All of lore.kernel.org
 help / color / mirror / Atom feed
From: Ganapatrao Kulkarni <gankulkarni@os.amperecomputing.com>
To: Marc Zyngier <maz@kernel.org>
Cc: kvmarm@lists.linux.dev, kvm@vger.kernel.org,
	linux-arm-kernel@lists.infradead.org,
	linux-kernel@vger.kernel.org, oliver.upton@linux.dev,
	darren@os.amperecomputing.com,
	d.scott.phillips@amperecomputing.com
Subject: Re: [RFC PATCH] kvm: nv: Optimize the unmapping of shadow S2-MMU tables.
Date: Tue, 5 Mar 2024 18:59:08 +0530	[thread overview]
Message-ID: <6685c3a6-2017-4bc2-ad26-d11949097050@os.amperecomputing.com> (raw)
In-Reply-To: <86sf150w4t.wl-maz@kernel.org>



On 05-03-2024 04:43 pm, Marc Zyngier wrote:
> [re-sending with kvmarm@ fixed]
> 
> On Tue, 05 Mar 2024 05:46:06 +0000,
> Ganapatrao Kulkarni <gankulkarni@os.amperecomputing.com> wrote:
>>
>> As per 'commit 178a6915434c ("KVM: arm64: nv: Unmap/flush shadow stage 2
> 
> $ git describe --contains 178a6915434c --match=v\*
> fatal: cannot describe '178a6915434c141edefd116b8da3d55555ea3e63'
> 

My bad(I would have been more verbose), I missed to mention that this 
patch is on top of NV-V11 patch series.

> This commit simply doesn't exist upstream. It only lives in a
> now deprecated branch that will never be merged.
> 
>> page tables")', when ever there is unmap of pages that
>> are mapped to L1, they are invalidated from both L1 S2-MMU and from
>> all the active shadow/L2 S2-MMU tables. Since there is no mapping
>> to invalidate the IPAs of Shadow S2 to a page, there is a complete
>> S2-MMU page table walk and invalidation is done covering complete
>> address space allocated to a L2. This has performance impacts and
>> even soft lockup for NV(L1 and L2) boots with higher number of
>> CPUs and large Memory.
>>
>> Adding a lookup table of mapping of Shadow IPA to Canonical IPA
>> whenever a page is mapped to any of the L2. While any page is
>> unmaped, this lookup is helpful to unmap only if it is mapped in
>> any of the shadow S2-MMU tables. Hence avoids unnecessary long
>> iterations of S2-MMU table walk-through and invalidation for the
>> complete address space.
> 
> All of this falls in the "premature optimisation" bucket. Why should
> we bother with any of this when not even 'AT S1' works correctly,

Hmm, I am not aware of this, is this something new issue of V11?

> making it trivial to prevent a guest from making forward progress? You
> also show no numbers that would hint at a measurable improvement under
> any particular workload.

This patch is avoiding long iterations of unmap which was resulting in 
soft-lockup, when tried L1 and L2 with 192 cores.
Fixing soft lockup isn't a required fix for feature enablement?

> 
> I am genuinely puzzled that you are wasting valuable engineering time
> on *this*.
> 
>>
>> Signed-off-by: Ganapatrao Kulkarni <gankulkarni@os.amperecomputing.com>
>> ---
>>   arch/arm64/include/asm/kvm_emulate.h |   5 ++
>>   arch/arm64/include/asm/kvm_host.h    |  14 ++++
>>   arch/arm64/include/asm/kvm_nested.h  |   4 +
>>   arch/arm64/kvm/mmu.c                 |  19 ++++-
>>   arch/arm64/kvm/nested.c              | 113 +++++++++++++++++++++++++++
>>   5 files changed, 152 insertions(+), 3 deletions(-)
>>
>> diff --git a/arch/arm64/include/asm/kvm_emulate.h b/arch/arm64/include/asm/kvm_emulate.h
>> index 5173f8cf2904..f503b2eaedc4 100644
>> --- a/arch/arm64/include/asm/kvm_emulate.h
>> +++ b/arch/arm64/include/asm/kvm_emulate.h
>> @@ -656,4 +656,9 @@ static inline bool kvm_is_shadow_s2_fault(struct kvm_vcpu *vcpu)
>>   		vcpu->arch.hw_mmu->nested_stage2_enabled);
>>   }
>>   
>> +static inline bool kvm_is_l1_using_shadow_s2(struct kvm_vcpu *vcpu)
>> +{
>> +	return (vcpu->arch.hw_mmu != &vcpu->kvm->arch.mmu);
>> +}
> 
> Isn't that the very definition of "!in_hyp_ctxt()"? You are abusing

"!in_hyp_ctxt()" isn't true for non-NV case also?
This function added to know that L1 is NV enabled and using shadow S2.

> the hw_mmu pointer to derive something, but the source of truth is the
> translation regime, as defined by HCR_EL2.{E2H,TGE} and PSTATE.M.
> 

OK, I can try HCR_EL2.{E2H,TGE} and PSTATE.M instead of hw_mmu in next 
version.

>> +
>>   #endif /* __ARM64_KVM_EMULATE_H__ */
>> diff --git a/arch/arm64/include/asm/kvm_host.h b/arch/arm64/include/asm/kvm_host.h
>> index 8da3c9a81ae3..f61c674c300a 100644
>> --- a/arch/arm64/include/asm/kvm_host.h
>> +++ b/arch/arm64/include/asm/kvm_host.h
>> @@ -144,6 +144,13 @@ struct kvm_vmid {
>>   	atomic64_t id;
>>   };
>>   
>> +struct mapipa_node {
>> +	struct rb_node node;
>> +	phys_addr_t ipa;
>> +	phys_addr_t shadow_ipa;
>> +	long size;
>> +};
>> +
>>   struct kvm_s2_mmu {
>>   	struct kvm_vmid vmid;
>>   
>> @@ -216,6 +223,13 @@ struct kvm_s2_mmu {
>>   	 * >0: Somebody is actively using this.
>>   	 */
>>   	atomic_t refcnt;
>> +
>> +	/*
>> +	 * For a Canonical IPA to Shadow IPA mapping.
>> +	 */
>> +	struct rb_root nested_mapipa_root;
> 
> Why isn't this a maple tree? If there is no overlap between mappings
> (and it really shouldn't be any), why should we use a bare-bone rb-tree?
> 
>> +	rwlock_t mmu_lock;
> 
> Hell no. We have plenty of locking already, and there is no reason why
> this should gain its own locking. I can't see a case where you would
> take this lock outside of holding the *real* mmu_lock -- extra bonus
> point for the ill-chosen name.

OK, this should be avoided with maple tree.
> 
>> +
>>   };
>>   
>>   static inline bool kvm_s2_mmu_valid(struct kvm_s2_mmu *mmu)
>> diff --git a/arch/arm64/include/asm/kvm_nested.h b/arch/arm64/include/asm/kvm_nested.h
>> index da7ebd2f6e24..c31a59a1fdc6 100644
>> --- a/arch/arm64/include/asm/kvm_nested.h
>> +++ b/arch/arm64/include/asm/kvm_nested.h
>> @@ -65,6 +65,9 @@ extern void kvm_init_nested(struct kvm *kvm);
>>   extern int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu);
>>   extern void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu);
>>   extern struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu);
>> +extern void add_shadow_ipa_map_node(
>> +		struct kvm_s2_mmu *mmu,
>> +		phys_addr_t ipa, phys_addr_t shadow_ipa, long size);
>>   
>>   union tlbi_info;
>>   
>> @@ -123,6 +126,7 @@ extern int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu,
>>   extern int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2);
>>   extern void kvm_nested_s2_wp(struct kvm *kvm);
>>   extern void kvm_nested_s2_unmap(struct kvm *kvm);
>> +extern void kvm_nested_s2_unmap_range(struct kvm *kvm, struct kvm_gfn_range *range);
>>   extern void kvm_nested_s2_flush(struct kvm *kvm);
>>   int handle_wfx_nested(struct kvm_vcpu *vcpu, bool is_wfe);
>>   
>> diff --git a/arch/arm64/kvm/mmu.c b/arch/arm64/kvm/mmu.c
>> index 61bdd8798f83..3948681426a0 100644
>> --- a/arch/arm64/kvm/mmu.c
>> +++ b/arch/arm64/kvm/mmu.c
>> @@ -1695,6 +1695,13 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
>>   					     memcache,
>>   					     KVM_PGTABLE_WALK_HANDLE_FAULT |
>>   					     KVM_PGTABLE_WALK_SHARED);
>> +		if ((nested || kvm_is_l1_using_shadow_s2(vcpu)) && !ret) {
> 
> I don't understand this condition. If nested is non-NULL, it's because
> we're using a shadow S2. So why the additional condition?

No, nested is set only for L2, for L1 it is not.
To handle L1 shadow S2 case, I have added this condition.

> 
>> +			struct kvm_s2_mmu *shadow_s2_mmu;
>> +
>> +			ipa &= ~(vma_pagesize - 1);
>> +			shadow_s2_mmu = lookup_s2_mmu(vcpu);
>> +			add_shadow_ipa_map_node(shadow_s2_mmu, ipa, fault_ipa, vma_pagesize);
>> +		}
>>   	}
>>   
>>   	/* Mark the page dirty only if the fault is handled successfully */
>> @@ -1918,7 +1925,7 @@ bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
>>   			     (range->end - range->start) << PAGE_SHIFT,
>>   			     range->may_block);
>>   
>> -	kvm_nested_s2_unmap(kvm);
>> +	kvm_nested_s2_unmap_range(kvm, range);
>>   	return false;
>>   }
>>   
>> @@ -1953,7 +1960,7 @@ bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
>>   			       PAGE_SIZE, __pfn_to_phys(pfn),
>>   			       KVM_PGTABLE_PROT_R, NULL, 0);
>>   
>> -	kvm_nested_s2_unmap(kvm);
>> +	kvm_nested_s2_unmap_range(kvm, range);
>>   	return false;
>>   }
>>   
>> @@ -2223,12 +2230,18 @@ void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
>>   void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
>>   				   struct kvm_memory_slot *slot)
>>   {
>> +	struct kvm_gfn_range range;
>> +
>>   	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
>>   	phys_addr_t size = slot->npages << PAGE_SHIFT;
>>   
>> +	range.start = gpa;
>> +	range.end = gpa + size;
>> +	range.may_block = true;
>> +
>>   	write_lock(&kvm->mmu_lock);
>>   	kvm_unmap_stage2_range(&kvm->arch.mmu, gpa, size);
>> -	kvm_nested_s2_unmap(kvm);
>> +	kvm_nested_s2_unmap_range(kvm, &range);
>>   	write_unlock(&kvm->mmu_lock);
>>   }
>>   
>> diff --git a/arch/arm64/kvm/nested.c b/arch/arm64/kvm/nested.c
>> index f88d9213c6b3..888ec9fba4a0 100644
>> --- a/arch/arm64/kvm/nested.c
>> +++ b/arch/arm64/kvm/nested.c
>> @@ -565,6 +565,88 @@ void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid,
>>   	write_unlock(&kvm->mmu_lock);
>>   }
>>   
>> +/*
>> + * Create a node and add to lookup table, when a page is mapped to
>> + * Canonical IPA and also mapped to Shadow IPA.
>> + */
>> +void add_shadow_ipa_map_node(struct kvm_s2_mmu *mmu,
>> +			phys_addr_t ipa,
>> +			phys_addr_t shadow_ipa, long size)
>> +{
>> +	struct rb_root *ipa_root = &(mmu->nested_mapipa_root);
>> +	struct rb_node **node = &(ipa_root->rb_node), *parent = NULL;
>> +	struct mapipa_node *new;
>> +
>> +	new = kzalloc(sizeof(struct mapipa_node), GFP_KERNEL);
>> +	if (!new)
>> +		return;
>> +
>> +	new->shadow_ipa = shadow_ipa;
>> +	new->ipa = ipa;
>> +	new->size = size;
>> +
>> +	write_lock(&mmu->mmu_lock);
>> +
>> +	while (*node) {
>> +		struct mapipa_node *tmp;
>> +
>> +		tmp = container_of(*node, struct mapipa_node, node);
>> +		parent = *node;
>> +		if (new->ipa < tmp->ipa) {
>> +			node = &(*node)->rb_left;
>> +		} else if (new->ipa > tmp->ipa) {
>> +			node = &(*node)->rb_right;
>> +		} else {
>> +			write_unlock(&mmu->mmu_lock);
>> +			kfree(new);
>> +			return;
>> +		}
>> +	}
>> +
>> +	rb_link_node(&new->node, parent, node);
>> +	rb_insert_color(&new->node, ipa_root);
>> +	write_unlock(&mmu->mmu_lock);
> 
> All this should be removed in favour of simply using a maple tree.
> 

Thanks for the suggestion to use maple tree. I will use it in next 
version, which help to avoid the locks.

>> +}
>> +
>> +/*
>> + * Iterate over the lookup table of Canonical IPA to Shadow IPA.
>> + * Return Shadow IPA, if the page mapped to Canonical IPA is
>> + * also mapped to a Shadow IPA.
>> + *
>> + */
>> +bool get_shadow_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa, phys_addr_t *shadow_ipa, long *size)
> 
> static?

It should be, thanks.
> 
>> +{
>> +	struct rb_node *node;
>> +	struct mapipa_node *tmp = NULL;
>> +
>> +	read_lock(&mmu->mmu_lock);
>> +	node = mmu->nested_mapipa_root.rb_node;
>> +
>> +	while (node) {
>> +		tmp = container_of(node, struct mapipa_node, node);
>> +
>> +		if (tmp->ipa == ipa)
> 
> What guarantees that the mapping you have for L1 has the same starting
> address as the one you have for L2? L1 could have a 2MB mapping and L2
> only 4kB *in the middle*.

IIUC, when a page is mapped to 2MB in L1, it won't be
mapped to L2 and we iterate with the step of PAGE_SIZE and we should be 
hitting the L2's IPA in lookup table, provided the L2 page falls in 
unmap range.

> 
>> +			break;
>> +		else if (ipa > tmp->ipa)
>> +			node = node->rb_right;
>> +		else
>> +			node = node->rb_left;
>> +	}
>> +
>> +	read_unlock(&mmu->mmu_lock);
> 
> Why would you drop the lock here....
> 
>> +
>> +	if (tmp && tmp->ipa == ipa) {
>> +		*shadow_ipa = tmp->shadow_ipa;
>> +		*size = tmp->size;
>> +		write_lock(&mmu->mmu_lock);
> 
> ... if taking it again here? What could have changed in between?
> 
>> +		rb_erase(&tmp->node, &mmu->nested_mapipa_root);
>> +		write_unlock(&mmu->mmu_lock);
>> +		kfree(tmp);
>> +		return true;
>> +	}
>> +	return false;
>> +}
> 
> So simply hitting in the reverse mapping structure *frees* it? Meaning
> that you cannot use it as a way to update a mapping?

Freeing it since this page already unmapped/migrated on host and will be 
done on shadow S2 after this lookup. I should have considered other 
cases as well, as Oliver mentioned.

> 
>> +
>>   /* Must be called with kvm->mmu_lock held */
>>   struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu)
>>   {
>> @@ -674,6 +756,7 @@ void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu)
>>   	mmu->tlb_vttbr = 1;
>>   	mmu->nested_stage2_enabled = false;
>>   	atomic_set(&mmu->refcnt, 0);
>> +	mmu->nested_mapipa_root = RB_ROOT;
>>   }
>>   
>>   void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu)
>> @@ -760,6 +843,36 @@ void kvm_nested_s2_unmap(struct kvm *kvm)
>>   	}
>>   }
>>   
>> +void kvm_nested_s2_unmap_range(struct kvm *kvm, struct kvm_gfn_range *range)
>> +{
>> +	int i;
>> +	long size;
>> +	bool ret;
>> +
>> +	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
>> +		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
>> +
>> +		if (kvm_s2_mmu_valid(mmu)) {
>> +			phys_addr_t shadow_ipa, start, end;
>> +
>> +			start = range->start << PAGE_SHIFT;
>> +			end = range->end << PAGE_SHIFT;
>> +
>> +			while (start < end) {
>> +				size = PAGE_SIZE;
>> +				/*
>> +				 * get the Shadow IPA if the page is mapped
>> +				 * to L1 and also mapped to any of active L2.
>> +				 */
> 
> Why is L1 relevant here?

We do map while L1 boots(early stage) in shadow S2, at that moment
if the L1 mapped page is unmapped/migrated we do need to unmap from L1's 
S2 table also.

> 
>> +				ret = get_shadow_ipa(mmu, start, &shadow_ipa, &size);
>> +				if (ret)
>> +					kvm_unmap_stage2_range(mmu, shadow_ipa, size);
>> +				start += size;
>> +			}
>> +		}
>> +	}
>> +}
>> +
>>   /* expects kvm->mmu_lock to be held */
>>   void kvm_nested_s2_flush(struct kvm *kvm)
>>   {
> 
> There are a bunch of worrying issues with this patch. But more
> importantly, this looks like a waste of effort until the core issues
> that NV still has are solved, and I will not consider anything of the
> sort until then.

OK thanks for letting us know, I will pause the work on V2 of this patch 
until then.

> 
> I get the ugly feeling that you are trying to make it look as if it
> was "production ready", which it won't be for another few years,
> specially if the few interested people (such as you) are ignoring the
> core issues in favour of marketing driven features ("make it fast").
> 

What are the core issues (please forgive me if you mentioned already)? 
certainly we will prioritise them than this.

> Thanks,
> 
> 	M.
> 

Thanks,
Ganapat

WARNING: multiple messages have this Message-ID (diff)
From: Ganapatrao Kulkarni <gankulkarni@os.amperecomputing.com>
To: Marc Zyngier <maz@kernel.org>
Cc: kvmarm@lists.linux.dev, kvm@vger.kernel.org,
	linux-arm-kernel@lists.infradead.org,
	linux-kernel@vger.kernel.org, oliver.upton@linux.dev,
	darren@os.amperecomputing.com,
	d.scott.phillips@amperecomputing.com
Subject: Re: [RFC PATCH] kvm: nv: Optimize the unmapping of shadow S2-MMU tables.
Date: Tue, 5 Mar 2024 18:59:08 +0530	[thread overview]
Message-ID: <6685c3a6-2017-4bc2-ad26-d11949097050@os.amperecomputing.com> (raw)
In-Reply-To: <86sf150w4t.wl-maz@kernel.org>



On 05-03-2024 04:43 pm, Marc Zyngier wrote:
> [re-sending with kvmarm@ fixed]
> 
> On Tue, 05 Mar 2024 05:46:06 +0000,
> Ganapatrao Kulkarni <gankulkarni@os.amperecomputing.com> wrote:
>>
>> As per 'commit 178a6915434c ("KVM: arm64: nv: Unmap/flush shadow stage 2
> 
> $ git describe --contains 178a6915434c --match=v\*
> fatal: cannot describe '178a6915434c141edefd116b8da3d55555ea3e63'
> 

My bad(I would have been more verbose), I missed to mention that this 
patch is on top of NV-V11 patch series.

> This commit simply doesn't exist upstream. It only lives in a
> now deprecated branch that will never be merged.
> 
>> page tables")', when ever there is unmap of pages that
>> are mapped to L1, they are invalidated from both L1 S2-MMU and from
>> all the active shadow/L2 S2-MMU tables. Since there is no mapping
>> to invalidate the IPAs of Shadow S2 to a page, there is a complete
>> S2-MMU page table walk and invalidation is done covering complete
>> address space allocated to a L2. This has performance impacts and
>> even soft lockup for NV(L1 and L2) boots with higher number of
>> CPUs and large Memory.
>>
>> Adding a lookup table of mapping of Shadow IPA to Canonical IPA
>> whenever a page is mapped to any of the L2. While any page is
>> unmaped, this lookup is helpful to unmap only if it is mapped in
>> any of the shadow S2-MMU tables. Hence avoids unnecessary long
>> iterations of S2-MMU table walk-through and invalidation for the
>> complete address space.
> 
> All of this falls in the "premature optimisation" bucket. Why should
> we bother with any of this when not even 'AT S1' works correctly,

Hmm, I am not aware of this, is this something new issue of V11?

> making it trivial to prevent a guest from making forward progress? You
> also show no numbers that would hint at a measurable improvement under
> any particular workload.

This patch is avoiding long iterations of unmap which was resulting in 
soft-lockup, when tried L1 and L2 with 192 cores.
Fixing soft lockup isn't a required fix for feature enablement?

> 
> I am genuinely puzzled that you are wasting valuable engineering time
> on *this*.
> 
>>
>> Signed-off-by: Ganapatrao Kulkarni <gankulkarni@os.amperecomputing.com>
>> ---
>>   arch/arm64/include/asm/kvm_emulate.h |   5 ++
>>   arch/arm64/include/asm/kvm_host.h    |  14 ++++
>>   arch/arm64/include/asm/kvm_nested.h  |   4 +
>>   arch/arm64/kvm/mmu.c                 |  19 ++++-
>>   arch/arm64/kvm/nested.c              | 113 +++++++++++++++++++++++++++
>>   5 files changed, 152 insertions(+), 3 deletions(-)
>>
>> diff --git a/arch/arm64/include/asm/kvm_emulate.h b/arch/arm64/include/asm/kvm_emulate.h
>> index 5173f8cf2904..f503b2eaedc4 100644
>> --- a/arch/arm64/include/asm/kvm_emulate.h
>> +++ b/arch/arm64/include/asm/kvm_emulate.h
>> @@ -656,4 +656,9 @@ static inline bool kvm_is_shadow_s2_fault(struct kvm_vcpu *vcpu)
>>   		vcpu->arch.hw_mmu->nested_stage2_enabled);
>>   }
>>   
>> +static inline bool kvm_is_l1_using_shadow_s2(struct kvm_vcpu *vcpu)
>> +{
>> +	return (vcpu->arch.hw_mmu != &vcpu->kvm->arch.mmu);
>> +}
> 
> Isn't that the very definition of "!in_hyp_ctxt()"? You are abusing

"!in_hyp_ctxt()" isn't true for non-NV case also?
This function added to know that L1 is NV enabled and using shadow S2.

> the hw_mmu pointer to derive something, but the source of truth is the
> translation regime, as defined by HCR_EL2.{E2H,TGE} and PSTATE.M.
> 

OK, I can try HCR_EL2.{E2H,TGE} and PSTATE.M instead of hw_mmu in next 
version.

>> +
>>   #endif /* __ARM64_KVM_EMULATE_H__ */
>> diff --git a/arch/arm64/include/asm/kvm_host.h b/arch/arm64/include/asm/kvm_host.h
>> index 8da3c9a81ae3..f61c674c300a 100644
>> --- a/arch/arm64/include/asm/kvm_host.h
>> +++ b/arch/arm64/include/asm/kvm_host.h
>> @@ -144,6 +144,13 @@ struct kvm_vmid {
>>   	atomic64_t id;
>>   };
>>   
>> +struct mapipa_node {
>> +	struct rb_node node;
>> +	phys_addr_t ipa;
>> +	phys_addr_t shadow_ipa;
>> +	long size;
>> +};
>> +
>>   struct kvm_s2_mmu {
>>   	struct kvm_vmid vmid;
>>   
>> @@ -216,6 +223,13 @@ struct kvm_s2_mmu {
>>   	 * >0: Somebody is actively using this.
>>   	 */
>>   	atomic_t refcnt;
>> +
>> +	/*
>> +	 * For a Canonical IPA to Shadow IPA mapping.
>> +	 */
>> +	struct rb_root nested_mapipa_root;
> 
> Why isn't this a maple tree? If there is no overlap between mappings
> (and it really shouldn't be any), why should we use a bare-bone rb-tree?
> 
>> +	rwlock_t mmu_lock;
> 
> Hell no. We have plenty of locking already, and there is no reason why
> this should gain its own locking. I can't see a case where you would
> take this lock outside of holding the *real* mmu_lock -- extra bonus
> point for the ill-chosen name.

OK, this should be avoided with maple tree.
> 
>> +
>>   };
>>   
>>   static inline bool kvm_s2_mmu_valid(struct kvm_s2_mmu *mmu)
>> diff --git a/arch/arm64/include/asm/kvm_nested.h b/arch/arm64/include/asm/kvm_nested.h
>> index da7ebd2f6e24..c31a59a1fdc6 100644
>> --- a/arch/arm64/include/asm/kvm_nested.h
>> +++ b/arch/arm64/include/asm/kvm_nested.h
>> @@ -65,6 +65,9 @@ extern void kvm_init_nested(struct kvm *kvm);
>>   extern int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu);
>>   extern void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu);
>>   extern struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu);
>> +extern void add_shadow_ipa_map_node(
>> +		struct kvm_s2_mmu *mmu,
>> +		phys_addr_t ipa, phys_addr_t shadow_ipa, long size);
>>   
>>   union tlbi_info;
>>   
>> @@ -123,6 +126,7 @@ extern int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu,
>>   extern int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2);
>>   extern void kvm_nested_s2_wp(struct kvm *kvm);
>>   extern void kvm_nested_s2_unmap(struct kvm *kvm);
>> +extern void kvm_nested_s2_unmap_range(struct kvm *kvm, struct kvm_gfn_range *range);
>>   extern void kvm_nested_s2_flush(struct kvm *kvm);
>>   int handle_wfx_nested(struct kvm_vcpu *vcpu, bool is_wfe);
>>   
>> diff --git a/arch/arm64/kvm/mmu.c b/arch/arm64/kvm/mmu.c
>> index 61bdd8798f83..3948681426a0 100644
>> --- a/arch/arm64/kvm/mmu.c
>> +++ b/arch/arm64/kvm/mmu.c
>> @@ -1695,6 +1695,13 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
>>   					     memcache,
>>   					     KVM_PGTABLE_WALK_HANDLE_FAULT |
>>   					     KVM_PGTABLE_WALK_SHARED);
>> +		if ((nested || kvm_is_l1_using_shadow_s2(vcpu)) && !ret) {
> 
> I don't understand this condition. If nested is non-NULL, it's because
> we're using a shadow S2. So why the additional condition?

No, nested is set only for L2, for L1 it is not.
To handle L1 shadow S2 case, I have added this condition.

> 
>> +			struct kvm_s2_mmu *shadow_s2_mmu;
>> +
>> +			ipa &= ~(vma_pagesize - 1);
>> +			shadow_s2_mmu = lookup_s2_mmu(vcpu);
>> +			add_shadow_ipa_map_node(shadow_s2_mmu, ipa, fault_ipa, vma_pagesize);
>> +		}
>>   	}
>>   
>>   	/* Mark the page dirty only if the fault is handled successfully */
>> @@ -1918,7 +1925,7 @@ bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
>>   			     (range->end - range->start) << PAGE_SHIFT,
>>   			     range->may_block);
>>   
>> -	kvm_nested_s2_unmap(kvm);
>> +	kvm_nested_s2_unmap_range(kvm, range);
>>   	return false;
>>   }
>>   
>> @@ -1953,7 +1960,7 @@ bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
>>   			       PAGE_SIZE, __pfn_to_phys(pfn),
>>   			       KVM_PGTABLE_PROT_R, NULL, 0);
>>   
>> -	kvm_nested_s2_unmap(kvm);
>> +	kvm_nested_s2_unmap_range(kvm, range);
>>   	return false;
>>   }
>>   
>> @@ -2223,12 +2230,18 @@ void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
>>   void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
>>   				   struct kvm_memory_slot *slot)
>>   {
>> +	struct kvm_gfn_range range;
>> +
>>   	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
>>   	phys_addr_t size = slot->npages << PAGE_SHIFT;
>>   
>> +	range.start = gpa;
>> +	range.end = gpa + size;
>> +	range.may_block = true;
>> +
>>   	write_lock(&kvm->mmu_lock);
>>   	kvm_unmap_stage2_range(&kvm->arch.mmu, gpa, size);
>> -	kvm_nested_s2_unmap(kvm);
>> +	kvm_nested_s2_unmap_range(kvm, &range);
>>   	write_unlock(&kvm->mmu_lock);
>>   }
>>   
>> diff --git a/arch/arm64/kvm/nested.c b/arch/arm64/kvm/nested.c
>> index f88d9213c6b3..888ec9fba4a0 100644
>> --- a/arch/arm64/kvm/nested.c
>> +++ b/arch/arm64/kvm/nested.c
>> @@ -565,6 +565,88 @@ void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid,
>>   	write_unlock(&kvm->mmu_lock);
>>   }
>>   
>> +/*
>> + * Create a node and add to lookup table, when a page is mapped to
>> + * Canonical IPA and also mapped to Shadow IPA.
>> + */
>> +void add_shadow_ipa_map_node(struct kvm_s2_mmu *mmu,
>> +			phys_addr_t ipa,
>> +			phys_addr_t shadow_ipa, long size)
>> +{
>> +	struct rb_root *ipa_root = &(mmu->nested_mapipa_root);
>> +	struct rb_node **node = &(ipa_root->rb_node), *parent = NULL;
>> +	struct mapipa_node *new;
>> +
>> +	new = kzalloc(sizeof(struct mapipa_node), GFP_KERNEL);
>> +	if (!new)
>> +		return;
>> +
>> +	new->shadow_ipa = shadow_ipa;
>> +	new->ipa = ipa;
>> +	new->size = size;
>> +
>> +	write_lock(&mmu->mmu_lock);
>> +
>> +	while (*node) {
>> +		struct mapipa_node *tmp;
>> +
>> +		tmp = container_of(*node, struct mapipa_node, node);
>> +		parent = *node;
>> +		if (new->ipa < tmp->ipa) {
>> +			node = &(*node)->rb_left;
>> +		} else if (new->ipa > tmp->ipa) {
>> +			node = &(*node)->rb_right;
>> +		} else {
>> +			write_unlock(&mmu->mmu_lock);
>> +			kfree(new);
>> +			return;
>> +		}
>> +	}
>> +
>> +	rb_link_node(&new->node, parent, node);
>> +	rb_insert_color(&new->node, ipa_root);
>> +	write_unlock(&mmu->mmu_lock);
> 
> All this should be removed in favour of simply using a maple tree.
> 

Thanks for the suggestion to use maple tree. I will use it in next 
version, which help to avoid the locks.

>> +}
>> +
>> +/*
>> + * Iterate over the lookup table of Canonical IPA to Shadow IPA.
>> + * Return Shadow IPA, if the page mapped to Canonical IPA is
>> + * also mapped to a Shadow IPA.
>> + *
>> + */
>> +bool get_shadow_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa, phys_addr_t *shadow_ipa, long *size)
> 
> static?

It should be, thanks.
> 
>> +{
>> +	struct rb_node *node;
>> +	struct mapipa_node *tmp = NULL;
>> +
>> +	read_lock(&mmu->mmu_lock);
>> +	node = mmu->nested_mapipa_root.rb_node;
>> +
>> +	while (node) {
>> +		tmp = container_of(node, struct mapipa_node, node);
>> +
>> +		if (tmp->ipa == ipa)
> 
> What guarantees that the mapping you have for L1 has the same starting
> address as the one you have for L2? L1 could have a 2MB mapping and L2
> only 4kB *in the middle*.

IIUC, when a page is mapped to 2MB in L1, it won't be
mapped to L2 and we iterate with the step of PAGE_SIZE and we should be 
hitting the L2's IPA in lookup table, provided the L2 page falls in 
unmap range.

> 
>> +			break;
>> +		else if (ipa > tmp->ipa)
>> +			node = node->rb_right;
>> +		else
>> +			node = node->rb_left;
>> +	}
>> +
>> +	read_unlock(&mmu->mmu_lock);
> 
> Why would you drop the lock here....
> 
>> +
>> +	if (tmp && tmp->ipa == ipa) {
>> +		*shadow_ipa = tmp->shadow_ipa;
>> +		*size = tmp->size;
>> +		write_lock(&mmu->mmu_lock);
> 
> ... if taking it again here? What could have changed in between?
> 
>> +		rb_erase(&tmp->node, &mmu->nested_mapipa_root);
>> +		write_unlock(&mmu->mmu_lock);
>> +		kfree(tmp);
>> +		return true;
>> +	}
>> +	return false;
>> +}
> 
> So simply hitting in the reverse mapping structure *frees* it? Meaning
> that you cannot use it as a way to update a mapping?

Freeing it since this page already unmapped/migrated on host and will be 
done on shadow S2 after this lookup. I should have considered other 
cases as well, as Oliver mentioned.

> 
>> +
>>   /* Must be called with kvm->mmu_lock held */
>>   struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu)
>>   {
>> @@ -674,6 +756,7 @@ void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu)
>>   	mmu->tlb_vttbr = 1;
>>   	mmu->nested_stage2_enabled = false;
>>   	atomic_set(&mmu->refcnt, 0);
>> +	mmu->nested_mapipa_root = RB_ROOT;
>>   }
>>   
>>   void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu)
>> @@ -760,6 +843,36 @@ void kvm_nested_s2_unmap(struct kvm *kvm)
>>   	}
>>   }
>>   
>> +void kvm_nested_s2_unmap_range(struct kvm *kvm, struct kvm_gfn_range *range)
>> +{
>> +	int i;
>> +	long size;
>> +	bool ret;
>> +
>> +	for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
>> +		struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
>> +
>> +		if (kvm_s2_mmu_valid(mmu)) {
>> +			phys_addr_t shadow_ipa, start, end;
>> +
>> +			start = range->start << PAGE_SHIFT;
>> +			end = range->end << PAGE_SHIFT;
>> +
>> +			while (start < end) {
>> +				size = PAGE_SIZE;
>> +				/*
>> +				 * get the Shadow IPA if the page is mapped
>> +				 * to L1 and also mapped to any of active L2.
>> +				 */
> 
> Why is L1 relevant here?

We do map while L1 boots(early stage) in shadow S2, at that moment
if the L1 mapped page is unmapped/migrated we do need to unmap from L1's 
S2 table also.

> 
>> +				ret = get_shadow_ipa(mmu, start, &shadow_ipa, &size);
>> +				if (ret)
>> +					kvm_unmap_stage2_range(mmu, shadow_ipa, size);
>> +				start += size;
>> +			}
>> +		}
>> +	}
>> +}
>> +
>>   /* expects kvm->mmu_lock to be held */
>>   void kvm_nested_s2_flush(struct kvm *kvm)
>>   {
> 
> There are a bunch of worrying issues with this patch. But more
> importantly, this looks like a waste of effort until the core issues
> that NV still has are solved, and I will not consider anything of the
> sort until then.

OK thanks for letting us know, I will pause the work on V2 of this patch 
until then.

> 
> I get the ugly feeling that you are trying to make it look as if it
> was "production ready", which it won't be for another few years,
> specially if the few interested people (such as you) are ignoring the
> core issues in favour of marketing driven features ("make it fast").
> 

What are the core issues (please forgive me if you mentioned already)? 
certainly we will prioritise them than this.

> Thanks,
> 
> 	M.
> 

Thanks,
Ganapat

_______________________________________________
linux-arm-kernel mailing list
linux-arm-kernel@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/linux-arm-kernel

  reply	other threads:[~2024-03-05 13:29 UTC|newest]

Thread overview: 28+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2024-03-05  5:46 [RFC PATCH] kvm: nv: Optimize the unmapping of shadow S2-MMU tables Ganapatrao Kulkarni
2024-03-05  5:46 ` Ganapatrao Kulkarni
2024-03-05  8:46 ` Oliver Upton
2024-03-05  8:46   ` Oliver Upton
2024-03-06  5:31   ` Ganapatrao Kulkarni
2024-03-06  5:31     ` Ganapatrao Kulkarni
2024-03-06  8:39     ` Oliver Upton
2024-03-06  8:39       ` Oliver Upton
2024-03-06 13:33     ` Marc Zyngier
2024-03-06 13:33       ` Marc Zyngier
2024-03-06 14:57       ` Ganapatrao Kulkarni
2024-03-06 14:57         ` Ganapatrao Kulkarni
2024-03-05 11:08 ` Marc Zyngier
2024-03-05 11:08   ` Marc Zyngier
2024-03-05 11:13 ` Marc Zyngier
2024-03-05 11:13   ` Marc Zyngier
2024-03-05 13:29   ` Ganapatrao Kulkarni [this message]
2024-03-05 13:29     ` Ganapatrao Kulkarni
2024-03-05 15:03     ` Marc Zyngier
2024-03-05 15:03       ` Marc Zyngier
2024-03-05 18:33       ` Ganapatrao Kulkarni
2024-03-05 18:33         ` Ganapatrao Kulkarni
2024-03-06 10:23         ` Marc Zyngier
2024-03-06 10:23           ` Marc Zyngier
2024-03-26 11:33       ` Ganapatrao Kulkarni
2024-03-26 11:33         ` Ganapatrao Kulkarni
2024-03-27 12:12         ` Marc Zyngier
2024-03-27 12:12           ` Marc Zyngier

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=6685c3a6-2017-4bc2-ad26-d11949097050@os.amperecomputing.com \
    --to=gankulkarni@os.amperecomputing.com \
    --cc=d.scott.phillips@amperecomputing.com \
    --cc=darren@os.amperecomputing.com \
    --cc=kvm@vger.kernel.org \
    --cc=kvmarm@lists.linux.dev \
    --cc=linux-arm-kernel@lists.infradead.org \
    --cc=linux-kernel@vger.kernel.org \
    --cc=maz@kernel.org \
    --cc=oliver.upton@linux.dev \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.