All of lore.kernel.org
 help / color / mirror / Atom feed
From: chenzhou <chenzhou10@huawei.com>
To: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>,
	Ingo Molnar <mingo@redhat.com>, RuiRui Yang <dyoung@redhat.com>,
	Baoquan He <bhe@redhat.com>,
	Catalin Marinas <catalin.marinas@arm.com>,
	Will Deacon <will@kernel.org>, James Morse <james.morse@arm.com>,
	Rob Herring <robh+dt@kernel.org>, Arnd Bergmann <arnd@arndb.de>,
	John Donnelly <John.P.donnelly@oracle.com>,
	"Prabhakar Kushwaha" <prabhakar.pkin@gmail.com>,
	<nsaenzjulienne@suse.de>, "Jonathan Corbet" <corbet@lwn.net>,
	Simon Horman <horms@verge.net.au>, <guohanjun@huawei.com>,
	<xiexiuqi@huawei.com>, <huawei.libin@huawei.com>,
	Linux Kernel Mailing List <linux-kernel@vger.kernel.org>,
	linux-arm-kernel <linux-arm-kernel@lists.infradead.org>,
	kexec mailing list <kexec@lists.infradead.org>,
	Linux Doc Mailing List <linux-doc@vger.kernel.org>
Subject: Re: [PATCH v10 0/5] support reserving crashkernel above 4G on arm64 kdump
Date: Fri, 3 Jul 2020 16:38:15 +0800	[thread overview]
Message-ID: <989e3b4f-4827-bb0f-5c3d-d9669c081c88@huawei.com> (raw)
In-Reply-To: <CACi5LpP+kFLv97guJ126xKk4_mfy2nFMp36KnDiXxPZ1ya2jPg@mail.gmail.com>

Hi Bhupesh,


On 2020/7/3 15:26, Bhupesh Sharma wrote:
> Hi Chen,
>
> On Fri, Jul 3, 2020 at 9:24 AM Chen Zhou <chenzhou10@huawei.com> wrote:
>> This patch series enable reserving crashkernel above 4G in arm64.
>>
>> There are following issues in arm64 kdump:
>> 1. We use crashkernel=X to reserve crashkernel below 4G, which will fail
>> when there is no enough low memory.
>> 2. Currently, crashkernel=Y@X can be used to reserve crashkernel above 4G,
>> in this case, if swiotlb or DMA buffers are required, crash dump kernel
>> will boot failure because there is no low memory available for allocation.
>> 3. commit 1a8e1cef7603 ("arm64: use both ZONE_DMA and ZONE_DMA32") broken
>> the arm64 kdump. If the memory reserved for crash dump kernel falled in
>> ZONE_DMA32, the devices in crash dump kernel need to use ZONE_DMA will alloc
>> fail.
>>
>> To solve these issues, introduce crashkernel=X,low to reserve specified
>> size low memory.
>> Crashkernel=X tries to reserve memory for the crash dump kernel under
>> 4G. If crashkernel=Y,low is specified simultaneously, reserve spcified
>> size low memory for crash kdump kernel devices firstly and then reserve
>> memory above 4G.
>>
>> When crashkernel is reserved above 4G in memory and crashkernel=X,low
>> is specified simultaneously, kernel should reserve specified size low memory
>> for crash dump kernel devices. So there may be two crash kernel regions, one
>> is below 4G, the other is above 4G.
>> In order to distinct from the high region and make no effect to the use of
>> kexec-tools, rename the low region as "Crash kernel (low)", and pass the
>> low region by reusing DT property "linux,usable-memory-range". We made the low
>> memory region as the last range of "linux,usable-memory-range" to keep
>> compatibility with existing user-space and older kdump kernels.
>>
>> Besides, we need to modify kexec-tools:
>> arm64: support more than one crash kernel regions(see [1])
>>
>> Another update is document about DT property 'linux,usable-memory-range':
>> schemas: update 'linux,usable-memory-range' node schema(see [2])
>>
>> The previous changes and discussions can be retrieved from:
>>
>> Changes since [v9]
>> - Patch 1 add Acked-by from Dave.
>> - Update patch 5 according to Dave's comments.
>> - Update chosen schema.
>>
>> Changes since [v8]
>> - Reuse DT property "linux,usable-memory-range".
>> Suggested by Rob, reuse DT property "linux,usable-memory-range" to pass the low
>> memory region.
>> - Fix kdump broken with ZONE_DMA reintroduced.
>> - Update chosen schema.
>>
>> Changes since [v7]
>> - Move x86 CRASH_ALIGN to 2M
>> Suggested by Dave and do some test, move x86 CRASH_ALIGN to 2M.
>> - Update Documentation/devicetree/bindings/chosen.txt.
>> Add corresponding documentation to Documentation/devicetree/bindings/chosen.txt
>> suggested by Arnd.
>> - Add Tested-by from Jhon and pk.
>>
>> Changes since [v6]
>> - Fix build errors reported by kbuild test robot.
>>
>> Changes since [v5]
>> - Move reserve_crashkernel_low() into kernel/crash_core.c.
>> - Delete crashkernel=X,high.
>> - Modify crashkernel=X,low.
>> If crashkernel=X,low is specified simultaneously, reserve spcified size low
>> memory for crash kdump kernel devices firstly and then reserve memory above 4G.
>> In addition, rename crashk_low_res as "Crash kernel (low)" for arm64, and then
>> pass to crash dump kernel by DT property "linux,low-memory-range".
>> - Update Documentation/admin-guide/kdump/kdump.rst.
>>
>> Changes since [v4]
>> - Reimplement memblock_cap_memory_ranges for multiple ranges by Mike.
>>
>> Changes since [v3]
>> - Add memblock_cap_memory_ranges back for multiple ranges.
>> - Fix some compiling warnings.
>>
>> Changes since [v2]
>> - Split patch "arm64: kdump: support reserving crashkernel above 4G" as
>> two. Put "move reserve_crashkernel_low() into kexec_core.c" in a separate
>> patch.
>>
>> Changes since [v1]:
>> - Move common reserve_crashkernel_low() code into kernel/kexec_core.c.
>> - Remove memblock_cap_memory_ranges() i added in v1 and implement that
>> in fdt_enforce_memory_region().
>> There are at most two crash kernel regions, for two crash kernel regions
>> case, we cap the memory range [min(regs[*].start), max(regs[*].end)]
>> and then remove the memory range in the middle.
>>
>> [1]: http://lists.infradead.org/pipermail/kexec/2020-June/020737.html
>> [2]: https://github.com/robherring/dt-schema/pull/19
>> [v1]: https://lkml.org/lkml/2019/4/2/1174
>> [v2]: https://lkml.org/lkml/2019/4/9/86
>> [v3]: https://lkml.org/lkml/2019/4/9/306
>> [v4]: https://lkml.org/lkml/2019/4/15/273
>> [v5]: https://lkml.org/lkml/2019/5/6/1360
>> [v6]: https://lkml.org/lkml/2019/8/30/142
>> [v7]: https://lkml.org/lkml/2019/12/23/411
>> [v8]: https://lkml.org/lkml/2020/5/21/213
>> [v9]: https://lkml.org/lkml/2020/6/28/73
>>
>> Chen Zhou (5):
>>   x86: kdump: move reserve_crashkernel_low() into crash_core.c
>>   arm64: kdump: reserve crashkenel above 4G for crash dump kernel
>>   arm64: kdump: add memory for devices by DT property
>>     linux,usable-memory-range
>>   arm64: kdump: fix kdump broken with ZONE_DMA reintroduced
>>   kdump: update Documentation about crashkernel on arm64
>>
>>  Documentation/admin-guide/kdump/kdump.rst     | 14 ++-
>>  .../admin-guide/kernel-parameters.txt         | 17 +++-
>>  arch/arm64/kernel/setup.c                     |  8 +-
>>  arch/arm64/mm/init.c                          | 74 ++++++++++++---
>>  arch/x86/kernel/setup.c                       | 66 ++------------
>>  include/linux/crash_core.h                    |  3 +
>>  include/linux/kexec.h                         |  2 -
>>  kernel/crash_core.c                           | 90 +++++++++++++++++++
>>  kernel/kexec_core.c                           | 17 ----
>>  9 files changed, 197 insertions(+), 94 deletions(-)
>>
>> --
>> 2.20.1
> Thanks for the v10.
>
> 1. Seems this series is still broken on arm64 boards like ampere and
> ThunderX2 (marvell) because of the ZONE_DMA32 related OOM seen while
> booting kdump kernel.
> Here are details about my environment:
>
> - Latest upstream Linus master branch (5.8.0-rc3) + your v10 patches.
> - Latest upstream kexec-tools + your v4 patch.
>
> # dmesg | grep -i crash
> [    0.000000] crashkernel reserved: 0x00000000ca000000 -
> 0x00000000ea000000 (512 MB)
> [    0.000000] Kernel command line:
> BOOT_IMAGE=(hd13,gpt2)/vmlinuz-5.8.0-rc3+
> root=/dev/mapper/rhel_hpe--apache--cn99xx--09-root ro
> rd.lvm.lv=rhel_hpe-apache-cn99xx-09/root
> rd.lvm.lv=rhel_hpe-apache-cn99xx-09/swap crashkernel=512M
> [   58.917523]     crashkernel=512M
>
> 2. Here is the OOM crash seen while booting the kdump kernel:
>
> [    0.244724] DMA: preallocated 128 KiB GFP_KERNEL pool for atomic allocations
> [    0.251859] Unable to handle kernel NULL pointer dereference at
> virtual address 0000000000000188
> [    0.260737] Mem abort info:
> [    0.263553]   ESR = 0x96000006
> [    0.266632]   EC = 0x25: DABT (current EL), IL = 32 bits
> [    0.271994]   SET = 0, FnV = 0
> [    0.275074]   EA = 0, S1PTW = 0
> [    0.278239] Data abort info:
> [    0.281141]   ISV = 0, ISS = 0x00000006
> [    0.285010]   CM = 0, WnR = 0
> [    0.288001] [0000000000000188] user address but active_mm is swapper
> [    0.294420] Internal error: Oops: 96000006 [#1] SMP
> [    0.299344] Modules linked in:
> [    0.302424] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.8.0-rc3+ #8
> [    0.308753] Hardware name: HPE Apollo 70             /C01_APACHE_MB
>         , BIOS L50_5.13_1.11 06/18/2019
> [    0.318599] pstate: 00400009 (nzcv daif +PAN -UAO BTYPE=--)
> [    0.324228] pc : mem_cgroup_get_nr_swap_pages+0x2c/0x60
> [    0.329506] lr : shrink_lruvec+0x404/0x4f8
> [    0.333638] sp : fffffe0012b8f840
> [    0.336979] x29: fffffe0012b8f840 x28: fffffe00116b3000
> [    0.342343] x27: fffffe0012b8fb00 x26: 0000000000000020
> [    0.347707] x25: 0000000000000000 x24: fffffc0069fffe28
> [    0.353070] x23: 0000000000000000 x22: 0000000000000000
> [    0.358433] x21: 000000000000003c x20: fffffe0012b8fa98
> [    0.363796] x19: 0000000000000000 x18: 0000000000000010
> [    0.369159] x17: 00000000bd8afee8 x16: 000000001260aa76
> [    0.374523] x15: ffffffffffffffff x14: fffffe00116b3988
> [    0.379886] x13: fffffe0092b8faa7 x12: fffffe0012b8faaf
> [    0.385248] x11: fffffe00116f1000 x10: fffffe0012b8fa30
> [    0.390612] x9 : fffffe0010244ebc x8 : 0000000000000000
> [    0.395975] x7 : 0000000000000020 x6 : 00000000ffff8ae3
> [    0.401338] x5 : 0000000000000000 x4 : fffffc004da89000
> [    0.406701] x3 : 0000000000000000 x2 : 0000000000000000
> [    0.412064] x1 : fffffe00116bf000 x0 : 0000000000000000
> [    0.417427] Call trace:
> [    0.419891]  mem_cgroup_get_nr_swap_pages+0x2c/0x60
> [    0.424815]  shrink_node+0x1a8/0x688
> [    0.428420]  do_try_to_free_pages+0xe8/0x448
> [    0.432729]  try_to_free_pages+0x110/0x230
> [    0.436863]  __alloc_pages_slowpath.constprop.106+0x2b8/0xb48
> [    0.442666]  __alloc_pages_nodemask+0x2ac/0x2f8
> [    0.447239]  alloc_page_interleave+0x20/0x90
> [    0.451548]  alloc_pages_current+0xdc/0xf8
> [    0.455681]  atomic_pool_expand+0x60/0x210
> [    0.459817]  __dma_atomic_pool_init+0x50/0xa4
> [    0.464214]  dma_atomic_pool_init+0xac/0x158
> [    0.468522]  do_one_initcall+0x50/0x218
> [    0.472393]  kernel_init_freeable+0x22c/0x2d0
> [    0.476792]  kernel_init+0x18/0x110
> [    0.480310]  ret_from_fork+0x10/0x18
> [    0.483918] Code: 350001e3 d503201f f9450024 1400000a (f940c401)
> [    0.490074] ---[ end trace e5a9147af159e580 ]---
> [    0.494734] Kernel panic - not syncing: Fatal exception
> [    0.500010] Rebooting in 10 seconds..
>
> 3. Did you test your patch with a simple crashkernel=512M command line
> (without using the crashkernel hi/lo or crashkernel=X@Y format)?
>
> Anyway, since this implementation still needs rework, we can go ahead
> with the arrangement of limiting the crashkernel allocation in
> ZONE_DMA range (as I suggested in another patch series
> <http://lists.infradead.org/pipermail/kexec/2020-July/020777.html>) in
> the meanwhile. to ensure the upstream kernel can still support kdump
> on arm64 boards where it was working before the ZONE_DMA32 changes
> were introduced for arm64.
>
> Please let me know your views,
Thanks for your test and sharing your views. I have no questions about the 1 and 2 you mentioned.

I charity the issue in my patch 4 and suggest to use the parameter like
"crashkernel=X crashkernel=Y,low" if CONFIG_ZONE_DMA is enabled.
I also document this in doc in patch 5.

I choose to address the issue based on the  "reserving crashkernel above 4G",
because we just need to adjust the low memory limit instead of limiting the
whole crahshkernel to ZONE_DMA.
details: https://lkml.org/lkml/2020/7/3/64

But you are right, arm64 kdump is broken for long time, including the issue you addressed
"Append new variables to vmcoreinfo (TCR_EL1.T1SZ for arm64 and MAX_PHYSMEM_BITS for all archs)".

I agree with you to make it work as soon as possible.

Ping James, Will,
any other comments about this patch series?

Thanks,
Chen Zhou
>
> Thanks,
> Bhupesh
>
>
> .
>



WARNING: multiple messages have this Message-ID (diff)
From: chenzhou <chenzhou10@huawei.com>
To: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Simon Horman <horms@verge.net.au>,
	John Donnelly <John.P.donnelly@oracle.com>,
	xiexiuqi@huawei.com, Arnd Bergmann <arnd@arndb.de>,
	Baoquan He <bhe@redhat.com>, Jonathan Corbet <corbet@lwn.net>,
	Catalin Marinas <catalin.marinas@arm.com>,
	RuiRui Yang <dyoung@redhat.com>,
	guohanjun@huawei.com,
	Linux Kernel Mailing List <linux-kernel@vger.kernel.org>,
	Rob Herring <robh+dt@kernel.org>,
	Linux Doc Mailing List <linux-doc@vger.kernel.org>,
	Ingo Molnar <mingo@redhat.com>, James Morse <james.morse@arm.com>,
	linux-arm-kernel <linux-arm-kernel@lists.infradead.org>,
	huawei.libin@huawei.com,
	Prabhakar Kushwaha <prabhakar.pkin@gmail.com>,
	Thomas Gleixner <tglx@linutronix.de>,
	Will Deacon <will@kernel.org>,
	kexec mailing list <kexec@lists.infradead.org>,
	nsaenzjulienne@suse.de
Subject: Re: [PATCH v10 0/5] support reserving crashkernel above 4G on arm64 kdump
Date: Fri, 3 Jul 2020 16:38:15 +0800	[thread overview]
Message-ID: <989e3b4f-4827-bb0f-5c3d-d9669c081c88@huawei.com> (raw)
In-Reply-To: <CACi5LpP+kFLv97guJ126xKk4_mfy2nFMp36KnDiXxPZ1ya2jPg@mail.gmail.com>

Hi Bhupesh,


On 2020/7/3 15:26, Bhupesh Sharma wrote:
> Hi Chen,
>
> On Fri, Jul 3, 2020 at 9:24 AM Chen Zhou <chenzhou10@huawei.com> wrote:
>> This patch series enable reserving crashkernel above 4G in arm64.
>>
>> There are following issues in arm64 kdump:
>> 1. We use crashkernel=X to reserve crashkernel below 4G, which will fail
>> when there is no enough low memory.
>> 2. Currently, crashkernel=Y@X can be used to reserve crashkernel above 4G,
>> in this case, if swiotlb or DMA buffers are required, crash dump kernel
>> will boot failure because there is no low memory available for allocation.
>> 3. commit 1a8e1cef7603 ("arm64: use both ZONE_DMA and ZONE_DMA32") broken
>> the arm64 kdump. If the memory reserved for crash dump kernel falled in
>> ZONE_DMA32, the devices in crash dump kernel need to use ZONE_DMA will alloc
>> fail.
>>
>> To solve these issues, introduce crashkernel=X,low to reserve specified
>> size low memory.
>> Crashkernel=X tries to reserve memory for the crash dump kernel under
>> 4G. If crashkernel=Y,low is specified simultaneously, reserve spcified
>> size low memory for crash kdump kernel devices firstly and then reserve
>> memory above 4G.
>>
>> When crashkernel is reserved above 4G in memory and crashkernel=X,low
>> is specified simultaneously, kernel should reserve specified size low memory
>> for crash dump kernel devices. So there may be two crash kernel regions, one
>> is below 4G, the other is above 4G.
>> In order to distinct from the high region and make no effect to the use of
>> kexec-tools, rename the low region as "Crash kernel (low)", and pass the
>> low region by reusing DT property "linux,usable-memory-range". We made the low
>> memory region as the last range of "linux,usable-memory-range" to keep
>> compatibility with existing user-space and older kdump kernels.
>>
>> Besides, we need to modify kexec-tools:
>> arm64: support more than one crash kernel regions(see [1])
>>
>> Another update is document about DT property 'linux,usable-memory-range':
>> schemas: update 'linux,usable-memory-range' node schema(see [2])
>>
>> The previous changes and discussions can be retrieved from:
>>
>> Changes since [v9]
>> - Patch 1 add Acked-by from Dave.
>> - Update patch 5 according to Dave's comments.
>> - Update chosen schema.
>>
>> Changes since [v8]
>> - Reuse DT property "linux,usable-memory-range".
>> Suggested by Rob, reuse DT property "linux,usable-memory-range" to pass the low
>> memory region.
>> - Fix kdump broken with ZONE_DMA reintroduced.
>> - Update chosen schema.
>>
>> Changes since [v7]
>> - Move x86 CRASH_ALIGN to 2M
>> Suggested by Dave and do some test, move x86 CRASH_ALIGN to 2M.
>> - Update Documentation/devicetree/bindings/chosen.txt.
>> Add corresponding documentation to Documentation/devicetree/bindings/chosen.txt
>> suggested by Arnd.
>> - Add Tested-by from Jhon and pk.
>>
>> Changes since [v6]
>> - Fix build errors reported by kbuild test robot.
>>
>> Changes since [v5]
>> - Move reserve_crashkernel_low() into kernel/crash_core.c.
>> - Delete crashkernel=X,high.
>> - Modify crashkernel=X,low.
>> If crashkernel=X,low is specified simultaneously, reserve spcified size low
>> memory for crash kdump kernel devices firstly and then reserve memory above 4G.
>> In addition, rename crashk_low_res as "Crash kernel (low)" for arm64, and then
>> pass to crash dump kernel by DT property "linux,low-memory-range".
>> - Update Documentation/admin-guide/kdump/kdump.rst.
>>
>> Changes since [v4]
>> - Reimplement memblock_cap_memory_ranges for multiple ranges by Mike.
>>
>> Changes since [v3]
>> - Add memblock_cap_memory_ranges back for multiple ranges.
>> - Fix some compiling warnings.
>>
>> Changes since [v2]
>> - Split patch "arm64: kdump: support reserving crashkernel above 4G" as
>> two. Put "move reserve_crashkernel_low() into kexec_core.c" in a separate
>> patch.
>>
>> Changes since [v1]:
>> - Move common reserve_crashkernel_low() code into kernel/kexec_core.c.
>> - Remove memblock_cap_memory_ranges() i added in v1 and implement that
>> in fdt_enforce_memory_region().
>> There are at most two crash kernel regions, for two crash kernel regions
>> case, we cap the memory range [min(regs[*].start), max(regs[*].end)]
>> and then remove the memory range in the middle.
>>
>> [1]: http://lists.infradead.org/pipermail/kexec/2020-June/020737.html
>> [2]: https://github.com/robherring/dt-schema/pull/19
>> [v1]: https://lkml.org/lkml/2019/4/2/1174
>> [v2]: https://lkml.org/lkml/2019/4/9/86
>> [v3]: https://lkml.org/lkml/2019/4/9/306
>> [v4]: https://lkml.org/lkml/2019/4/15/273
>> [v5]: https://lkml.org/lkml/2019/5/6/1360
>> [v6]: https://lkml.org/lkml/2019/8/30/142
>> [v7]: https://lkml.org/lkml/2019/12/23/411
>> [v8]: https://lkml.org/lkml/2020/5/21/213
>> [v9]: https://lkml.org/lkml/2020/6/28/73
>>
>> Chen Zhou (5):
>>   x86: kdump: move reserve_crashkernel_low() into crash_core.c
>>   arm64: kdump: reserve crashkenel above 4G for crash dump kernel
>>   arm64: kdump: add memory for devices by DT property
>>     linux,usable-memory-range
>>   arm64: kdump: fix kdump broken with ZONE_DMA reintroduced
>>   kdump: update Documentation about crashkernel on arm64
>>
>>  Documentation/admin-guide/kdump/kdump.rst     | 14 ++-
>>  .../admin-guide/kernel-parameters.txt         | 17 +++-
>>  arch/arm64/kernel/setup.c                     |  8 +-
>>  arch/arm64/mm/init.c                          | 74 ++++++++++++---
>>  arch/x86/kernel/setup.c                       | 66 ++------------
>>  include/linux/crash_core.h                    |  3 +
>>  include/linux/kexec.h                         |  2 -
>>  kernel/crash_core.c                           | 90 +++++++++++++++++++
>>  kernel/kexec_core.c                           | 17 ----
>>  9 files changed, 197 insertions(+), 94 deletions(-)
>>
>> --
>> 2.20.1
> Thanks for the v10.
>
> 1. Seems this series is still broken on arm64 boards like ampere and
> ThunderX2 (marvell) because of the ZONE_DMA32 related OOM seen while
> booting kdump kernel.
> Here are details about my environment:
>
> - Latest upstream Linus master branch (5.8.0-rc3) + your v10 patches.
> - Latest upstream kexec-tools + your v4 patch.
>
> # dmesg | grep -i crash
> [    0.000000] crashkernel reserved: 0x00000000ca000000 -
> 0x00000000ea000000 (512 MB)
> [    0.000000] Kernel command line:
> BOOT_IMAGE=(hd13,gpt2)/vmlinuz-5.8.0-rc3+
> root=/dev/mapper/rhel_hpe--apache--cn99xx--09-root ro
> rd.lvm.lv=rhel_hpe-apache-cn99xx-09/root
> rd.lvm.lv=rhel_hpe-apache-cn99xx-09/swap crashkernel=512M
> [   58.917523]     crashkernel=512M
>
> 2. Here is the OOM crash seen while booting the kdump kernel:
>
> [    0.244724] DMA: preallocated 128 KiB GFP_KERNEL pool for atomic allocations
> [    0.251859] Unable to handle kernel NULL pointer dereference at
> virtual address 0000000000000188
> [    0.260737] Mem abort info:
> [    0.263553]   ESR = 0x96000006
> [    0.266632]   EC = 0x25: DABT (current EL), IL = 32 bits
> [    0.271994]   SET = 0, FnV = 0
> [    0.275074]   EA = 0, S1PTW = 0
> [    0.278239] Data abort info:
> [    0.281141]   ISV = 0, ISS = 0x00000006
> [    0.285010]   CM = 0, WnR = 0
> [    0.288001] [0000000000000188] user address but active_mm is swapper
> [    0.294420] Internal error: Oops: 96000006 [#1] SMP
> [    0.299344] Modules linked in:
> [    0.302424] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.8.0-rc3+ #8
> [    0.308753] Hardware name: HPE Apollo 70             /C01_APACHE_MB
>         , BIOS L50_5.13_1.11 06/18/2019
> [    0.318599] pstate: 00400009 (nzcv daif +PAN -UAO BTYPE=--)
> [    0.324228] pc : mem_cgroup_get_nr_swap_pages+0x2c/0x60
> [    0.329506] lr : shrink_lruvec+0x404/0x4f8
> [    0.333638] sp : fffffe0012b8f840
> [    0.336979] x29: fffffe0012b8f840 x28: fffffe00116b3000
> [    0.342343] x27: fffffe0012b8fb00 x26: 0000000000000020
> [    0.347707] x25: 0000000000000000 x24: fffffc0069fffe28
> [    0.353070] x23: 0000000000000000 x22: 0000000000000000
> [    0.358433] x21: 000000000000003c x20: fffffe0012b8fa98
> [    0.363796] x19: 0000000000000000 x18: 0000000000000010
> [    0.369159] x17: 00000000bd8afee8 x16: 000000001260aa76
> [    0.374523] x15: ffffffffffffffff x14: fffffe00116b3988
> [    0.379886] x13: fffffe0092b8faa7 x12: fffffe0012b8faaf
> [    0.385248] x11: fffffe00116f1000 x10: fffffe0012b8fa30
> [    0.390612] x9 : fffffe0010244ebc x8 : 0000000000000000
> [    0.395975] x7 : 0000000000000020 x6 : 00000000ffff8ae3
> [    0.401338] x5 : 0000000000000000 x4 : fffffc004da89000
> [    0.406701] x3 : 0000000000000000 x2 : 0000000000000000
> [    0.412064] x1 : fffffe00116bf000 x0 : 0000000000000000
> [    0.417427] Call trace:
> [    0.419891]  mem_cgroup_get_nr_swap_pages+0x2c/0x60
> [    0.424815]  shrink_node+0x1a8/0x688
> [    0.428420]  do_try_to_free_pages+0xe8/0x448
> [    0.432729]  try_to_free_pages+0x110/0x230
> [    0.436863]  __alloc_pages_slowpath.constprop.106+0x2b8/0xb48
> [    0.442666]  __alloc_pages_nodemask+0x2ac/0x2f8
> [    0.447239]  alloc_page_interleave+0x20/0x90
> [    0.451548]  alloc_pages_current+0xdc/0xf8
> [    0.455681]  atomic_pool_expand+0x60/0x210
> [    0.459817]  __dma_atomic_pool_init+0x50/0xa4
> [    0.464214]  dma_atomic_pool_init+0xac/0x158
> [    0.468522]  do_one_initcall+0x50/0x218
> [    0.472393]  kernel_init_freeable+0x22c/0x2d0
> [    0.476792]  kernel_init+0x18/0x110
> [    0.480310]  ret_from_fork+0x10/0x18
> [    0.483918] Code: 350001e3 d503201f f9450024 1400000a (f940c401)
> [    0.490074] ---[ end trace e5a9147af159e580 ]---
> [    0.494734] Kernel panic - not syncing: Fatal exception
> [    0.500010] Rebooting in 10 seconds..
>
> 3. Did you test your patch with a simple crashkernel=512M command line
> (without using the crashkernel hi/lo or crashkernel=X@Y format)?
>
> Anyway, since this implementation still needs rework, we can go ahead
> with the arrangement of limiting the crashkernel allocation in
> ZONE_DMA range (as I suggested in another patch series
> <http://lists.infradead.org/pipermail/kexec/2020-July/020777.html>) in
> the meanwhile. to ensure the upstream kernel can still support kdump
> on arm64 boards where it was working before the ZONE_DMA32 changes
> were introduced for arm64.
>
> Please let me know your views,
Thanks for your test and sharing your views. I have no questions about the 1 and 2 you mentioned.

I charity the issue in my patch 4 and suggest to use the parameter like
"crashkernel=X crashkernel=Y,low" if CONFIG_ZONE_DMA is enabled.
I also document this in doc in patch 5.

I choose to address the issue based on the  "reserving crashkernel above 4G",
because we just need to adjust the low memory limit instead of limiting the
whole crahshkernel to ZONE_DMA.
details: https://lkml.org/lkml/2020/7/3/64

But you are right, arm64 kdump is broken for long time, including the issue you addressed
"Append new variables to vmcoreinfo (TCR_EL1.T1SZ for arm64 and MAX_PHYSMEM_BITS for all archs)".

I agree with you to make it work as soon as possible.

Ping James, Will,
any other comments about this patch series?

Thanks,
Chen Zhou
>
> Thanks,
> Bhupesh
>
>
> .
>



_______________________________________________
linux-arm-kernel mailing list
linux-arm-kernel@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/linux-arm-kernel

WARNING: multiple messages have this Message-ID (diff)
From: chenzhou <chenzhou10@huawei.com>
To: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Simon Horman <horms@verge.net.au>,
	John Donnelly <John.P.donnelly@oracle.com>,
	xiexiuqi@huawei.com, Arnd Bergmann <arnd@arndb.de>,
	Baoquan He <bhe@redhat.com>, Jonathan Corbet <corbet@lwn.net>,
	Catalin Marinas <catalin.marinas@arm.com>,
	RuiRui Yang <dyoung@redhat.com>,
	guohanjun@huawei.com,
	Linux Kernel Mailing List <linux-kernel@vger.kernel.org>,
	Rob Herring <robh+dt@kernel.org>,
	Linux Doc Mailing List <linux-doc@vger.kernel.org>,
	Ingo Molnar <mingo@redhat.com>, James Morse <james.morse@arm.com>,
	linux-arm-kernel <linux-arm-kernel@lists.infradead.org>,
	huawei.libin@huawei.com,
	Prabhakar Kushwaha <prabhakar.pkin@gmail.com>,
	Thomas Gleixner <tglx@linutronix.de>,
	Will Deacon <will@kernel.org>,
	kexec mailing list <kexec@lists.infradead.org>,
	nsaenzjulienne@suse.de
Subject: Re: [PATCH v10 0/5] support reserving crashkernel above 4G on arm64 kdump
Date: Fri, 3 Jul 2020 16:38:15 +0800	[thread overview]
Message-ID: <989e3b4f-4827-bb0f-5c3d-d9669c081c88@huawei.com> (raw)
In-Reply-To: <CACi5LpP+kFLv97guJ126xKk4_mfy2nFMp36KnDiXxPZ1ya2jPg@mail.gmail.com>

Hi Bhupesh,


On 2020/7/3 15:26, Bhupesh Sharma wrote:
> Hi Chen,
>
> On Fri, Jul 3, 2020 at 9:24 AM Chen Zhou <chenzhou10@huawei.com> wrote:
>> This patch series enable reserving crashkernel above 4G in arm64.
>>
>> There are following issues in arm64 kdump:
>> 1. We use crashkernel=X to reserve crashkernel below 4G, which will fail
>> when there is no enough low memory.
>> 2. Currently, crashkernel=Y@X can be used to reserve crashkernel above 4G,
>> in this case, if swiotlb or DMA buffers are required, crash dump kernel
>> will boot failure because there is no low memory available for allocation.
>> 3. commit 1a8e1cef7603 ("arm64: use both ZONE_DMA and ZONE_DMA32") broken
>> the arm64 kdump. If the memory reserved for crash dump kernel falled in
>> ZONE_DMA32, the devices in crash dump kernel need to use ZONE_DMA will alloc
>> fail.
>>
>> To solve these issues, introduce crashkernel=X,low to reserve specified
>> size low memory.
>> Crashkernel=X tries to reserve memory for the crash dump kernel under
>> 4G. If crashkernel=Y,low is specified simultaneously, reserve spcified
>> size low memory for crash kdump kernel devices firstly and then reserve
>> memory above 4G.
>>
>> When crashkernel is reserved above 4G in memory and crashkernel=X,low
>> is specified simultaneously, kernel should reserve specified size low memory
>> for crash dump kernel devices. So there may be two crash kernel regions, one
>> is below 4G, the other is above 4G.
>> In order to distinct from the high region and make no effect to the use of
>> kexec-tools, rename the low region as "Crash kernel (low)", and pass the
>> low region by reusing DT property "linux,usable-memory-range". We made the low
>> memory region as the last range of "linux,usable-memory-range" to keep
>> compatibility with existing user-space and older kdump kernels.
>>
>> Besides, we need to modify kexec-tools:
>> arm64: support more than one crash kernel regions(see [1])
>>
>> Another update is document about DT property 'linux,usable-memory-range':
>> schemas: update 'linux,usable-memory-range' node schema(see [2])
>>
>> The previous changes and discussions can be retrieved from:
>>
>> Changes since [v9]
>> - Patch 1 add Acked-by from Dave.
>> - Update patch 5 according to Dave's comments.
>> - Update chosen schema.
>>
>> Changes since [v8]
>> - Reuse DT property "linux,usable-memory-range".
>> Suggested by Rob, reuse DT property "linux,usable-memory-range" to pass the low
>> memory region.
>> - Fix kdump broken with ZONE_DMA reintroduced.
>> - Update chosen schema.
>>
>> Changes since [v7]
>> - Move x86 CRASH_ALIGN to 2M
>> Suggested by Dave and do some test, move x86 CRASH_ALIGN to 2M.
>> - Update Documentation/devicetree/bindings/chosen.txt.
>> Add corresponding documentation to Documentation/devicetree/bindings/chosen.txt
>> suggested by Arnd.
>> - Add Tested-by from Jhon and pk.
>>
>> Changes since [v6]
>> - Fix build errors reported by kbuild test robot.
>>
>> Changes since [v5]
>> - Move reserve_crashkernel_low() into kernel/crash_core.c.
>> - Delete crashkernel=X,high.
>> - Modify crashkernel=X,low.
>> If crashkernel=X,low is specified simultaneously, reserve spcified size low
>> memory for crash kdump kernel devices firstly and then reserve memory above 4G.
>> In addition, rename crashk_low_res as "Crash kernel (low)" for arm64, and then
>> pass to crash dump kernel by DT property "linux,low-memory-range".
>> - Update Documentation/admin-guide/kdump/kdump.rst.
>>
>> Changes since [v4]
>> - Reimplement memblock_cap_memory_ranges for multiple ranges by Mike.
>>
>> Changes since [v3]
>> - Add memblock_cap_memory_ranges back for multiple ranges.
>> - Fix some compiling warnings.
>>
>> Changes since [v2]
>> - Split patch "arm64: kdump: support reserving crashkernel above 4G" as
>> two. Put "move reserve_crashkernel_low() into kexec_core.c" in a separate
>> patch.
>>
>> Changes since [v1]:
>> - Move common reserve_crashkernel_low() code into kernel/kexec_core.c.
>> - Remove memblock_cap_memory_ranges() i added in v1 and implement that
>> in fdt_enforce_memory_region().
>> There are at most two crash kernel regions, for two crash kernel regions
>> case, we cap the memory range [min(regs[*].start), max(regs[*].end)]
>> and then remove the memory range in the middle.
>>
>> [1]: http://lists.infradead.org/pipermail/kexec/2020-June/020737.html
>> [2]: https://github.com/robherring/dt-schema/pull/19
>> [v1]: https://lkml.org/lkml/2019/4/2/1174
>> [v2]: https://lkml.org/lkml/2019/4/9/86
>> [v3]: https://lkml.org/lkml/2019/4/9/306
>> [v4]: https://lkml.org/lkml/2019/4/15/273
>> [v5]: https://lkml.org/lkml/2019/5/6/1360
>> [v6]: https://lkml.org/lkml/2019/8/30/142
>> [v7]: https://lkml.org/lkml/2019/12/23/411
>> [v8]: https://lkml.org/lkml/2020/5/21/213
>> [v9]: https://lkml.org/lkml/2020/6/28/73
>>
>> Chen Zhou (5):
>>   x86: kdump: move reserve_crashkernel_low() into crash_core.c
>>   arm64: kdump: reserve crashkenel above 4G for crash dump kernel
>>   arm64: kdump: add memory for devices by DT property
>>     linux,usable-memory-range
>>   arm64: kdump: fix kdump broken with ZONE_DMA reintroduced
>>   kdump: update Documentation about crashkernel on arm64
>>
>>  Documentation/admin-guide/kdump/kdump.rst     | 14 ++-
>>  .../admin-guide/kernel-parameters.txt         | 17 +++-
>>  arch/arm64/kernel/setup.c                     |  8 +-
>>  arch/arm64/mm/init.c                          | 74 ++++++++++++---
>>  arch/x86/kernel/setup.c                       | 66 ++------------
>>  include/linux/crash_core.h                    |  3 +
>>  include/linux/kexec.h                         |  2 -
>>  kernel/crash_core.c                           | 90 +++++++++++++++++++
>>  kernel/kexec_core.c                           | 17 ----
>>  9 files changed, 197 insertions(+), 94 deletions(-)
>>
>> --
>> 2.20.1
> Thanks for the v10.
>
> 1. Seems this series is still broken on arm64 boards like ampere and
> ThunderX2 (marvell) because of the ZONE_DMA32 related OOM seen while
> booting kdump kernel.
> Here are details about my environment:
>
> - Latest upstream Linus master branch (5.8.0-rc3) + your v10 patches.
> - Latest upstream kexec-tools + your v4 patch.
>
> # dmesg | grep -i crash
> [    0.000000] crashkernel reserved: 0x00000000ca000000 -
> 0x00000000ea000000 (512 MB)
> [    0.000000] Kernel command line:
> BOOT_IMAGE=(hd13,gpt2)/vmlinuz-5.8.0-rc3+
> root=/dev/mapper/rhel_hpe--apache--cn99xx--09-root ro
> rd.lvm.lv=rhel_hpe-apache-cn99xx-09/root
> rd.lvm.lv=rhel_hpe-apache-cn99xx-09/swap crashkernel=512M
> [   58.917523]     crashkernel=512M
>
> 2. Here is the OOM crash seen while booting the kdump kernel:
>
> [    0.244724] DMA: preallocated 128 KiB GFP_KERNEL pool for atomic allocations
> [    0.251859] Unable to handle kernel NULL pointer dereference at
> virtual address 0000000000000188
> [    0.260737] Mem abort info:
> [    0.263553]   ESR = 0x96000006
> [    0.266632]   EC = 0x25: DABT (current EL), IL = 32 bits
> [    0.271994]   SET = 0, FnV = 0
> [    0.275074]   EA = 0, S1PTW = 0
> [    0.278239] Data abort info:
> [    0.281141]   ISV = 0, ISS = 0x00000006
> [    0.285010]   CM = 0, WnR = 0
> [    0.288001] [0000000000000188] user address but active_mm is swapper
> [    0.294420] Internal error: Oops: 96000006 [#1] SMP
> [    0.299344] Modules linked in:
> [    0.302424] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.8.0-rc3+ #8
> [    0.308753] Hardware name: HPE Apollo 70             /C01_APACHE_MB
>         , BIOS L50_5.13_1.11 06/18/2019
> [    0.318599] pstate: 00400009 (nzcv daif +PAN -UAO BTYPE=--)
> [    0.324228] pc : mem_cgroup_get_nr_swap_pages+0x2c/0x60
> [    0.329506] lr : shrink_lruvec+0x404/0x4f8
> [    0.333638] sp : fffffe0012b8f840
> [    0.336979] x29: fffffe0012b8f840 x28: fffffe00116b3000
> [    0.342343] x27: fffffe0012b8fb00 x26: 0000000000000020
> [    0.347707] x25: 0000000000000000 x24: fffffc0069fffe28
> [    0.353070] x23: 0000000000000000 x22: 0000000000000000
> [    0.358433] x21: 000000000000003c x20: fffffe0012b8fa98
> [    0.363796] x19: 0000000000000000 x18: 0000000000000010
> [    0.369159] x17: 00000000bd8afee8 x16: 000000001260aa76
> [    0.374523] x15: ffffffffffffffff x14: fffffe00116b3988
> [    0.379886] x13: fffffe0092b8faa7 x12: fffffe0012b8faaf
> [    0.385248] x11: fffffe00116f1000 x10: fffffe0012b8fa30
> [    0.390612] x9 : fffffe0010244ebc x8 : 0000000000000000
> [    0.395975] x7 : 0000000000000020 x6 : 00000000ffff8ae3
> [    0.401338] x5 : 0000000000000000 x4 : fffffc004da89000
> [    0.406701] x3 : 0000000000000000 x2 : 0000000000000000
> [    0.412064] x1 : fffffe00116bf000 x0 : 0000000000000000
> [    0.417427] Call trace:
> [    0.419891]  mem_cgroup_get_nr_swap_pages+0x2c/0x60
> [    0.424815]  shrink_node+0x1a8/0x688
> [    0.428420]  do_try_to_free_pages+0xe8/0x448
> [    0.432729]  try_to_free_pages+0x110/0x230
> [    0.436863]  __alloc_pages_slowpath.constprop.106+0x2b8/0xb48
> [    0.442666]  __alloc_pages_nodemask+0x2ac/0x2f8
> [    0.447239]  alloc_page_interleave+0x20/0x90
> [    0.451548]  alloc_pages_current+0xdc/0xf8
> [    0.455681]  atomic_pool_expand+0x60/0x210
> [    0.459817]  __dma_atomic_pool_init+0x50/0xa4
> [    0.464214]  dma_atomic_pool_init+0xac/0x158
> [    0.468522]  do_one_initcall+0x50/0x218
> [    0.472393]  kernel_init_freeable+0x22c/0x2d0
> [    0.476792]  kernel_init+0x18/0x110
> [    0.480310]  ret_from_fork+0x10/0x18
> [    0.483918] Code: 350001e3 d503201f f9450024 1400000a (f940c401)
> [    0.490074] ---[ end trace e5a9147af159e580 ]---
> [    0.494734] Kernel panic - not syncing: Fatal exception
> [    0.500010] Rebooting in 10 seconds..
>
> 3. Did you test your patch with a simple crashkernel=512M command line
> (without using the crashkernel hi/lo or crashkernel=X@Y format)?
>
> Anyway, since this implementation still needs rework, we can go ahead
> with the arrangement of limiting the crashkernel allocation in
> ZONE_DMA range (as I suggested in another patch series
> <http://lists.infradead.org/pipermail/kexec/2020-July/020777.html>) in
> the meanwhile. to ensure the upstream kernel can still support kdump
> on arm64 boards where it was working before the ZONE_DMA32 changes
> were introduced for arm64.
>
> Please let me know your views,
Thanks for your test and sharing your views. I have no questions about the 1 and 2 you mentioned.

I charity the issue in my patch 4 and suggest to use the parameter like
"crashkernel=X crashkernel=Y,low" if CONFIG_ZONE_DMA is enabled.
I also document this in doc in patch 5.

I choose to address the issue based on the  "reserving crashkernel above 4G",
because we just need to adjust the low memory limit instead of limiting the
whole crahshkernel to ZONE_DMA.
details: https://lkml.org/lkml/2020/7/3/64

But you are right, arm64 kdump is broken for long time, including the issue you addressed
"Append new variables to vmcoreinfo (TCR_EL1.T1SZ for arm64 and MAX_PHYSMEM_BITS for all archs)".

I agree with you to make it work as soon as possible.

Ping James, Will,
any other comments about this patch series?

Thanks,
Chen Zhou
>
> Thanks,
> Bhupesh
>
>
> .
>



_______________________________________________
kexec mailing list
kexec@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/kexec

  reply	other threads:[~2020-07-03  8:38 UTC|newest]

Thread overview: 54+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2020-07-03  3:58 [PATCH v10 0/5] support reserving crashkernel above 4G on arm64 kdump Chen Zhou
2020-07-03  3:58 ` Chen Zhou
2020-07-03  3:58 ` Chen Zhou
2020-07-03  3:58 ` [PATCH v10 1/5] x86: kdump: move reserve_crashkernel_low() into crash_core.c Chen Zhou
2020-07-03  3:58   ` Chen Zhou
2020-07-03  3:58   ` Chen Zhou
2020-07-03  3:58 ` [PATCH v10 2/5] arm64: kdump: reserve crashkenel above 4G for crash dump kernel Chen Zhou
2020-07-03  3:58   ` Chen Zhou
2020-07-03  3:58   ` Chen Zhou
2020-07-03  3:58 ` [PATCH v10 3/5] arm64: kdump: add memory for devices by DT property linux,usable-memory-range Chen Zhou
2020-07-03  3:58   ` [PATCH v10 3/5] arm64: kdump: add memory for devices by DT property linux, usable-memory-range Chen Zhou
2020-07-03  3:58   ` Chen Zhou
2020-07-03  3:58 ` [PATCH v10 4/5] arm64: kdump: fix kdump broken with ZONE_DMA reintroduced Chen Zhou
2020-07-03  3:58   ` Chen Zhou
2020-07-03  3:58   ` Chen Zhou
2020-07-27 17:30   ` Catalin Marinas
2020-07-27 17:30     ` Catalin Marinas
2020-07-27 17:30     ` Catalin Marinas
2020-07-29  3:52     ` chenzhou
2020-07-29  3:52       ` chenzhou
2020-07-29  3:52       ` chenzhou
2020-07-29 11:58       ` Catalin Marinas
2020-07-29 11:58         ` Catalin Marinas
2020-07-29 11:58         ` Catalin Marinas
2020-07-29 14:14         ` chenzhou
2020-07-29 14:14           ` chenzhou
2020-07-29 14:14           ` chenzhou
2020-07-29 15:20           ` Catalin Marinas
2020-07-29 15:20             ` Catalin Marinas
2020-07-29 15:20             ` Catalin Marinas
2020-07-30  8:22             ` chenzhou
2020-07-30  8:22               ` chenzhou
2020-07-30  8:22               ` chenzhou
2020-07-03  3:58 ` [PATCH v10 5/5] kdump: update Documentation about crashkernel on arm64 Chen Zhou
2020-07-03  3:58   ` Chen Zhou
2020-07-03  3:58   ` Chen Zhou
2020-07-03  4:46   ` Dave Young
2020-07-03  4:46     ` Dave Young
2020-07-03  4:46     ` Dave Young
2020-07-03  4:50     ` Dave Young
2020-07-03  4:50       ` Dave Young
2020-07-03  4:50       ` Dave Young
2020-07-03  9:11       ` Dave Young
2020-07-03  9:11         ` Dave Young
2020-07-03  9:11         ` Dave Young
2020-07-03  7:26 ` [PATCH v10 0/5] support reserving crashkernel above 4G on arm64 kdump Bhupesh Sharma
2020-07-03  7:26   ` Bhupesh Sharma
2020-07-03  7:26   ` Bhupesh Sharma
2020-07-03  8:38   ` chenzhou [this message]
2020-07-03  8:38     ` chenzhou
2020-07-03  8:38     ` chenzhou
2020-07-27 12:38     ` John Donnelly
2020-07-27 12:38       ` John Donnelly
2020-07-27 12:38       ` John Donnelly

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=989e3b4f-4827-bb0f-5c3d-d9669c081c88@huawei.com \
    --to=chenzhou10@huawei.com \
    --cc=John.P.donnelly@oracle.com \
    --cc=arnd@arndb.de \
    --cc=bhe@redhat.com \
    --cc=bhsharma@redhat.com \
    --cc=catalin.marinas@arm.com \
    --cc=corbet@lwn.net \
    --cc=dyoung@redhat.com \
    --cc=guohanjun@huawei.com \
    --cc=horms@verge.net.au \
    --cc=huawei.libin@huawei.com \
    --cc=james.morse@arm.com \
    --cc=kexec@lists.infradead.org \
    --cc=linux-arm-kernel@lists.infradead.org \
    --cc=linux-doc@vger.kernel.org \
    --cc=linux-kernel@vger.kernel.org \
    --cc=mingo@redhat.com \
    --cc=nsaenzjulienne@suse.de \
    --cc=prabhakar.pkin@gmail.com \
    --cc=robh+dt@kernel.org \
    --cc=tglx@linutronix.de \
    --cc=will@kernel.org \
    --cc=xiexiuqi@huawei.com \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.