All of lore.kernel.org
 help / color / mirror / Atom feed
From: Ard Biesheuvel <ard.biesheuvel@linaro.org>
To: Eric Biggers <ebiggers@google.com>
Cc: "open list:HARDWARE RANDOM NUMBER GENERATOR CORE"
	<linux-crypto@vger.kernel.org>,
	Herbert Xu <herbert@gondor.apana.org.au>,
	linux-fscrypt@vger.kernel.org,
	linux-arm-kernel <linux-arm-kernel@lists.infradead.org>,
	Jeffrey Walton <noloader@gmail.com>,
	Paul Crowley <paulcrowley@google.com>,
	Patrik Torstensson <totte@google.com>,
	Greg Kaiser <gkaiser@google.com>,
	Paul Lawrence <paullawrence@google.com>,
	Michael Halcrow <mhalcrow@google.com>,
	Alex Cope <alexcope@google.com>,
	Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Subject: Re: [PATCH v2 3/5] crypto: arm/speck - add NEON-accelerated implementation of Speck-XTS
Date: Tue, 13 Feb 2018 11:34:36 +0000	[thread overview]
Message-ID: <CAKv+Gu83C_AsxrL_PzJowTUeE=ba8PBHT6NmiWjVghtJM7p_nw@mail.gmail.com> (raw)
In-Reply-To: <20180212235209.117393-4-ebiggers@google.com>

Hi Eric,

On 12 February 2018 at 23:52, Eric Biggers <ebiggers@google.com> wrote:
> Add an ARM NEON-accelerated implementation of Speck-XTS.  It operates on
> 128-byte chunks at a time, i.e. 8 blocks for Speck128 or 16 blocks for
> Speck64.  Each 128-byte chunk goes through XTS preprocessing, then is
> encrypted/decrypted (doing one cipher round for all the blocks, then the
> next round, etc.), then goes through XTS postprocessing.
>
> The performance depends on the processor but can be about 3 times faster
> than the generic code.  For example, on an ARMv7 processor we observe
> the following performance with Speck128/256-XTS:
>
>     xts-speck128-neon:     Encryption 107.9 MB/s, Decryption 108.1 MB/s
>     xts(speck128-generic): Encryption  32.1 MB/s, Decryption  36.6 MB/s
>
> In comparison to AES-256-XTS without the Cryptography Extensions:
>
>     xts-aes-neonbs:        Encryption  41.2 MB/s, Decryption  36.7 MB/s
>     xts(aes-asm):          Encryption  31.7 MB/s, Decryption  30.8 MB/s
>     xts(aes-generic):      Encryption  21.2 MB/s, Decryption  20.9 MB/s
>
> Speck64/128-XTS is even faster:
>
>     xts-speck64-neon:      Encryption 138.6 MB/s, Decryption 139.1 MB/s
>
> Note that as with the generic code, only the Speck128 and Speck64
> variants are supported.  Also, for now only the XTS mode of operation is
> supported, to target the disk and file encryption use cases.  The NEON
> code also only handles the portion of the data that is evenly divisible
> into 128-byte chunks, with any remainder handled by a C fallback.  Of
> course, other modes of operation could be added later if needed, and/or
> the NEON code could be updated to handle other buffer sizes.
>
> The XTS specification is only defined for AES which has a 128-bit block
> size, so for the GF(2^64) math needed for Speck64-XTS we use the
> reducing polynomial 'x^64 + x^4 + x^3 + x + 1' given by the original XEX
> paper.  Of course, when possible users should use Speck128-XTS, but even
> that may be too slow on some processors; Speck64-XTS can be faster.
>

I think this is excellent work. Speck seems an appropriate solution to
this problem, and I'm glad we are not ending up with a stream cipher
for block encryption.

Also, I think an arm64 port would be nice. I may take a stab at this
if nobody else beats me to it.

I did run into an issue with this code though: On big-endian, I get

[    0.272381] alg: skcipher: Test 1 failed (invalid result) on
encryption for xts-speck64-neon
[    0.276151] 00000000: 84 af 54 07 19 d4 7c a6 9c 8a ac f6 c2 14 04 d8
[    0.278541] 00000010: 7f 18 6c 43 56 ed 0b b3 92 21 a2 d9 17 59 e4 3b

so there may be a byte order corner case you missed in the rewrite (or
the issue existed before, as I did not test your v1)

-- 
Ard.


> Signed-off-by: Eric Biggers <ebiggers@google.com>
> ---
>  arch/arm/crypto/Kconfig           |   6 +
>  arch/arm/crypto/Makefile          |   2 +
>  arch/arm/crypto/speck-neon-core.S | 432 ++++++++++++++++++++++++++++++++++++++
>  arch/arm/crypto/speck-neon-glue.c | 290 +++++++++++++++++++++++++
>  4 files changed, 730 insertions(+)
>  create mode 100644 arch/arm/crypto/speck-neon-core.S
>  create mode 100644 arch/arm/crypto/speck-neon-glue.c
>
> diff --git a/arch/arm/crypto/Kconfig b/arch/arm/crypto/Kconfig
> index b8e69fe282b8..925d1364727a 100644
> --- a/arch/arm/crypto/Kconfig
> +++ b/arch/arm/crypto/Kconfig
> @@ -121,4 +121,10 @@ config CRYPTO_CHACHA20_NEON
>         select CRYPTO_BLKCIPHER
>         select CRYPTO_CHACHA20
>
> +config CRYPTO_SPECK_NEON
> +       tristate "NEON accelerated Speck cipher algorithms"
> +       depends on KERNEL_MODE_NEON
> +       select CRYPTO_BLKCIPHER
> +       select CRYPTO_SPECK
> +
>  endif
> diff --git a/arch/arm/crypto/Makefile b/arch/arm/crypto/Makefile
> index 30ef8e291271..a758107c5525 100644
> --- a/arch/arm/crypto/Makefile
> +++ b/arch/arm/crypto/Makefile
> @@ -10,6 +10,7 @@ obj-$(CONFIG_CRYPTO_SHA1_ARM_NEON) += sha1-arm-neon.o
>  obj-$(CONFIG_CRYPTO_SHA256_ARM) += sha256-arm.o
>  obj-$(CONFIG_CRYPTO_SHA512_ARM) += sha512-arm.o
>  obj-$(CONFIG_CRYPTO_CHACHA20_NEON) += chacha20-neon.o
> +obj-$(CONFIG_CRYPTO_SPECK_NEON) += speck-neon.o
>
>  ce-obj-$(CONFIG_CRYPTO_AES_ARM_CE) += aes-arm-ce.o
>  ce-obj-$(CONFIG_CRYPTO_SHA1_ARM_CE) += sha1-arm-ce.o
> @@ -53,6 +54,7 @@ ghash-arm-ce-y        := ghash-ce-core.o ghash-ce-glue.o
>  crct10dif-arm-ce-y     := crct10dif-ce-core.o crct10dif-ce-glue.o
>  crc32-arm-ce-y:= crc32-ce-core.o crc32-ce-glue.o
>  chacha20-neon-y := chacha20-neon-core.o chacha20-neon-glue.o
> +speck-neon-y := speck-neon-core.o speck-neon-glue.o
>
>  quiet_cmd_perl = PERL    $@
>        cmd_perl = $(PERL) $(<) > $(@)
> diff --git a/arch/arm/crypto/speck-neon-core.S b/arch/arm/crypto/speck-neon-core.S
> new file mode 100644
> index 000000000000..3c1e203e53b9
> --- /dev/null
> +++ b/arch/arm/crypto/speck-neon-core.S
> @@ -0,0 +1,432 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * NEON-accelerated implementation of Speck128-XTS and Speck64-XTS
> + *
> + * Copyright (c) 2018 Google, Inc
> + *
> + * Author: Eric Biggers <ebiggers@google.com>
> + */
> +
> +#include <linux/linkage.h>
> +
> +       .text
> +       .fpu            neon
> +
> +       // arguments
> +       ROUND_KEYS      .req    r0      // const {u64,u32} *round_keys
> +       NROUNDS         .req    r1      // int nrounds
> +       DST             .req    r2      // void *dst
> +       SRC             .req    r3      // const void *src
> +       NBYTES          .req    r4      // unsigned int nbytes
> +       TWEAK           .req    r5      // void *tweak
> +
> +       // registers which hold the data being encrypted/decrypted
> +       X0              .req    q0
> +       X0_L            .req    d0
> +       X0_H            .req    d1
> +       Y0              .req    q1
> +       Y0_H            .req    d3
> +       X1              .req    q2
> +       X1_L            .req    d4
> +       X1_H            .req    d5
> +       Y1              .req    q3
> +       Y1_H            .req    d7
> +       X2              .req    q4
> +       X2_L            .req    d8
> +       X2_H            .req    d9
> +       Y2              .req    q5
> +       Y2_H            .req    d11
> +       X3              .req    q6
> +       X3_L            .req    d12
> +       X3_H            .req    d13
> +       Y3              .req    q7
> +       Y3_H            .req    d15
> +
> +       // the round key, duplicated in all lanes
> +       ROUND_KEY       .req    q8
> +       ROUND_KEY_L     .req    d16
> +       ROUND_KEY_H     .req    d17
> +
> +       // index vector for vtbl-based 8-bit rotates
> +       ROTATE_TABLE    .req    d18
> +
> +       // multiplication table for updating XTS tweaks
> +       GF128MUL_TABLE  .req    d19
> +       GF64MUL_TABLE   .req    d19
> +
> +       // current XTS tweak value(s)
> +       TWEAKV          .req    q10
> +       TWEAKV_L        .req    d20
> +       TWEAKV_H        .req    d21
> +
> +       TMP0            .req    q12
> +       TMP0_L          .req    d24
> +       TMP0_H          .req    d25
> +       TMP1            .req    q13
> +       TMP2            .req    q14
> +       TMP3            .req    q15
> +
> +       .align          4
> +.Lror64_8_table:
> +       .byte           1, 2, 3, 4, 5, 6, 7, 0
> +.Lror32_8_table:
> +       .byte           1, 2, 3, 0, 5, 6, 7, 4
> +.Lrol64_8_table:
> +       .byte           7, 0, 1, 2, 3, 4, 5, 6
> +.Lrol32_8_table:
> +       .byte           3, 0, 1, 2, 7, 4, 5, 6
> +.Lgf128mul_table:
> +       .byte           0, 0x87
> +       .fill           14
> +.Lgf64mul_table:
> +       .byte           0, 0x1b, (0x1b << 1), (0x1b << 1) ^ 0x1b
> +       .fill           12
> +
> +/*
> + * _speck_round_128bytes() - Speck encryption round on 128 bytes at a time
> + *
> + * Do one Speck encryption round on the 128 bytes (8 blocks for Speck128, 16 for
> + * Speck64) stored in X0-X3 and Y0-Y3, using the round key stored in all lanes
> + * of ROUND_KEY.  'n' is the lane size: 64 for Speck128, or 32 for Speck64.
> + *
> + * The 8-bit rotates are implemented using vtbl instead of vshr + vsli because
> + * the vtbl approach is faster on some processors and the same speed on others.
> + */
> +.macro _speck_round_128bytes   n
> +
> +       // x = ror(x, 8)
> +       vtbl.8          X0_L, {X0_L}, ROTATE_TABLE
> +       vtbl.8          X0_H, {X0_H}, ROTATE_TABLE
> +       vtbl.8          X1_L, {X1_L}, ROTATE_TABLE
> +       vtbl.8          X1_H, {X1_H}, ROTATE_TABLE
> +       vtbl.8          X2_L, {X2_L}, ROTATE_TABLE
> +       vtbl.8          X2_H, {X2_H}, ROTATE_TABLE
> +       vtbl.8          X3_L, {X3_L}, ROTATE_TABLE
> +       vtbl.8          X3_H, {X3_H}, ROTATE_TABLE
> +
> +       // x += y
> +       vadd.u\n        X0, Y0
> +       vadd.u\n        X1, Y1
> +       vadd.u\n        X2, Y2
> +       vadd.u\n        X3, Y3
> +
> +       // x ^= k
> +       veor            X0, ROUND_KEY
> +       veor            X1, ROUND_KEY
> +       veor            X2, ROUND_KEY
> +       veor            X3, ROUND_KEY
> +
> +       // y = rol(y, 3)
> +       vshl.u\n        TMP0, Y0, #3
> +       vshl.u\n        TMP1, Y1, #3
> +       vshl.u\n        TMP2, Y2, #3
> +       vshl.u\n        TMP3, Y3, #3
> +       vsri.u\n        TMP0, Y0, #(\n - 3)
> +       vsri.u\n        TMP1, Y1, #(\n - 3)
> +       vsri.u\n        TMP2, Y2, #(\n - 3)
> +       vsri.u\n        TMP3, Y3, #(\n - 3)
> +
> +       // y ^= x
> +       veor            Y0, TMP0, X0
> +       veor            Y1, TMP1, X1
> +       veor            Y2, TMP2, X2
> +       veor            Y3, TMP3, X3
> +.endm
> +
> +/*
> + * _speck_unround_128bytes() - Speck decryption round on 128 bytes at a time
> + *
> + * This is the inverse of _speck_round_128bytes().
> + */
> +.macro _speck_unround_128bytes n
> +
> +       // y ^= x
> +       veor            TMP0, Y0, X0
> +       veor            TMP1, Y1, X1
> +       veor            TMP2, Y2, X2
> +       veor            TMP3, Y3, X3
> +
> +       // y = ror(y, 3)
> +       vshr.u\n        Y0, TMP0, #3
> +       vshr.u\n        Y1, TMP1, #3
> +       vshr.u\n        Y2, TMP2, #3
> +       vshr.u\n        Y3, TMP3, #3
> +       vsli.u\n        Y0, TMP0, #(\n - 3)
> +       vsli.u\n        Y1, TMP1, #(\n - 3)
> +       vsli.u\n        Y2, TMP2, #(\n - 3)
> +       vsli.u\n        Y3, TMP3, #(\n - 3)
> +
> +       // x ^= k
> +       veor            X0, ROUND_KEY
> +       veor            X1, ROUND_KEY
> +       veor            X2, ROUND_KEY
> +       veor            X3, ROUND_KEY
> +
> +       // x -= y
> +       vsub.u\n        X0, Y0
> +       vsub.u\n        X1, Y1
> +       vsub.u\n        X2, Y2
> +       vsub.u\n        X3, Y3
> +
> +       // x = rol(x, 8);
> +       vtbl.8          X0_L, {X0_L}, ROTATE_TABLE
> +       vtbl.8          X0_H, {X0_H}, ROTATE_TABLE
> +       vtbl.8          X1_L, {X1_L}, ROTATE_TABLE
> +       vtbl.8          X1_H, {X1_H}, ROTATE_TABLE
> +       vtbl.8          X2_L, {X2_L}, ROTATE_TABLE
> +       vtbl.8          X2_H, {X2_H}, ROTATE_TABLE
> +       vtbl.8          X3_L, {X3_L}, ROTATE_TABLE
> +       vtbl.8          X3_H, {X3_H}, ROTATE_TABLE
> +.endm
> +
> +.macro _xts128_precrypt_one    dst_reg, tweak_buf, tmp
> +
> +       // Load the next source block
> +       vld1.8          {\dst_reg}, [SRC]!
> +
> +       // Save the current tweak in the tweak buffer
> +       vst1.8          {TWEAKV}, [\tweak_buf:128]!
> +
> +       // XOR the next source block with the current tweak
> +       veor            \dst_reg, TWEAKV
> +
> +       /*
> +        * Calculate the next tweak by multiplying the current one by x,
> +        * modulo p(x) = x^128 + x^7 + x^2 + x + 1.
> +        */
> +       vshr.u64        \tmp, TWEAKV, #63
> +       vshl.u64        TWEAKV, #1
> +       veor            TWEAKV_H, \tmp\()_L
> +       vtbl.8          \tmp\()_H, {GF128MUL_TABLE}, \tmp\()_H
> +       veor            TWEAKV_L, \tmp\()_H
> +.endm
> +
> +.macro _xts64_precrypt_two     dst_reg, tweak_buf, tmp
> +
> +       // Load the next two source blocks
> +       vld1.8          {\dst_reg}, [SRC]!
> +
> +       // Save the current two tweaks in the tweak buffer
> +       vst1.8          {TWEAKV}, [\tweak_buf:128]!
> +
> +       // XOR the next two source blocks with the current two tweaks
> +       veor            \dst_reg, TWEAKV
> +
> +       /*
> +        * Calculate the next two tweaks by multiplying the current ones by x^2,
> +        * modulo p(x) = x^64 + x^4 + x^3 + x + 1.
> +        */
> +       vshr.u64        \tmp, TWEAKV, #62
> +       vshl.u64        TWEAKV, #2
> +       vtbl.8          \tmp\()_L, {GF64MUL_TABLE}, \tmp\()_L
> +       vtbl.8          \tmp\()_H, {GF64MUL_TABLE}, \tmp\()_H
> +       veor            TWEAKV, \tmp
> +.endm
> +
> +/*
> + * _speck_xts_crypt() - Speck-XTS encryption/decryption
> + *
> + * Encrypt or decrypt NBYTES bytes of data from the SRC buffer to the DST buffer
> + * using Speck-XTS, specifically the variant with a block size of '2n' and round
> + * count given by NROUNDS.  The expanded round keys are given in ROUND_KEYS, and
> + * the current XTS tweak value is given in TWEAK.  It's assumed that NBYTES is a
> + * nonzero multiple of 128.
> + */
> +.macro _speck_xts_crypt        n, decrypting
> +       push            {r4-r7}
> +       mov             r7, sp
> +
> +       /*
> +        * The first four parameters were passed in registers r0-r3.  Load the
> +        * additional parameters, which were passed on the stack.
> +        */
> +       ldr             NBYTES, [sp, #16]
> +       ldr             TWEAK, [sp, #20]
> +
> +       /*
> +        * If decrypting, modify the ROUND_KEYS parameter to point to the last
> +        * round key rather than the first, since for decryption the round keys
> +        * are used in reverse order.
> +        */
> +.if \decrypting
> +.if \n == 64
> +       add             ROUND_KEYS, ROUND_KEYS, NROUNDS, lsl #3
> +       sub             ROUND_KEYS, #8
> +.else
> +       add             ROUND_KEYS, ROUND_KEYS, NROUNDS, lsl #2
> +       sub             ROUND_KEYS, #4
> +.endif
> +.endif
> +
> +       // Load the index vector for vtbl-based 8-bit rotates
> +.if \decrypting
> +       ldr             r12, =.Lrol\n\()_8_table
> +.else
> +       ldr             r12, =.Lror\n\()_8_table
> +.endif
> +       vld1.8          {ROTATE_TABLE}, [r12:64]
> +
> +       // One-time XTS preparation
> +
> +       /*
> +        * Allocate stack space to store 128 bytes worth of tweaks.  For
> +        * performance, this space is aligned to a 16-byte boundary so that we
> +        * can use the load/store instructions that declare 16-byte alignment.
> +        */
> +       sub             sp, #128
> +       bic             sp, #0xf
> +
> +.if \n == 64
> +       // Load first tweak
> +       vld1.8          {TWEAKV}, [TWEAK]
> +
> +       // Load GF(2^128) multiplication table
> +       ldr             r12, =.Lgf128mul_table
> +       vld1.8          {GF128MUL_TABLE}, [r12:64]
> +.else
> +       // Load first tweak
> +       vld1.8          {TWEAKV_L}, [TWEAK]
> +
> +       // Load GF(2^64) multiplication table
> +       ldr             r12, =.Lgf64mul_table
> +       vld1.8          {GF64MUL_TABLE}, [r12:64]
> +
> +       // Calculate second tweak, packing it together with the first
> +       vshr.u64        TMP0_L, TWEAKV_L, #63
> +       vtbl.u8         TMP0_L, {GF64MUL_TABLE}, TMP0_L
> +       vshl.u64        TWEAKV_H, TWEAKV_L, #1
> +       veor            TWEAKV_H, TMP0_L
> +.endif
> +
> +.Lnext_128bytes_\@:
> +
> +       /*
> +        * Load the source blocks into {X,Y}[0-3], XOR them with their XTS tweak
> +        * values, and save the tweaks on the stack for later.  Then
> +        * de-interleave the 'x' and 'y' elements of each block, i.e. make it so
> +        * that the X[0-3] registers contain only the second halves of blocks,
> +        * and the Y[0-3] registers contain only the first halves of blocks.
> +        * (Speck uses the order (y, x) rather than the more intuitive (x, y).)
> +        */
> +       mov             r12, sp
> +.if \n == 64
> +       _xts128_precrypt_one    X0, r12, TMP0
> +       _xts128_precrypt_one    Y0, r12, TMP0
> +       _xts128_precrypt_one    X1, r12, TMP0
> +       _xts128_precrypt_one    Y1, r12, TMP0
> +       _xts128_precrypt_one    X2, r12, TMP0
> +       _xts128_precrypt_one    Y2, r12, TMP0
> +       _xts128_precrypt_one    X3, r12, TMP0
> +       _xts128_precrypt_one    Y3, r12, TMP0
> +       vswp            X0_L, Y0_H
> +       vswp            X1_L, Y1_H
> +       vswp            X2_L, Y2_H
> +       vswp            X3_L, Y3_H
> +.else
> +       _xts64_precrypt_two     X0, r12, TMP0
> +       _xts64_precrypt_two     Y0, r12, TMP0
> +       _xts64_precrypt_two     X1, r12, TMP0
> +       _xts64_precrypt_two     Y1, r12, TMP0
> +       _xts64_precrypt_two     X2, r12, TMP0
> +       _xts64_precrypt_two     Y2, r12, TMP0
> +       _xts64_precrypt_two     X3, r12, TMP0
> +       _xts64_precrypt_two     Y3, r12, TMP0
> +       vuzp.32         Y0, X0
> +       vuzp.32         Y1, X1
> +       vuzp.32         Y2, X2
> +       vuzp.32         Y3, X3
> +.endif
> +
> +       // Do the cipher rounds
> +
> +       mov             r12, ROUND_KEYS
> +       mov             r6, NROUNDS
> +
> +.Lnext_round_\@:
> +.if \decrypting
> +.if \n == 64
> +       vld1.64         ROUND_KEY_L, [r12]
> +       sub             r12, #8
> +       vmov            ROUND_KEY_H, ROUND_KEY_L
> +.else
> +       vld1.32         {ROUND_KEY_L[],ROUND_KEY_H[]}, [r12]
> +       sub             r12, #4
> +.endif
> +       _speck_unround_128bytes \n
> +.else
> +.if \n == 64
> +       vld1.64         ROUND_KEY_L, [r12]!
> +       vmov            ROUND_KEY_H, ROUND_KEY_L
> +.else
> +       vld1.32         {ROUND_KEY_L[],ROUND_KEY_H[]}, [r12]!
> +.endif
> +       _speck_round_128bytes   \n
> +.endif
> +       subs            r6, r6, #1
> +       bne             .Lnext_round_\@
> +
> +       // Re-interleave the 'x' and 'y' elements of each block
> +.if \n == 64
> +       vswp            X0_L, Y0_H
> +       vswp            X1_L, Y1_H
> +       vswp            X2_L, Y2_H
> +       vswp            X3_L, Y3_H
> +.else
> +       vzip.32         Y0, X0
> +       vzip.32         Y1, X1
> +       vzip.32         Y2, X2
> +       vzip.32         Y3, X3
> +.endif
> +
> +       // XOR the encrypted/decrypted blocks with the tweaks we saved earlier
> +       mov             r12, sp
> +       vld1.8          {TMP0, TMP1}, [r12:128]!
> +       vld1.8          {TMP2, TMP3}, [r12:128]!
> +       veor            X0, TMP0
> +       veor            Y0, TMP1
> +       veor            X1, TMP2
> +       veor            Y1, TMP3
> +       vld1.8          {TMP0, TMP1}, [r12:128]!
> +       vld1.8          {TMP2, TMP3}, [r12:128]!
> +       veor            X2, TMP0
> +       veor            Y2, TMP1
> +       veor            X3, TMP2
> +       veor            Y3, TMP3
> +
> +       // Store the ciphertext in the destination buffer
> +       vst1.8          {X0, Y0}, [DST]!
> +       vst1.8          {X1, Y1}, [DST]!
> +       vst1.8          {X2, Y2}, [DST]!
> +       vst1.8          {X3, Y3}, [DST]!
> +
> +       // Continue if there are more 128-byte chunks remaining, else return
> +       subs            NBYTES, #128
> +       bne             .Lnext_128bytes_\@
> +
> +       // Store the next tweak
> +.if \n == 64
> +       vst1.8          {TWEAKV}, [TWEAK]
> +.else
> +       vst1.8          {TWEAKV_L}, [TWEAK]
> +.endif
> +
> +       mov             sp, r7
> +       pop             {r4-r7}
> +       bx              lr
> +.endm
> +
> +ENTRY(speck128_xts_encrypt_neon)
> +       _speck_xts_crypt        n=64, decrypting=0
> +ENDPROC(speck128_xts_encrypt_neon)
> +
> +ENTRY(speck128_xts_decrypt_neon)
> +       _speck_xts_crypt        n=64, decrypting=1
> +ENDPROC(speck128_xts_decrypt_neon)
> +
> +ENTRY(speck64_xts_encrypt_neon)
> +       _speck_xts_crypt        n=32, decrypting=0
> +ENDPROC(speck64_xts_encrypt_neon)
> +
> +ENTRY(speck64_xts_decrypt_neon)
> +       _speck_xts_crypt        n=32, decrypting=1
> +ENDPROC(speck64_xts_decrypt_neon)
> diff --git a/arch/arm/crypto/speck-neon-glue.c b/arch/arm/crypto/speck-neon-glue.c
> new file mode 100644
> index 000000000000..3987dd6e063e
> --- /dev/null
> +++ b/arch/arm/crypto/speck-neon-glue.c
> @@ -0,0 +1,290 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * NEON-accelerated implementation of Speck128-XTS and Speck64-XTS
> + *
> + * Copyright (c) 2018 Google, Inc
> + *
> + * Note: the NIST recommendation for XTS only specifies a 128-bit block size,
> + * but a 64-bit version (needed for Speck64) is fairly straightforward; the math
> + * is just done in GF(2^64) instead of GF(2^128), with the reducing polynomial
> + * x^64 + x^4 + x^3 + x + 1 from the original XEX paper (Rogaway, 2004:
> + * "Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes
> + * OCB and PMAC"), represented as 0x1B.
> + */
> +
> +#include <asm/hwcap.h>
> +#include <asm/neon.h>
> +#include <asm/simd.h>
> +#include <crypto/algapi.h>
> +#include <crypto/gf128mul.h>
> +#include <crypto/internal/skcipher.h>
> +#include <crypto/speck.h>
> +#include <crypto/xts.h>
> +#include <linux/kernel.h>
> +#include <linux/module.h>
> +
> +/* The assembly functions only handle multiples of 128 bytes */
> +#define SPECK_NEON_CHUNK_SIZE  128
> +
> +/* Speck128 */
> +
> +struct speck128_xts_tfm_ctx {
> +       struct speck128_tfm_ctx main_key;
> +       struct speck128_tfm_ctx tweak_key;
> +};
> +
> +asmlinkage void speck128_xts_encrypt_neon(const u64 *round_keys, int nrounds,
> +                                         void *dst, const void *src,
> +                                         unsigned int nbytes, void *tweak);
> +
> +asmlinkage void speck128_xts_decrypt_neon(const u64 *round_keys, int nrounds,
> +                                         void *dst, const void *src,
> +                                         unsigned int nbytes, void *tweak);
> +
> +typedef void (*speck128_crypt_one_t)(const struct speck128_tfm_ctx *,
> +                                    u8 *, const u8 *);
> +typedef void (*speck128_xts_crypt_many_t)(const u64 *, int, void *,
> +                                         const void *, unsigned int, void *);
> +
> +
> +static __always_inline int
> +__speck128_xts_crypt(struct skcipher_request *req,
> +                    speck128_crypt_one_t crypt_one,
> +                    speck128_xts_crypt_many_t crypt_many)
> +{
> +       struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
> +       const struct speck128_xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
> +       struct skcipher_walk walk;
> +       le128 tweak;
> +       int err;
> +
> +       err = skcipher_walk_virt(&walk, req, true);
> +
> +       crypto_speck128_encrypt(&ctx->tweak_key, (u8 *)&tweak, walk.iv);
> +
> +       while (walk.nbytes > 0) {
> +               unsigned int nbytes = walk.nbytes;
> +               u8 *dst = walk.dst.virt.addr;
> +               const u8 *src = walk.src.virt.addr;
> +
> +               if (nbytes >= SPECK_NEON_CHUNK_SIZE && may_use_simd()) {
> +                       unsigned int count;
> +
> +                       count = round_down(nbytes, SPECK_NEON_CHUNK_SIZE);
> +                       kernel_neon_begin();
> +                       (*crypt_many)(ctx->main_key.round_keys,
> +                                     ctx->main_key.nrounds,
> +                                     dst, src, count, &tweak);
> +                       kernel_neon_end();
> +                       dst += count;
> +                       src += count;
> +                       nbytes -= count;
> +               }
> +
> +               /* Handle any remainder with generic code */
> +               while (nbytes >= sizeof(le128)) {
> +                       le128_xor((le128 *)dst, (const le128 *)src, &tweak);
> +                       (*crypt_one)(&ctx->main_key, dst, dst);
> +                       le128_xor((le128 *)dst, (const le128 *)dst, &tweak);
> +                       gf128mul_x_ble(&tweak, &tweak);
> +
> +                       dst += sizeof(le128);
> +                       src += sizeof(le128);
> +                       nbytes -= sizeof(le128);
> +               }
> +               err = skcipher_walk_done(&walk, nbytes);
> +       }
> +
> +       return err;
> +}
> +
> +static int speck128_xts_encrypt(struct skcipher_request *req)
> +{
> +       return __speck128_xts_crypt(req, crypto_speck128_encrypt,
> +                                   speck128_xts_encrypt_neon);
> +
> +}
> +
> +static int speck128_xts_decrypt(struct skcipher_request *req)
> +{
> +       return __speck128_xts_crypt(req, crypto_speck128_decrypt,
> +                                   speck128_xts_decrypt_neon);
> +}
> +
> +static int speck128_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
> +                              unsigned int keylen)
> +{
> +       struct speck128_xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
> +       int err;
> +
> +       err = xts_verify_key(tfm, key, keylen);
> +       if (err)
> +               return err;
> +
> +       keylen /= 2;
> +
> +       err = crypto_speck128_setkey(&ctx->main_key, key, keylen);
> +       if (err)
> +               return err;
> +
> +       return crypto_speck128_setkey(&ctx->tweak_key, key + keylen, keylen);
> +}
> +
> +/* Speck64 */
> +
> +struct speck64_xts_tfm_ctx {
> +       struct speck64_tfm_ctx main_key;
> +       struct speck64_tfm_ctx tweak_key;
> +};
> +
> +asmlinkage void speck64_xts_encrypt_neon(const u32 *round_keys, int nrounds,
> +                                        void *dst, const void *src,
> +                                        unsigned int nbytes, void *tweak);
> +
> +asmlinkage void speck64_xts_decrypt_neon(const u32 *round_keys, int nrounds,
> +                                        void *dst, const void *src,
> +                                        unsigned int nbytes, void *tweak);
> +
> +typedef void (*speck64_crypt_one_t)(const struct speck64_tfm_ctx *,
> +                                   u8 *, const u8 *);
> +typedef void (*speck64_xts_crypt_many_t)(const u32 *, int, void *,
> +                                        const void *, unsigned int, void *);
> +
> +static __always_inline int
> +__speck64_xts_crypt(struct skcipher_request *req, speck64_crypt_one_t crypt_one,
> +                   speck64_xts_crypt_many_t crypt_many)
> +{
> +       struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
> +       const struct speck64_xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
> +       struct skcipher_walk walk;
> +       u64 tweak;
> +       int err;
> +
> +       err = skcipher_walk_virt(&walk, req, true);
> +
> +       crypto_speck64_encrypt(&ctx->tweak_key, (u8 *)&tweak, walk.iv);
> +
> +       while (walk.nbytes > 0) {
> +               unsigned int nbytes = walk.nbytes;
> +               u8 *dst = walk.dst.virt.addr;
> +               const u8 *src = walk.src.virt.addr;
> +
> +               if (nbytes >= SPECK_NEON_CHUNK_SIZE && may_use_simd()) {
> +                       unsigned int count;
> +
> +                       count = round_down(nbytes, SPECK_NEON_CHUNK_SIZE);
> +                       kernel_neon_begin();
> +                       (*crypt_many)(ctx->main_key.round_keys,
> +                                     ctx->main_key.nrounds,
> +                                     dst, src, count, &tweak);
> +                       kernel_neon_end();
> +                       dst += count;
> +                       src += count;
> +                       nbytes -= count;
> +               }
> +
> +               /* Handle any remainder with generic code */
> +               while (nbytes >= sizeof(u64)) {
> +                       *(u64 *)dst = *(u64 *)src ^ tweak;
> +                       (*crypt_one)(&ctx->main_key, dst, dst);
> +                       *(u64 *)dst ^= tweak;
> +                       tweak = (tweak << 1) ^
> +                               ((tweak & (1ULL << 63)) ? 0x1B : 0);
> +
> +                       dst += sizeof(u64);
> +                       src += sizeof(u64);
> +                       nbytes -= sizeof(u64);
> +               }
> +               err = skcipher_walk_done(&walk, nbytes);
> +       }
> +
> +       return err;
> +}
> +
> +static int speck64_xts_encrypt(struct skcipher_request *req)
> +{
> +       return __speck64_xts_crypt(req, crypto_speck64_encrypt,
> +                                  speck64_xts_encrypt_neon);
> +}
> +
> +static int speck64_xts_decrypt(struct skcipher_request *req)
> +{
> +       return __speck64_xts_crypt(req, crypto_speck64_decrypt,
> +                                  speck64_xts_decrypt_neon);
> +}
> +
> +static int speck64_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
> +                             unsigned int keylen)
> +{
> +       struct speck64_xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
> +       int err;
> +
> +       err = xts_verify_key(tfm, key, keylen);
> +       if (err)
> +               return err;
> +
> +       keylen /= 2;
> +
> +       err = crypto_speck64_setkey(&ctx->main_key, key, keylen);
> +       if (err)
> +               return err;
> +
> +       return crypto_speck64_setkey(&ctx->tweak_key, key + keylen, keylen);
> +}
> +
> +static struct skcipher_alg speck_algs[] = {
> +       {
> +               .base.cra_name          = "xts(speck128)",
> +               .base.cra_driver_name   = "xts-speck128-neon",
> +               .base.cra_priority      = 300,
> +               .base.cra_blocksize     = SPECK128_BLOCK_SIZE,
> +               .base.cra_ctxsize       = sizeof(struct speck128_xts_tfm_ctx),
> +               .base.cra_alignmask     = 7,
> +               .base.cra_module        = THIS_MODULE,
> +               .min_keysize            = 2 * SPECK128_128_KEY_SIZE,
> +               .max_keysize            = 2 * SPECK128_256_KEY_SIZE,
> +               .ivsize                 = SPECK128_BLOCK_SIZE,
> +               .walksize               = SPECK_NEON_CHUNK_SIZE,
> +               .setkey                 = speck128_xts_setkey,
> +               .encrypt                = speck128_xts_encrypt,
> +               .decrypt                = speck128_xts_decrypt,
> +       }, {
> +               .base.cra_name          = "xts(speck64)",
> +               .base.cra_driver_name   = "xts-speck64-neon",
> +               .base.cra_priority      = 300,
> +               .base.cra_blocksize     = SPECK64_BLOCK_SIZE,
> +               .base.cra_ctxsize       = sizeof(struct speck64_xts_tfm_ctx),
> +               .base.cra_alignmask     = 7,
> +               .base.cra_module        = THIS_MODULE,
> +               .min_keysize            = 2 * SPECK64_96_KEY_SIZE,
> +               .max_keysize            = 2 * SPECK64_128_KEY_SIZE,
> +               .ivsize                 = SPECK64_BLOCK_SIZE,
> +               .walksize               = SPECK_NEON_CHUNK_SIZE,
> +               .setkey                 = speck64_xts_setkey,
> +               .encrypt                = speck64_xts_encrypt,
> +               .decrypt                = speck64_xts_decrypt,
> +       }
> +};
> +
> +static int __init speck_neon_module_init(void)
> +{
> +       if (!(elf_hwcap & HWCAP_NEON))
> +               return -ENODEV;
> +       return crypto_register_skciphers(speck_algs, ARRAY_SIZE(speck_algs));
> +}
> +
> +static void __exit speck_neon_module_exit(void)
> +{
> +       crypto_unregister_skciphers(speck_algs, ARRAY_SIZE(speck_algs));
> +}
> +
> +module_init(speck_neon_module_init);
> +module_exit(speck_neon_module_exit);
> +
> +MODULE_DESCRIPTION("Speck block cipher (NEON-accelerated)");
> +MODULE_LICENSE("GPL");
> +MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
> +MODULE_ALIAS_CRYPTO("xts(speck128)");
> +MODULE_ALIAS_CRYPTO("xts-speck128-neon");
> +MODULE_ALIAS_CRYPTO("xts(speck64)");
> +MODULE_ALIAS_CRYPTO("xts-speck64-neon");
> --
> 2.16.0.rc1.238.g530d649a79-goog
>

WARNING: multiple messages have this Message-ID (diff)
From: ard.biesheuvel@linaro.org (Ard Biesheuvel)
To: linux-arm-kernel@lists.infradead.org
Subject: [PATCH v2 3/5] crypto: arm/speck - add NEON-accelerated implementation of Speck-XTS
Date: Tue, 13 Feb 2018 11:34:36 +0000	[thread overview]
Message-ID: <CAKv+Gu83C_AsxrL_PzJowTUeE=ba8PBHT6NmiWjVghtJM7p_nw@mail.gmail.com> (raw)
In-Reply-To: <20180212235209.117393-4-ebiggers@google.com>

Hi Eric,

On 12 February 2018 at 23:52, Eric Biggers <ebiggers@google.com> wrote:
> Add an ARM NEON-accelerated implementation of Speck-XTS.  It operates on
> 128-byte chunks at a time, i.e. 8 blocks for Speck128 or 16 blocks for
> Speck64.  Each 128-byte chunk goes through XTS preprocessing, then is
> encrypted/decrypted (doing one cipher round for all the blocks, then the
> next round, etc.), then goes through XTS postprocessing.
>
> The performance depends on the processor but can be about 3 times faster
> than the generic code.  For example, on an ARMv7 processor we observe
> the following performance with Speck128/256-XTS:
>
>     xts-speck128-neon:     Encryption 107.9 MB/s, Decryption 108.1 MB/s
>     xts(speck128-generic): Encryption  32.1 MB/s, Decryption  36.6 MB/s
>
> In comparison to AES-256-XTS without the Cryptography Extensions:
>
>     xts-aes-neonbs:        Encryption  41.2 MB/s, Decryption  36.7 MB/s
>     xts(aes-asm):          Encryption  31.7 MB/s, Decryption  30.8 MB/s
>     xts(aes-generic):      Encryption  21.2 MB/s, Decryption  20.9 MB/s
>
> Speck64/128-XTS is even faster:
>
>     xts-speck64-neon:      Encryption 138.6 MB/s, Decryption 139.1 MB/s
>
> Note that as with the generic code, only the Speck128 and Speck64
> variants are supported.  Also, for now only the XTS mode of operation is
> supported, to target the disk and file encryption use cases.  The NEON
> code also only handles the portion of the data that is evenly divisible
> into 128-byte chunks, with any remainder handled by a C fallback.  Of
> course, other modes of operation could be added later if needed, and/or
> the NEON code could be updated to handle other buffer sizes.
>
> The XTS specification is only defined for AES which has a 128-bit block
> size, so for the GF(2^64) math needed for Speck64-XTS we use the
> reducing polynomial 'x^64 + x^4 + x^3 + x + 1' given by the original XEX
> paper.  Of course, when possible users should use Speck128-XTS, but even
> that may be too slow on some processors; Speck64-XTS can be faster.
>

I think this is excellent work. Speck seems an appropriate solution to
this problem, and I'm glad we are not ending up with a stream cipher
for block encryption.

Also, I think an arm64 port would be nice. I may take a stab at this
if nobody else beats me to it.

I did run into an issue with this code though: On big-endian, I get

[    0.272381] alg: skcipher: Test 1 failed (invalid result) on
encryption for xts-speck64-neon
[    0.276151] 00000000: 84 af 54 07 19 d4 7c a6 9c 8a ac f6 c2 14 04 d8
[    0.278541] 00000010: 7f 18 6c 43 56 ed 0b b3 92 21 a2 d9 17 59 e4 3b

so there may be a byte order corner case you missed in the rewrite (or
the issue existed before, as I did not test your v1)

-- 
Ard.


> Signed-off-by: Eric Biggers <ebiggers@google.com>
> ---
>  arch/arm/crypto/Kconfig           |   6 +
>  arch/arm/crypto/Makefile          |   2 +
>  arch/arm/crypto/speck-neon-core.S | 432 ++++++++++++++++++++++++++++++++++++++
>  arch/arm/crypto/speck-neon-glue.c | 290 +++++++++++++++++++++++++
>  4 files changed, 730 insertions(+)
>  create mode 100644 arch/arm/crypto/speck-neon-core.S
>  create mode 100644 arch/arm/crypto/speck-neon-glue.c
>
> diff --git a/arch/arm/crypto/Kconfig b/arch/arm/crypto/Kconfig
> index b8e69fe282b8..925d1364727a 100644
> --- a/arch/arm/crypto/Kconfig
> +++ b/arch/arm/crypto/Kconfig
> @@ -121,4 +121,10 @@ config CRYPTO_CHACHA20_NEON
>         select CRYPTO_BLKCIPHER
>         select CRYPTO_CHACHA20
>
> +config CRYPTO_SPECK_NEON
> +       tristate "NEON accelerated Speck cipher algorithms"
> +       depends on KERNEL_MODE_NEON
> +       select CRYPTO_BLKCIPHER
> +       select CRYPTO_SPECK
> +
>  endif
> diff --git a/arch/arm/crypto/Makefile b/arch/arm/crypto/Makefile
> index 30ef8e291271..a758107c5525 100644
> --- a/arch/arm/crypto/Makefile
> +++ b/arch/arm/crypto/Makefile
> @@ -10,6 +10,7 @@ obj-$(CONFIG_CRYPTO_SHA1_ARM_NEON) += sha1-arm-neon.o
>  obj-$(CONFIG_CRYPTO_SHA256_ARM) += sha256-arm.o
>  obj-$(CONFIG_CRYPTO_SHA512_ARM) += sha512-arm.o
>  obj-$(CONFIG_CRYPTO_CHACHA20_NEON) += chacha20-neon.o
> +obj-$(CONFIG_CRYPTO_SPECK_NEON) += speck-neon.o
>
>  ce-obj-$(CONFIG_CRYPTO_AES_ARM_CE) += aes-arm-ce.o
>  ce-obj-$(CONFIG_CRYPTO_SHA1_ARM_CE) += sha1-arm-ce.o
> @@ -53,6 +54,7 @@ ghash-arm-ce-y        := ghash-ce-core.o ghash-ce-glue.o
>  crct10dif-arm-ce-y     := crct10dif-ce-core.o crct10dif-ce-glue.o
>  crc32-arm-ce-y:= crc32-ce-core.o crc32-ce-glue.o
>  chacha20-neon-y := chacha20-neon-core.o chacha20-neon-glue.o
> +speck-neon-y := speck-neon-core.o speck-neon-glue.o
>
>  quiet_cmd_perl = PERL    $@
>        cmd_perl = $(PERL) $(<) > $(@)
> diff --git a/arch/arm/crypto/speck-neon-core.S b/arch/arm/crypto/speck-neon-core.S
> new file mode 100644
> index 000000000000..3c1e203e53b9
> --- /dev/null
> +++ b/arch/arm/crypto/speck-neon-core.S
> @@ -0,0 +1,432 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * NEON-accelerated implementation of Speck128-XTS and Speck64-XTS
> + *
> + * Copyright (c) 2018 Google, Inc
> + *
> + * Author: Eric Biggers <ebiggers@google.com>
> + */
> +
> +#include <linux/linkage.h>
> +
> +       .text
> +       .fpu            neon
> +
> +       // arguments
> +       ROUND_KEYS      .req    r0      // const {u64,u32} *round_keys
> +       NROUNDS         .req    r1      // int nrounds
> +       DST             .req    r2      // void *dst
> +       SRC             .req    r3      // const void *src
> +       NBYTES          .req    r4      // unsigned int nbytes
> +       TWEAK           .req    r5      // void *tweak
> +
> +       // registers which hold the data being encrypted/decrypted
> +       X0              .req    q0
> +       X0_L            .req    d0
> +       X0_H            .req    d1
> +       Y0              .req    q1
> +       Y0_H            .req    d3
> +       X1              .req    q2
> +       X1_L            .req    d4
> +       X1_H            .req    d5
> +       Y1              .req    q3
> +       Y1_H            .req    d7
> +       X2              .req    q4
> +       X2_L            .req    d8
> +       X2_H            .req    d9
> +       Y2              .req    q5
> +       Y2_H            .req    d11
> +       X3              .req    q6
> +       X3_L            .req    d12
> +       X3_H            .req    d13
> +       Y3              .req    q7
> +       Y3_H            .req    d15
> +
> +       // the round key, duplicated in all lanes
> +       ROUND_KEY       .req    q8
> +       ROUND_KEY_L     .req    d16
> +       ROUND_KEY_H     .req    d17
> +
> +       // index vector for vtbl-based 8-bit rotates
> +       ROTATE_TABLE    .req    d18
> +
> +       // multiplication table for updating XTS tweaks
> +       GF128MUL_TABLE  .req    d19
> +       GF64MUL_TABLE   .req    d19
> +
> +       // current XTS tweak value(s)
> +       TWEAKV          .req    q10
> +       TWEAKV_L        .req    d20
> +       TWEAKV_H        .req    d21
> +
> +       TMP0            .req    q12
> +       TMP0_L          .req    d24
> +       TMP0_H          .req    d25
> +       TMP1            .req    q13
> +       TMP2            .req    q14
> +       TMP3            .req    q15
> +
> +       .align          4
> +.Lror64_8_table:
> +       .byte           1, 2, 3, 4, 5, 6, 7, 0
> +.Lror32_8_table:
> +       .byte           1, 2, 3, 0, 5, 6, 7, 4
> +.Lrol64_8_table:
> +       .byte           7, 0, 1, 2, 3, 4, 5, 6
> +.Lrol32_8_table:
> +       .byte           3, 0, 1, 2, 7, 4, 5, 6
> +.Lgf128mul_table:
> +       .byte           0, 0x87
> +       .fill           14
> +.Lgf64mul_table:
> +       .byte           0, 0x1b, (0x1b << 1), (0x1b << 1) ^ 0x1b
> +       .fill           12
> +
> +/*
> + * _speck_round_128bytes() - Speck encryption round on 128 bytes at a time
> + *
> + * Do one Speck encryption round on the 128 bytes (8 blocks for Speck128, 16 for
> + * Speck64) stored in X0-X3 and Y0-Y3, using the round key stored in all lanes
> + * of ROUND_KEY.  'n' is the lane size: 64 for Speck128, or 32 for Speck64.
> + *
> + * The 8-bit rotates are implemented using vtbl instead of vshr + vsli because
> + * the vtbl approach is faster on some processors and the same speed on others.
> + */
> +.macro _speck_round_128bytes   n
> +
> +       // x = ror(x, 8)
> +       vtbl.8          X0_L, {X0_L}, ROTATE_TABLE
> +       vtbl.8          X0_H, {X0_H}, ROTATE_TABLE
> +       vtbl.8          X1_L, {X1_L}, ROTATE_TABLE
> +       vtbl.8          X1_H, {X1_H}, ROTATE_TABLE
> +       vtbl.8          X2_L, {X2_L}, ROTATE_TABLE
> +       vtbl.8          X2_H, {X2_H}, ROTATE_TABLE
> +       vtbl.8          X3_L, {X3_L}, ROTATE_TABLE
> +       vtbl.8          X3_H, {X3_H}, ROTATE_TABLE
> +
> +       // x += y
> +       vadd.u\n        X0, Y0
> +       vadd.u\n        X1, Y1
> +       vadd.u\n        X2, Y2
> +       vadd.u\n        X3, Y3
> +
> +       // x ^= k
> +       veor            X0, ROUND_KEY
> +       veor            X1, ROUND_KEY
> +       veor            X2, ROUND_KEY
> +       veor            X3, ROUND_KEY
> +
> +       // y = rol(y, 3)
> +       vshl.u\n        TMP0, Y0, #3
> +       vshl.u\n        TMP1, Y1, #3
> +       vshl.u\n        TMP2, Y2, #3
> +       vshl.u\n        TMP3, Y3, #3
> +       vsri.u\n        TMP0, Y0, #(\n - 3)
> +       vsri.u\n        TMP1, Y1, #(\n - 3)
> +       vsri.u\n        TMP2, Y2, #(\n - 3)
> +       vsri.u\n        TMP3, Y3, #(\n - 3)
> +
> +       // y ^= x
> +       veor            Y0, TMP0, X0
> +       veor            Y1, TMP1, X1
> +       veor            Y2, TMP2, X2
> +       veor            Y3, TMP3, X3
> +.endm
> +
> +/*
> + * _speck_unround_128bytes() - Speck decryption round on 128 bytes at a time
> + *
> + * This is the inverse of _speck_round_128bytes().
> + */
> +.macro _speck_unround_128bytes n
> +
> +       // y ^= x
> +       veor            TMP0, Y0, X0
> +       veor            TMP1, Y1, X1
> +       veor            TMP2, Y2, X2
> +       veor            TMP3, Y3, X3
> +
> +       // y = ror(y, 3)
> +       vshr.u\n        Y0, TMP0, #3
> +       vshr.u\n        Y1, TMP1, #3
> +       vshr.u\n        Y2, TMP2, #3
> +       vshr.u\n        Y3, TMP3, #3
> +       vsli.u\n        Y0, TMP0, #(\n - 3)
> +       vsli.u\n        Y1, TMP1, #(\n - 3)
> +       vsli.u\n        Y2, TMP2, #(\n - 3)
> +       vsli.u\n        Y3, TMP3, #(\n - 3)
> +
> +       // x ^= k
> +       veor            X0, ROUND_KEY
> +       veor            X1, ROUND_KEY
> +       veor            X2, ROUND_KEY
> +       veor            X3, ROUND_KEY
> +
> +       // x -= y
> +       vsub.u\n        X0, Y0
> +       vsub.u\n        X1, Y1
> +       vsub.u\n        X2, Y2
> +       vsub.u\n        X3, Y3
> +
> +       // x = rol(x, 8);
> +       vtbl.8          X0_L, {X0_L}, ROTATE_TABLE
> +       vtbl.8          X0_H, {X0_H}, ROTATE_TABLE
> +       vtbl.8          X1_L, {X1_L}, ROTATE_TABLE
> +       vtbl.8          X1_H, {X1_H}, ROTATE_TABLE
> +       vtbl.8          X2_L, {X2_L}, ROTATE_TABLE
> +       vtbl.8          X2_H, {X2_H}, ROTATE_TABLE
> +       vtbl.8          X3_L, {X3_L}, ROTATE_TABLE
> +       vtbl.8          X3_H, {X3_H}, ROTATE_TABLE
> +.endm
> +
> +.macro _xts128_precrypt_one    dst_reg, tweak_buf, tmp
> +
> +       // Load the next source block
> +       vld1.8          {\dst_reg}, [SRC]!
> +
> +       // Save the current tweak in the tweak buffer
> +       vst1.8          {TWEAKV}, [\tweak_buf:128]!
> +
> +       // XOR the next source block with the current tweak
> +       veor            \dst_reg, TWEAKV
> +
> +       /*
> +        * Calculate the next tweak by multiplying the current one by x,
> +        * modulo p(x) = x^128 + x^7 + x^2 + x + 1.
> +        */
> +       vshr.u64        \tmp, TWEAKV, #63
> +       vshl.u64        TWEAKV, #1
> +       veor            TWEAKV_H, \tmp\()_L
> +       vtbl.8          \tmp\()_H, {GF128MUL_TABLE}, \tmp\()_H
> +       veor            TWEAKV_L, \tmp\()_H
> +.endm
> +
> +.macro _xts64_precrypt_two     dst_reg, tweak_buf, tmp
> +
> +       // Load the next two source blocks
> +       vld1.8          {\dst_reg}, [SRC]!
> +
> +       // Save the current two tweaks in the tweak buffer
> +       vst1.8          {TWEAKV}, [\tweak_buf:128]!
> +
> +       // XOR the next two source blocks with the current two tweaks
> +       veor            \dst_reg, TWEAKV
> +
> +       /*
> +        * Calculate the next two tweaks by multiplying the current ones by x^2,
> +        * modulo p(x) = x^64 + x^4 + x^3 + x + 1.
> +        */
> +       vshr.u64        \tmp, TWEAKV, #62
> +       vshl.u64        TWEAKV, #2
> +       vtbl.8          \tmp\()_L, {GF64MUL_TABLE}, \tmp\()_L
> +       vtbl.8          \tmp\()_H, {GF64MUL_TABLE}, \tmp\()_H
> +       veor            TWEAKV, \tmp
> +.endm
> +
> +/*
> + * _speck_xts_crypt() - Speck-XTS encryption/decryption
> + *
> + * Encrypt or decrypt NBYTES bytes of data from the SRC buffer to the DST buffer
> + * using Speck-XTS, specifically the variant with a block size of '2n' and round
> + * count given by NROUNDS.  The expanded round keys are given in ROUND_KEYS, and
> + * the current XTS tweak value is given in TWEAK.  It's assumed that NBYTES is a
> + * nonzero multiple of 128.
> + */
> +.macro _speck_xts_crypt        n, decrypting
> +       push            {r4-r7}
> +       mov             r7, sp
> +
> +       /*
> +        * The first four parameters were passed in registers r0-r3.  Load the
> +        * additional parameters, which were passed on the stack.
> +        */
> +       ldr             NBYTES, [sp, #16]
> +       ldr             TWEAK, [sp, #20]
> +
> +       /*
> +        * If decrypting, modify the ROUND_KEYS parameter to point to the last
> +        * round key rather than the first, since for decryption the round keys
> +        * are used in reverse order.
> +        */
> +.if \decrypting
> +.if \n == 64
> +       add             ROUND_KEYS, ROUND_KEYS, NROUNDS, lsl #3
> +       sub             ROUND_KEYS, #8
> +.else
> +       add             ROUND_KEYS, ROUND_KEYS, NROUNDS, lsl #2
> +       sub             ROUND_KEYS, #4
> +.endif
> +.endif
> +
> +       // Load the index vector for vtbl-based 8-bit rotates
> +.if \decrypting
> +       ldr             r12, =.Lrol\n\()_8_table
> +.else
> +       ldr             r12, =.Lror\n\()_8_table
> +.endif
> +       vld1.8          {ROTATE_TABLE}, [r12:64]
> +
> +       // One-time XTS preparation
> +
> +       /*
> +        * Allocate stack space to store 128 bytes worth of tweaks.  For
> +        * performance, this space is aligned to a 16-byte boundary so that we
> +        * can use the load/store instructions that declare 16-byte alignment.
> +        */
> +       sub             sp, #128
> +       bic             sp, #0xf
> +
> +.if \n == 64
> +       // Load first tweak
> +       vld1.8          {TWEAKV}, [TWEAK]
> +
> +       // Load GF(2^128) multiplication table
> +       ldr             r12, =.Lgf128mul_table
> +       vld1.8          {GF128MUL_TABLE}, [r12:64]
> +.else
> +       // Load first tweak
> +       vld1.8          {TWEAKV_L}, [TWEAK]
> +
> +       // Load GF(2^64) multiplication table
> +       ldr             r12, =.Lgf64mul_table
> +       vld1.8          {GF64MUL_TABLE}, [r12:64]
> +
> +       // Calculate second tweak, packing it together with the first
> +       vshr.u64        TMP0_L, TWEAKV_L, #63
> +       vtbl.u8         TMP0_L, {GF64MUL_TABLE}, TMP0_L
> +       vshl.u64        TWEAKV_H, TWEAKV_L, #1
> +       veor            TWEAKV_H, TMP0_L
> +.endif
> +
> +.Lnext_128bytes_\@:
> +
> +       /*
> +        * Load the source blocks into {X,Y}[0-3], XOR them with their XTS tweak
> +        * values, and save the tweaks on the stack for later.  Then
> +        * de-interleave the 'x' and 'y' elements of each block, i.e. make it so
> +        * that the X[0-3] registers contain only the second halves of blocks,
> +        * and the Y[0-3] registers contain only the first halves of blocks.
> +        * (Speck uses the order (y, x) rather than the more intuitive (x, y).)
> +        */
> +       mov             r12, sp
> +.if \n == 64
> +       _xts128_precrypt_one    X0, r12, TMP0
> +       _xts128_precrypt_one    Y0, r12, TMP0
> +       _xts128_precrypt_one    X1, r12, TMP0
> +       _xts128_precrypt_one    Y1, r12, TMP0
> +       _xts128_precrypt_one    X2, r12, TMP0
> +       _xts128_precrypt_one    Y2, r12, TMP0
> +       _xts128_precrypt_one    X3, r12, TMP0
> +       _xts128_precrypt_one    Y3, r12, TMP0
> +       vswp            X0_L, Y0_H
> +       vswp            X1_L, Y1_H
> +       vswp            X2_L, Y2_H
> +       vswp            X3_L, Y3_H
> +.else
> +       _xts64_precrypt_two     X0, r12, TMP0
> +       _xts64_precrypt_two     Y0, r12, TMP0
> +       _xts64_precrypt_two     X1, r12, TMP0
> +       _xts64_precrypt_two     Y1, r12, TMP0
> +       _xts64_precrypt_two     X2, r12, TMP0
> +       _xts64_precrypt_two     Y2, r12, TMP0
> +       _xts64_precrypt_two     X3, r12, TMP0
> +       _xts64_precrypt_two     Y3, r12, TMP0
> +       vuzp.32         Y0, X0
> +       vuzp.32         Y1, X1
> +       vuzp.32         Y2, X2
> +       vuzp.32         Y3, X3
> +.endif
> +
> +       // Do the cipher rounds
> +
> +       mov             r12, ROUND_KEYS
> +       mov             r6, NROUNDS
> +
> +.Lnext_round_\@:
> +.if \decrypting
> +.if \n == 64
> +       vld1.64         ROUND_KEY_L, [r12]
> +       sub             r12, #8
> +       vmov            ROUND_KEY_H, ROUND_KEY_L
> +.else
> +       vld1.32         {ROUND_KEY_L[],ROUND_KEY_H[]}, [r12]
> +       sub             r12, #4
> +.endif
> +       _speck_unround_128bytes \n
> +.else
> +.if \n == 64
> +       vld1.64         ROUND_KEY_L, [r12]!
> +       vmov            ROUND_KEY_H, ROUND_KEY_L
> +.else
> +       vld1.32         {ROUND_KEY_L[],ROUND_KEY_H[]}, [r12]!
> +.endif
> +       _speck_round_128bytes   \n
> +.endif
> +       subs            r6, r6, #1
> +       bne             .Lnext_round_\@
> +
> +       // Re-interleave the 'x' and 'y' elements of each block
> +.if \n == 64
> +       vswp            X0_L, Y0_H
> +       vswp            X1_L, Y1_H
> +       vswp            X2_L, Y2_H
> +       vswp            X3_L, Y3_H
> +.else
> +       vzip.32         Y0, X0
> +       vzip.32         Y1, X1
> +       vzip.32         Y2, X2
> +       vzip.32         Y3, X3
> +.endif
> +
> +       // XOR the encrypted/decrypted blocks with the tweaks we saved earlier
> +       mov             r12, sp
> +       vld1.8          {TMP0, TMP1}, [r12:128]!
> +       vld1.8          {TMP2, TMP3}, [r12:128]!
> +       veor            X0, TMP0
> +       veor            Y0, TMP1
> +       veor            X1, TMP2
> +       veor            Y1, TMP3
> +       vld1.8          {TMP0, TMP1}, [r12:128]!
> +       vld1.8          {TMP2, TMP3}, [r12:128]!
> +       veor            X2, TMP0
> +       veor            Y2, TMP1
> +       veor            X3, TMP2
> +       veor            Y3, TMP3
> +
> +       // Store the ciphertext in the destination buffer
> +       vst1.8          {X0, Y0}, [DST]!
> +       vst1.8          {X1, Y1}, [DST]!
> +       vst1.8          {X2, Y2}, [DST]!
> +       vst1.8          {X3, Y3}, [DST]!
> +
> +       // Continue if there are more 128-byte chunks remaining, else return
> +       subs            NBYTES, #128
> +       bne             .Lnext_128bytes_\@
> +
> +       // Store the next tweak
> +.if \n == 64
> +       vst1.8          {TWEAKV}, [TWEAK]
> +.else
> +       vst1.8          {TWEAKV_L}, [TWEAK]
> +.endif
> +
> +       mov             sp, r7
> +       pop             {r4-r7}
> +       bx              lr
> +.endm
> +
> +ENTRY(speck128_xts_encrypt_neon)
> +       _speck_xts_crypt        n=64, decrypting=0
> +ENDPROC(speck128_xts_encrypt_neon)
> +
> +ENTRY(speck128_xts_decrypt_neon)
> +       _speck_xts_crypt        n=64, decrypting=1
> +ENDPROC(speck128_xts_decrypt_neon)
> +
> +ENTRY(speck64_xts_encrypt_neon)
> +       _speck_xts_crypt        n=32, decrypting=0
> +ENDPROC(speck64_xts_encrypt_neon)
> +
> +ENTRY(speck64_xts_decrypt_neon)
> +       _speck_xts_crypt        n=32, decrypting=1
> +ENDPROC(speck64_xts_decrypt_neon)
> diff --git a/arch/arm/crypto/speck-neon-glue.c b/arch/arm/crypto/speck-neon-glue.c
> new file mode 100644
> index 000000000000..3987dd6e063e
> --- /dev/null
> +++ b/arch/arm/crypto/speck-neon-glue.c
> @@ -0,0 +1,290 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * NEON-accelerated implementation of Speck128-XTS and Speck64-XTS
> + *
> + * Copyright (c) 2018 Google, Inc
> + *
> + * Note: the NIST recommendation for XTS only specifies a 128-bit block size,
> + * but a 64-bit version (needed for Speck64) is fairly straightforward; the math
> + * is just done in GF(2^64) instead of GF(2^128), with the reducing polynomial
> + * x^64 + x^4 + x^3 + x + 1 from the original XEX paper (Rogaway, 2004:
> + * "Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes
> + * OCB and PMAC"), represented as 0x1B.
> + */
> +
> +#include <asm/hwcap.h>
> +#include <asm/neon.h>
> +#include <asm/simd.h>
> +#include <crypto/algapi.h>
> +#include <crypto/gf128mul.h>
> +#include <crypto/internal/skcipher.h>
> +#include <crypto/speck.h>
> +#include <crypto/xts.h>
> +#include <linux/kernel.h>
> +#include <linux/module.h>
> +
> +/* The assembly functions only handle multiples of 128 bytes */
> +#define SPECK_NEON_CHUNK_SIZE  128
> +
> +/* Speck128 */
> +
> +struct speck128_xts_tfm_ctx {
> +       struct speck128_tfm_ctx main_key;
> +       struct speck128_tfm_ctx tweak_key;
> +};
> +
> +asmlinkage void speck128_xts_encrypt_neon(const u64 *round_keys, int nrounds,
> +                                         void *dst, const void *src,
> +                                         unsigned int nbytes, void *tweak);
> +
> +asmlinkage void speck128_xts_decrypt_neon(const u64 *round_keys, int nrounds,
> +                                         void *dst, const void *src,
> +                                         unsigned int nbytes, void *tweak);
> +
> +typedef void (*speck128_crypt_one_t)(const struct speck128_tfm_ctx *,
> +                                    u8 *, const u8 *);
> +typedef void (*speck128_xts_crypt_many_t)(const u64 *, int, void *,
> +                                         const void *, unsigned int, void *);
> +
> +
> +static __always_inline int
> +__speck128_xts_crypt(struct skcipher_request *req,
> +                    speck128_crypt_one_t crypt_one,
> +                    speck128_xts_crypt_many_t crypt_many)
> +{
> +       struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
> +       const struct speck128_xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
> +       struct skcipher_walk walk;
> +       le128 tweak;
> +       int err;
> +
> +       err = skcipher_walk_virt(&walk, req, true);
> +
> +       crypto_speck128_encrypt(&ctx->tweak_key, (u8 *)&tweak, walk.iv);
> +
> +       while (walk.nbytes > 0) {
> +               unsigned int nbytes = walk.nbytes;
> +               u8 *dst = walk.dst.virt.addr;
> +               const u8 *src = walk.src.virt.addr;
> +
> +               if (nbytes >= SPECK_NEON_CHUNK_SIZE && may_use_simd()) {
> +                       unsigned int count;
> +
> +                       count = round_down(nbytes, SPECK_NEON_CHUNK_SIZE);
> +                       kernel_neon_begin();
> +                       (*crypt_many)(ctx->main_key.round_keys,
> +                                     ctx->main_key.nrounds,
> +                                     dst, src, count, &tweak);
> +                       kernel_neon_end();
> +                       dst += count;
> +                       src += count;
> +                       nbytes -= count;
> +               }
> +
> +               /* Handle any remainder with generic code */
> +               while (nbytes >= sizeof(le128)) {
> +                       le128_xor((le128 *)dst, (const le128 *)src, &tweak);
> +                       (*crypt_one)(&ctx->main_key, dst, dst);
> +                       le128_xor((le128 *)dst, (const le128 *)dst, &tweak);
> +                       gf128mul_x_ble(&tweak, &tweak);
> +
> +                       dst += sizeof(le128);
> +                       src += sizeof(le128);
> +                       nbytes -= sizeof(le128);
> +               }
> +               err = skcipher_walk_done(&walk, nbytes);
> +       }
> +
> +       return err;
> +}
> +
> +static int speck128_xts_encrypt(struct skcipher_request *req)
> +{
> +       return __speck128_xts_crypt(req, crypto_speck128_encrypt,
> +                                   speck128_xts_encrypt_neon);
> +
> +}
> +
> +static int speck128_xts_decrypt(struct skcipher_request *req)
> +{
> +       return __speck128_xts_crypt(req, crypto_speck128_decrypt,
> +                                   speck128_xts_decrypt_neon);
> +}
> +
> +static int speck128_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
> +                              unsigned int keylen)
> +{
> +       struct speck128_xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
> +       int err;
> +
> +       err = xts_verify_key(tfm, key, keylen);
> +       if (err)
> +               return err;
> +
> +       keylen /= 2;
> +
> +       err = crypto_speck128_setkey(&ctx->main_key, key, keylen);
> +       if (err)
> +               return err;
> +
> +       return crypto_speck128_setkey(&ctx->tweak_key, key + keylen, keylen);
> +}
> +
> +/* Speck64 */
> +
> +struct speck64_xts_tfm_ctx {
> +       struct speck64_tfm_ctx main_key;
> +       struct speck64_tfm_ctx tweak_key;
> +};
> +
> +asmlinkage void speck64_xts_encrypt_neon(const u32 *round_keys, int nrounds,
> +                                        void *dst, const void *src,
> +                                        unsigned int nbytes, void *tweak);
> +
> +asmlinkage void speck64_xts_decrypt_neon(const u32 *round_keys, int nrounds,
> +                                        void *dst, const void *src,
> +                                        unsigned int nbytes, void *tweak);
> +
> +typedef void (*speck64_crypt_one_t)(const struct speck64_tfm_ctx *,
> +                                   u8 *, const u8 *);
> +typedef void (*speck64_xts_crypt_many_t)(const u32 *, int, void *,
> +                                        const void *, unsigned int, void *);
> +
> +static __always_inline int
> +__speck64_xts_crypt(struct skcipher_request *req, speck64_crypt_one_t crypt_one,
> +                   speck64_xts_crypt_many_t crypt_many)
> +{
> +       struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
> +       const struct speck64_xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
> +       struct skcipher_walk walk;
> +       u64 tweak;
> +       int err;
> +
> +       err = skcipher_walk_virt(&walk, req, true);
> +
> +       crypto_speck64_encrypt(&ctx->tweak_key, (u8 *)&tweak, walk.iv);
> +
> +       while (walk.nbytes > 0) {
> +               unsigned int nbytes = walk.nbytes;
> +               u8 *dst = walk.dst.virt.addr;
> +               const u8 *src = walk.src.virt.addr;
> +
> +               if (nbytes >= SPECK_NEON_CHUNK_SIZE && may_use_simd()) {
> +                       unsigned int count;
> +
> +                       count = round_down(nbytes, SPECK_NEON_CHUNK_SIZE);
> +                       kernel_neon_begin();
> +                       (*crypt_many)(ctx->main_key.round_keys,
> +                                     ctx->main_key.nrounds,
> +                                     dst, src, count, &tweak);
> +                       kernel_neon_end();
> +                       dst += count;
> +                       src += count;
> +                       nbytes -= count;
> +               }
> +
> +               /* Handle any remainder with generic code */
> +               while (nbytes >= sizeof(u64)) {
> +                       *(u64 *)dst = *(u64 *)src ^ tweak;
> +                       (*crypt_one)(&ctx->main_key, dst, dst);
> +                       *(u64 *)dst ^= tweak;
> +                       tweak = (tweak << 1) ^
> +                               ((tweak & (1ULL << 63)) ? 0x1B : 0);
> +
> +                       dst += sizeof(u64);
> +                       src += sizeof(u64);
> +                       nbytes -= sizeof(u64);
> +               }
> +               err = skcipher_walk_done(&walk, nbytes);
> +       }
> +
> +       return err;
> +}
> +
> +static int speck64_xts_encrypt(struct skcipher_request *req)
> +{
> +       return __speck64_xts_crypt(req, crypto_speck64_encrypt,
> +                                  speck64_xts_encrypt_neon);
> +}
> +
> +static int speck64_xts_decrypt(struct skcipher_request *req)
> +{
> +       return __speck64_xts_crypt(req, crypto_speck64_decrypt,
> +                                  speck64_xts_decrypt_neon);
> +}
> +
> +static int speck64_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
> +                             unsigned int keylen)
> +{
> +       struct speck64_xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
> +       int err;
> +
> +       err = xts_verify_key(tfm, key, keylen);
> +       if (err)
> +               return err;
> +
> +       keylen /= 2;
> +
> +       err = crypto_speck64_setkey(&ctx->main_key, key, keylen);
> +       if (err)
> +               return err;
> +
> +       return crypto_speck64_setkey(&ctx->tweak_key, key + keylen, keylen);
> +}
> +
> +static struct skcipher_alg speck_algs[] = {
> +       {
> +               .base.cra_name          = "xts(speck128)",
> +               .base.cra_driver_name   = "xts-speck128-neon",
> +               .base.cra_priority      = 300,
> +               .base.cra_blocksize     = SPECK128_BLOCK_SIZE,
> +               .base.cra_ctxsize       = sizeof(struct speck128_xts_tfm_ctx),
> +               .base.cra_alignmask     = 7,
> +               .base.cra_module        = THIS_MODULE,
> +               .min_keysize            = 2 * SPECK128_128_KEY_SIZE,
> +               .max_keysize            = 2 * SPECK128_256_KEY_SIZE,
> +               .ivsize                 = SPECK128_BLOCK_SIZE,
> +               .walksize               = SPECK_NEON_CHUNK_SIZE,
> +               .setkey                 = speck128_xts_setkey,
> +               .encrypt                = speck128_xts_encrypt,
> +               .decrypt                = speck128_xts_decrypt,
> +       }, {
> +               .base.cra_name          = "xts(speck64)",
> +               .base.cra_driver_name   = "xts-speck64-neon",
> +               .base.cra_priority      = 300,
> +               .base.cra_blocksize     = SPECK64_BLOCK_SIZE,
> +               .base.cra_ctxsize       = sizeof(struct speck64_xts_tfm_ctx),
> +               .base.cra_alignmask     = 7,
> +               .base.cra_module        = THIS_MODULE,
> +               .min_keysize            = 2 * SPECK64_96_KEY_SIZE,
> +               .max_keysize            = 2 * SPECK64_128_KEY_SIZE,
> +               .ivsize                 = SPECK64_BLOCK_SIZE,
> +               .walksize               = SPECK_NEON_CHUNK_SIZE,
> +               .setkey                 = speck64_xts_setkey,
> +               .encrypt                = speck64_xts_encrypt,
> +               .decrypt                = speck64_xts_decrypt,
> +       }
> +};
> +
> +static int __init speck_neon_module_init(void)
> +{
> +       if (!(elf_hwcap & HWCAP_NEON))
> +               return -ENODEV;
> +       return crypto_register_skciphers(speck_algs, ARRAY_SIZE(speck_algs));
> +}
> +
> +static void __exit speck_neon_module_exit(void)
> +{
> +       crypto_unregister_skciphers(speck_algs, ARRAY_SIZE(speck_algs));
> +}
> +
> +module_init(speck_neon_module_init);
> +module_exit(speck_neon_module_exit);
> +
> +MODULE_DESCRIPTION("Speck block cipher (NEON-accelerated)");
> +MODULE_LICENSE("GPL");
> +MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
> +MODULE_ALIAS_CRYPTO("xts(speck128)");
> +MODULE_ALIAS_CRYPTO("xts-speck128-neon");
> +MODULE_ALIAS_CRYPTO("xts(speck64)");
> +MODULE_ALIAS_CRYPTO("xts-speck64-neon");
> --
> 2.16.0.rc1.238.g530d649a79-goog
>

  reply	other threads:[~2018-02-13 11:34 UTC|newest]

Thread overview: 53+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2018-02-12 23:52 [PATCH v2 0/5] crypto: Speck support Eric Biggers
2018-02-12 23:52 ` Eric Biggers
2018-02-12 23:52 ` [PATCH v2 1/5] crypto: add support for the Speck block cipher Eric Biggers
2018-02-12 23:52   ` Eric Biggers
2018-02-12 23:52 ` [PATCH v2 2/5] crypto: speck - export common helpers Eric Biggers
2018-02-12 23:52   ` Eric Biggers
2018-02-12 23:52 ` [PATCH v2 3/5] crypto: arm/speck - add NEON-accelerated implementation of Speck-XTS Eric Biggers
2018-02-12 23:52   ` Eric Biggers
2018-02-13 11:34   ` Ard Biesheuvel [this message]
2018-02-13 11:34     ` Ard Biesheuvel
2018-02-13 18:57     ` Eric Biggers
2018-02-13 18:57       ` Eric Biggers
2018-02-13 19:04       ` Ard Biesheuvel
2018-02-13 19:04         ` Ard Biesheuvel
2018-02-13 19:04         ` Ard Biesheuvel
2018-02-12 23:52 ` [PATCH v2 4/5] crypto: speck - add test vectors for Speck128-XTS Eric Biggers
2018-02-12 23:52   ` Eric Biggers
2018-02-12 23:52 ` [PATCH v2 5/5] crypto: speck - add test vectors for Speck64-XTS Eric Biggers
2018-02-12 23:52   ` Eric Biggers
2018-04-24 16:11 ` [PATCH v2 0/5] crypto: Speck support Jason A. Donenfeld
2018-04-24 16:11   ` Jason A. Donenfeld
2018-04-24 16:11   ` Jason A. Donenfeld
2018-04-24 18:16   ` Eric Biggers
2018-04-24 18:16     ` Eric Biggers
2018-04-24 18:16     ` Eric Biggers
2018-04-24 20:58     ` Jason A. Donenfeld
2018-04-24 20:58       ` Jason A. Donenfeld
2018-04-24 20:58       ` Jason A. Donenfeld
2018-04-24 21:58       ` Paul Crowley
2018-04-24 21:58         ` Paul Crowley
2018-04-24 21:58         ` Paul Crowley
2018-04-24 22:47       ` Eric Biggers
2018-04-24 22:47         ` Eric Biggers
2018-04-24 22:47         ` Eric Biggers
2018-04-25 14:33         ` Samuel Neves
2018-04-25 14:33           ` Samuel Neves
2018-04-25 14:33           ` Samuel Neves
2018-04-25 19:49           ` Eric Biggers
2018-04-25 19:49             ` Eric Biggers
2018-04-25 19:49             ` Eric Biggers
2018-04-26  2:05             ` Samuel Neves
2018-04-26  2:05               ` Samuel Neves
2018-04-26  2:05               ` Samuel Neves
2018-04-26 16:30               ` Paul Crowley
2018-04-26 16:30                 ` Paul Crowley
2018-04-26 16:30                 ` Paul Crowley
2018-05-07 23:20               ` Eric Biggers
2018-05-07 23:20                 ` Eric Biggers
2018-05-07 23:20                 ` Eric Biggers
2018-04-25  5:30       ` Theodore Y. Ts'o
2018-04-24 22:43   ` Jeffrey Walton
2018-04-24 22:43     ` Jeffrey Walton
2018-04-24 22:43     ` Jeffrey Walton

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to='CAKv+Gu83C_AsxrL_PzJowTUeE=ba8PBHT6NmiWjVghtJM7p_nw@mail.gmail.com' \
    --to=ard.biesheuvel@linaro.org \
    --cc=alexcope@google.com \
    --cc=ebiggers@google.com \
    --cc=gkaiser@google.com \
    --cc=gregkh@linuxfoundation.org \
    --cc=herbert@gondor.apana.org.au \
    --cc=linux-arm-kernel@lists.infradead.org \
    --cc=linux-crypto@vger.kernel.org \
    --cc=linux-fscrypt@vger.kernel.org \
    --cc=mhalcrow@google.com \
    --cc=noloader@gmail.com \
    --cc=paulcrowley@google.com \
    --cc=paullawrence@google.com \
    --cc=totte@google.com \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.