource management when the spi message is processed
+ * @resources: for resource management when the SPI message is processed
  * @prepared: spi_prepare_message was called for the this message
  * @t: for use with spi_message_alloc() when message and transfers have
  *	been allocated together
@@ -1108,7 +1113,8 @@ struct spi_message {
 	/* spi_prepare_message() was called for this message */
 	bool			prepared;
 
-	/* REVISIT:  we might want a flag affecting the behavior of the
+	/*
+	 * REVISIT: we might want a flag affecting the behavior of the
 	 * last transfer ... allowing things like "read 16 bit length L"
 	 * immediately followed by "read L bytes".  Basically imposing
 	 * a specific message scheduling algorithm.
@@ -1126,14 +1132,15 @@ struct spi_message {
 	unsigned		frame_length;
 	unsigned		actual_length;
 
-	/* For optional use by whatever driver currently owns the
+	/*
+	 * For optional use by whatever driver currently owns the
 	 * spi_message ...  between calls to spi_async and then later
 	 * complete(), that's the spi_controller controller driver.
 	 */
 	struct list_head	queue;
 	void			*state;
 
-	/* List of spi_res reources when the spi message is processed */
+	/* List of spi_res resources when the SPI message is processed */
 	struct list_head        resources;
 
 	/* For embedding transfers into the memory of the message */
@@ -1173,7 +1180,7 @@ spi_transfer_delay_exec(struct spi_transfer *t)
 /**
  * spi_message_init_with_transfers - Initialize spi_message and append transfers
  * @m: spi_message to be initialized
- * @xfers: An array of spi transfers
+ * @xfers: An array of SPI transfers
  * @num_xfers: Number of items in the xfer array
  *
  * This function initializes the given spi_message and adds each spi_transfer in
@@ -1190,10 +1197,10 @@ struct spi_transfer *xfers, unsigned int num_xfers)
 		spi_message_add_tail(&xfers[i], m);
 }
 
-/* It's fine to embed message and transaction structures in other data
+/*
+ * It's fine to embed message and transaction structures in other data
  * structures so long as you don't free them while they're in use.
  */
-
 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
 {
 	struct spi_message *m;
@@ -1293,7 +1300,7 @@ typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
  *                                 replacements that have occurred
  *                                 so that they can get reverted
  * @release:            some extra release code to get executed prior to
- *                      relasing this structure
+ *                      releasing this structure
  * @extradata:          pointer to some extra data if requested or NULL
  * @replaced_transfers: transfers that have been replaced and which need
  *                      to get restored
@@ -1303,9 +1310,9 @@ typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
  * @inserted_transfers: array of spi_transfers of array-size @inserted,
  *                      that have been replacing replaced_transfers
  *
- * note: that @extradata will point to @inserted_transfers[@inserted]
+ * Note: that @extradata will point to @inserted_transfers[@inserted]
  * if some extra allocation is requested, so alignment will be the same
- * as for spi_transfers
+ * as for spi_transfers.
  */
 struct spi_replaced_transfers {
 	spi_replaced_release_t release;
@@ -1331,7 +1338,8 @@ extern int spi_split_transfers_maxwords(struct spi_controller *ctlr,
 
 /*---------------------------------------------------------------------------*/
 
-/* All these synchronous SPI transfer routines are utilities layered
+/*
+ * All these synchronous SPI transfer routines are utilities layered
  * over the core async transfer primitive.  Here, "synchronous" means
  * they will sleep uninterruptibly until the async transfer completes.
  */
@@ -1474,7 +1482,7 @@ static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
  *
  * Callable only from contexts that can sleep.
  *
- * Return: the (unsigned) sixteen bit number returned by the device in cpu
+ * Return: the (unsigned) sixteen bit number returned by the device in CPU
  * endianness, or else a negative error code.
  */
 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
@@ -1502,7 +1510,7 @@ static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
  * As a rule, SPI devices can't be probed.  Instead, board init code
  * provides a table listing the devices which are present, with enough
  * information to bind and set up the device's driver.  There's basic
- * support for nonstatic configurations too; enough to handle adding
+ * support for non-static configurations too; enough to handle adding
  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
  */
 
@@ -1539,12 +1547,13 @@ static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
  * are active in some dynamic board configuration models.
  */
 struct spi_board_info {
-	/* The device name and module name are coupled, like platform_bus;
+	/*
+	 * The device name and module name are coupled, like platform_bus;
 	 * "modalias" is normally the driver name.
 	 *
 	 * platform_data goes to spi_device.dev.platform_data,
 	 * controller_data goes to spi_device.controller_data,
-	 * irq is copied too
+	 * IRQ is copied too.
 	 */
 	char		modalias[SPI_NAME_SIZE];
 	const void	*platform_data;
@@ -1556,7 +1565,8 @@ struct spi_board_info {
 	u32		max_speed_hz;
 
 
-	/* bus_num is board specific and matches the bus_num of some
+	/*
+	 * bus_num is board specific and matches the bus_num of some
 	 * spi_controller that will probably be registered later.
 	 *
 	 * chip_select reflects how this chip is wired to that master;
@@ -1565,12 +1575,14 @@ struct spi_board_info {
 	u16		bus_num;
 	u16		chip_select;
 
-	/* mode becomes spi_device.mode, and is essential for chips
+	/*
+	 * mode becomes spi_device.mode, and is essential for chips
 	 * where the default of SPI_CS_HIGH = 0 is wrong.
 	 */
 	u32		mode;
 
-	/* ... may need additional spi_device chip config data here.
+	/*
+	 * ... may need additional spi_device chip config data here.
 	 * avoid stuff protocol drivers can set; but include stuff
 	 * needed to behave without being bound to a driver:
 	 *  - quirks like clock rate mattering when not selected
@@ -1587,7 +1599,8 @@ spi_register_board_info(struct spi_board_info const *info, unsigned n)
 	{ return 0; }
 #endif
 
-/* If you're hotplugging an adapter with devices (parport, usb, etc)
+/*
+ * If you're hotplugging an adapter with devices (parport, USB, etc)
  * use spi_new_device() to describe each device.  You can also call
  * spi_unregister_device() to start making that device vanish, but
  * normally that would be handled by spi_unregister_controller().
diff --git a/include/trace/events/spi.h b/include/trace/events/spi.h
index c0248a8fa79c..e63d4a24d879 100644
--- a/include/trace/events/spi.h
+++ b/include/trace/events/spi.h
@@ -167,7 +167,7 @@ TRACE_EVENT(spi_message_done,
 );
 
 /*
- * consider a buffer valid if non-NULL and if it doesn't match the dummy buffer
+ * Consider a buffer valid if non-NULL and if it doesn't match the dummy buffer
  * that only exist to work with controllers that have SPI_CONTROLLER_MUST_TX or
  * SPI_CONTROLLER_MUST_RX.
  */
-- 
2.40.0.1.gaa8946217a0b


_______________________________________________
linux-amlogic mailing list
linux-amlogic@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/linux-amlogic

  parent reply	other threads:[~2023-07-11 17:19 UTC|newest]

Thread overview: 64+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2023-07-11 17:17 [PATCH v3 00/14] spi: Header and core clean up and refactoring Andy Shevchenko
2023-07-11 17:17 ` Andy Shevchenko
2023-07-11 17:17 ` Andy Shevchenko
2023-07-11 17:17 ` Andy Shevchenko
2023-07-11 17:17 ` [PATCH v3 01/14] spi: Remove unneeded OF node NULL checks Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17 ` [PATCH v3 02/14] spi: Deduplicate IDR allocation code in spi_register_controller() Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17 ` [PATCH v3 03/14] spi: Refactor bus number assigning " Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17 ` [PATCH v3 04/14] spi: Remove code duplication in spi_add_device*() Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:34   ` Sebastian Reichel
2023-07-11 17:34     ` Sebastian Reichel
2023-07-11 17:34     ` Sebastian Reichel
2023-07-11 17:34     ` Sebastian Reichel
2023-07-11 17:17 ` [PATCH v3 05/14] spi: Kill spi_add_device_locked() Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17 ` [PATCH v3 06/14] spi: Use sysfs_emit() to instead of s*printf() Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17 ` [PATCH v3 07/14] spi: Use BITS_TO_BYTES() Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17 ` [PATCH v3 08/14] spi: Sort headers alphabetically Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17 ` [PATCH v3 09/14] spi: Use struct_size() helper Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17 ` [PATCH v3 10/14] spi: Get rid of old SPI_MASTER_NO_TX & SPI_MASTER_NO_RX Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17 ` [PATCH v3 11/14] spi: Get rid of old SPI_MASTER_MUST_TX & SPI_MASTER_MUST_RX Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17 ` [PATCH v3 12/14] spi: Rename SPI_MASTER_GPIO_SS to SPI_CONTROLLER_GPIO_SS Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17 ` [PATCH v3 13/14] spi: Convert to SPI_CONTROLLER_HALF_DUPLEX Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17 ` Andy Shevchenko [this message]
2023-07-11 17:17   ` [PATCH v3 14/14] spi: Fix spelling typos and acronyms capitalization Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko
2023-07-11 17:17   ` Andy Shevchenko

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20230711171756.86736-15-andriy.shevchenko@linux.intel.com \
    --to=andriy.shevchenko@linux.intel.com \
    --cc=agross@kernel.org \
    --cc=alain.volmat@foss.st.com \
    --cc=alexandre.belloni@bootlin.com \
    --cc=alexandre.torgue@foss.st.com \
    --cc=alsa-devel@alsa-project.org \
    --cc=andersson@kernel.org \
    --cc=angelogioacchino.delregno@collabora.com \
    --cc=baolin.wang@linux.alibaba.com \
    --cc=broonie@kernel.org \
    --cc=claudiu.beznea@microchip.com \
    --cc=cristian.ciocaltea@collabora.com \
    --cc=fancer.lancer@gmail.com \
    --cc=festevam@gmail.com \
    --cc=heiko@sntech.de \
    --cc=jbrunet@baylibre.com \
    --cc=jcmvbkbc@gmail.com \
    --cc=kernel@pengutronix.de \
    --cc=khilman@baylibre.com \
    --cc=konrad.dybcio@linaro.org \
    --cc=linux-amlogic@lists.infradead.org \
    --cc=linux-arm-kernel@lists.infradead.org \
    --cc=linux-arm-msm@vger.kernel.org \
    --cc=linux-imx@nxp.com \
    --cc=linux-kernel@vger.kernel.org \
    --cc=linux-mediatek@lists.infradead.org \
    --cc=linux-riscv@lists.infradead.org \
    --cc=linux-rockchip@lists.infradead.org \
    --cc=linux-spi@vger.kernel.org \
    --cc=linux-stm32@st-md-mailman.stormreply.com \
    --cc=linux-trace-kernel@vger.kernel.org \
    --cc=martin.blumenstingl@googlemail.com \
    --cc=matthias.bgg@gmail.com \
    --cc=mcoquelin.stm32@gmail.com \
    --cc=mhiramat@kernel.org \
    --cc=neil.armstrong@linaro.org \
    --cc=netdev@vger.kernel.org \
    --cc=nicolas.ferre@microchip.com \
    --cc=orsonzhai@gmail.com \
    --cc=palmer@dabbelt.com \
    --cc=paul.walmsley@sifive.com \
    --cc=quic_vnivarth@quicinc.com \
    --cc=radu_nicolae.pirea@upb.ro \
    --cc=richardcochran@gmail.com \
    --cc=rostedt@goodmis.org \
    --cc=s.hauer@pengutronix.de \
    --cc=sanju.mehta@amd.com \
    --cc=sebastian.reichel@collabora.com \
    --cc=shawnguo@kernel.org \
    --cc=tharunkumar.pasumarthi@microchip.com \
    --cc=tudor.ambarus@linaro.org \
    --cc=u.kleine-koenig@pengutronix.de \
    --cc=yangyingliang@huawei.com \
    --cc=zhang.lyra@gmail.com \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.