All of lore.kernel.org
 help / color / mirror / Atom feed
* [PATCH net-next 0/2] Update BPF documentation
@ 2014-06-10 15:44 Daniel Borkmann
  2014-06-10 15:44 ` [PATCH net-next 1/2] net: filter: mention eBPF terminology as well Daniel Borkmann
                   ` (2 more replies)
  0 siblings, 3 replies; 4+ messages in thread
From: Daniel Borkmann @ 2014-06-10 15:44 UTC (permalink / raw)
  To: davem; +Cc: ast, netdev

This set contains some important updates on the BPF documentation.
I have rebased the set on top of the pending rename in [1] that
touches one line from the doc as well, but actually there shouldn't
be conflicts either way. If so nevertheless, please let me know.

Thanks!

  [1] http://patchwork.ozlabs.org/patch/357025/

Alexei Starovoitov (2):
  net: filter: mention eBPF terminology as well
  net: filter: document internal instruction encoding

 Documentation/networking/filter.txt | 246 ++++++++++++++++++++++++++++++------
 1 file changed, 204 insertions(+), 42 deletions(-)

-- 
1.7.11.7

^ permalink raw reply	[flat|nested] 4+ messages in thread

* [PATCH net-next 1/2] net: filter: mention eBPF terminology as well
  2014-06-10 15:44 [PATCH net-next 0/2] Update BPF documentation Daniel Borkmann
@ 2014-06-10 15:44 ` Daniel Borkmann
  2014-06-10 15:44 ` [PATCH net-next 2/2] net: filter: document internal instruction encoding Daniel Borkmann
  2014-06-11 22:40 ` [PATCH net-next 0/2] Update BPF documentation David Miller
  2 siblings, 0 replies; 4+ messages in thread
From: Daniel Borkmann @ 2014-06-10 15:44 UTC (permalink / raw)
  To: davem; +Cc: ast, netdev

From: Alexei Starovoitov <ast@plumgrid.com>

Since the term eBPF is used anyway on mailing list discussions, lets
also document that in the main BPF documentation file and replace a
couple of occurrences with eBPF terminology to be more clear.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
---
 Documentation/networking/filter.txt | 85 +++++++++++++++++++------------------
 1 file changed, 43 insertions(+), 42 deletions(-)

diff --git a/Documentation/networking/filter.txt b/Documentation/networking/filter.txt
index 9f49b86..1c7fc6b 100644
--- a/Documentation/networking/filter.txt
+++ b/Documentation/networking/filter.txt
@@ -561,42 +561,43 @@ toolchain for developing and testing the kernel's JIT compiler.
 
 BPF kernel internals
 --------------------
-Internally, for the kernel interpreter, a different BPF instruction set
+Internally, for the kernel interpreter, a different instruction set
 format with similar underlying principles from BPF described in previous
 paragraphs is being used. However, the instruction set format is modelled
 closer to the underlying architecture to mimic native instruction sets, so
-that a better performance can be achieved (more details later).
+that a better performance can be achieved (more details later). This new
+ISA is called 'eBPF' or 'internal BPF' interchangeably. (Note: eBPF which
+originates from [e]xtended BPF is not the same as BPF extensions! While
+eBPF is an ISA, BPF extensions date back to classic BPF's 'overloading'
+of BPF_LD | BPF_{B,H,W} | BPF_ABS instruction.)
 
 It is designed to be JITed with one to one mapping, which can also open up
-the possibility for GCC/LLVM compilers to generate optimized BPF code through
-a BPF backend that performs almost as fast as natively compiled code.
+the possibility for GCC/LLVM compilers to generate optimized eBPF code through
+an eBPF backend that performs almost as fast as natively compiled code.
 
 The new instruction set was originally designed with the possible goal in
-mind to write programs in "restricted C" and compile into BPF with a optional
+mind to write programs in "restricted C" and compile into eBPF with a optional
 GCC/LLVM backend, so that it can just-in-time map to modern 64-bit CPUs with
-minimal performance overhead over two steps, that is, C -> BPF -> native code.
+minimal performance overhead over two steps, that is, C -> eBPF -> native code.
 
 Currently, the new format is being used for running user BPF programs, which
 includes seccomp BPF, classic socket filters, cls_bpf traffic classifier,
 team driver's classifier for its load-balancing mode, netfilter's xt_bpf
 extension, PTP dissector/classifier, and much more. They are all internally
 converted by the kernel into the new instruction set representation and run
-in the extended interpreter. For in-kernel handlers, this all works
-transparently by using sk_unattached_filter_create() for setting up the
-filter, resp. sk_unattached_filter_destroy() for destroying it. The macro
-SK_RUN_FILTER(filter, ctx) transparently invokes the right BPF function to
-run the filter. 'filter' is a pointer to struct sk_filter that we got from
-sk_unattached_filter_create(), and 'ctx' the given context (e.g. skb pointer).
-All constraints and restrictions from sk_chk_filter() apply before a
-conversion to the new layout is being done behind the scenes!
-
-Currently, for JITing, the user BPF format is being used and current BPF JIT
-compilers reused whenever possible. In other words, we do not (yet!) perform
-a JIT compilation in the new layout, however, future work will successively
-migrate traditional JIT compilers into the new instruction format as well, so
-that they will profit from the very same benefits. Thus, when speaking about
-JIT in the following, a JIT compiler (TBD) for the new instruction format is
-meant in this context.
+in the eBPF interpreter. For in-kernel handlers, this all works transparently
+by using sk_unattached_filter_create() for setting up the filter, resp.
+sk_unattached_filter_destroy() for destroying it. The macro
+SK_RUN_FILTER(filter, ctx) transparently invokes eBPF interpreter or JITed
+code to run the filter. 'filter' is a pointer to struct sk_filter that we
+got from sk_unattached_filter_create(), and 'ctx' the given context (e.g.
+skb pointer). All constraints and restrictions from sk_chk_filter() apply
+before a conversion to the new layout is being done behind the scenes!
+
+Currently, the classic BPF format is being used for JITing on most of the
+architectures. Only x86-64 performs JIT compilation from eBPF instruction set,
+however, future work will migrate other JIT compilers as well, so that they
+will profit from the very same benefits.
 
 Some core changes of the new internal format:
 
@@ -605,35 +606,35 @@ Some core changes of the new internal format:
   The old format had two registers A and X, and a hidden frame pointer. The
   new layout extends this to be 10 internal registers and a read-only frame
   pointer. Since 64-bit CPUs are passing arguments to functions via registers
-  the number of args from BPF program to in-kernel function is restricted
+  the number of args from eBPF program to in-kernel function is restricted
   to 5 and one register is used to accept return value from an in-kernel
   function. Natively, x86_64 passes first 6 arguments in registers, aarch64/
   sparcv9/mips64 have 7 - 8 registers for arguments; x86_64 has 6 callee saved
   registers, and aarch64/sparcv9/mips64 have 11 or more callee saved registers.
 
-  Therefore, BPF calling convention is defined as:
+  Therefore, eBPF calling convention is defined as:
 
-    * R0	- return value from in-kernel function, and exit value for BPF program
-    * R1 - R5	- arguments from BPF program to in-kernel function
+    * R0	- return value from in-kernel function, and exit value for eBPF program
+    * R1 - R5	- arguments from eBPF program to in-kernel function
     * R6 - R9	- callee saved registers that in-kernel function will preserve
     * R10	- read-only frame pointer to access stack
 
-  Thus, all BPF registers map one to one to HW registers on x86_64, aarch64,
-  etc, and BPF calling convention maps directly to ABIs used by the kernel on
+  Thus, all eBPF registers map one to one to HW registers on x86_64, aarch64,
+  etc, and eBPF calling convention maps directly to ABIs used by the kernel on
   64-bit architectures.
 
   On 32-bit architectures JIT may map programs that use only 32-bit arithmetic
   and may let more complex programs to be interpreted.
 
-  R0 - R5 are scratch registers and BPF program needs spill/fill them if
-  necessary across calls. Note that there is only one BPF program (== one BPF
-  main routine) and it cannot call other BPF functions, it can only call
-  predefined in-kernel functions, though.
+  R0 - R5 are scratch registers and eBPF program needs spill/fill them if
+  necessary across calls. Note that there is only one eBPF program (== one
+  eBPF main routine) and it cannot call other eBPF functions, it can only
+  call predefined in-kernel functions, though.
 
 - Register width increases from 32-bit to 64-bit:
 
   Still, the semantics of the original 32-bit ALU operations are preserved
-  via 32-bit subregisters. All BPF registers are 64-bit with 32-bit lower
+  via 32-bit subregisters. All eBPF registers are 64-bit with 32-bit lower
   subregisters that zero-extend into 64-bit if they are being written to.
   That behavior maps directly to x86_64 and arm64 subregister definition, but
   makes other JITs more difficult.
@@ -644,8 +645,8 @@ Some core changes of the new internal format:
 
   Operation is 64-bit, because on 64-bit architectures, pointers are also
   64-bit wide, and we want to pass 64-bit values in/out of kernel functions,
-  so 32-bit BPF registers would otherwise require to define register-pair
-  ABI, thus, there won't be able to use a direct BPF register to HW register
+  so 32-bit eBPF registers would otherwise require to define register-pair
+  ABI, thus, there won't be able to use a direct eBPF register to HW register
   mapping and JIT would need to do combine/split/move operations for every
   register in and out of the function, which is complex, bug prone and slow.
   Another reason is the use of atomic 64-bit counters.
@@ -690,7 +691,7 @@ Some core changes of the new internal format:
     subq %rsi, %rax
     ret
 
-  Function f2 in BPF may look like:
+  Function f2 in eBPF may look like:
 
   f2:
     bpf_mov R2, R1
@@ -702,7 +703,7 @@ Some core changes of the new internal format:
   returns will be seamless. Without JIT, __sk_run_filter() interpreter needs to
   be used to call into f2.
 
-  For practical reasons all BPF programs have only one argument 'ctx' which is
+  For practical reasons all eBPF programs have only one argument 'ctx' which is
   already placed into R1 (e.g. on __sk_run_filter() startup) and the programs
   can call kernel functions with up to 5 arguments. Calls with 6 or more arguments
   are currently not supported, but these restrictions can be lifted if necessary
@@ -779,9 +780,9 @@ Some core changes of the new internal format:
 
   In-kernel functions foo() and bar() with prototype: u64 (*)(u64 arg1, u64
   arg2, u64 arg3, u64 arg4, u64 arg5); will receive arguments in proper
-  registers and place their return value into '%rax' which is R0 in BPF.
+  registers and place their return value into '%rax' which is R0 in eBPF.
   Prologue and epilogue are emitted by JIT and are implicit in the
-  interpreter. R0-R5 are scratch registers, so BPF program needs to preserve
+  interpreter. R0-R5 are scratch registers, so eBPF program needs to preserve
   them across the calls as defined by calling convention.
 
   For example the following program is invalid:
@@ -792,12 +793,12 @@ Some core changes of the new internal format:
     bpf_exit
 
   After the call the registers R1-R5 contain junk values and cannot be read.
-  In the future a BPF verifier can be used to validate internal BPF programs.
+  In the future an eBPF verifier can be used to validate internal BPF programs.
 
-Also in the new design, BPF is limited to 4096 insns, which means that any
+Also in the new design, eBPF is limited to 4096 insns, which means that any
 program will terminate quickly and will only call a fixed number of kernel
 functions. Original BPF and the new format are two operand instructions,
-which helps to do one-to-one mapping between BPF insn and x86 insn during JIT.
+which helps to do one-to-one mapping between eBPF insn and x86 insn during JIT.
 
 The input context pointer for invoking the interpreter function is generic,
 its content is defined by a specific use case. For seccomp register R1 points
-- 
1.7.11.7

^ permalink raw reply related	[flat|nested] 4+ messages in thread

* [PATCH net-next 2/2] net: filter: document internal instruction encoding
  2014-06-10 15:44 [PATCH net-next 0/2] Update BPF documentation Daniel Borkmann
  2014-06-10 15:44 ` [PATCH net-next 1/2] net: filter: mention eBPF terminology as well Daniel Borkmann
@ 2014-06-10 15:44 ` Daniel Borkmann
  2014-06-11 22:40 ` [PATCH net-next 0/2] Update BPF documentation David Miller
  2 siblings, 0 replies; 4+ messages in thread
From: Daniel Borkmann @ 2014-06-10 15:44 UTC (permalink / raw)
  To: davem; +Cc: ast, netdev

From: Alexei Starovoitov <ast@plumgrid.com>

This patch adds a description of eBPFs instruction encoding in order
to bring the documentation in line with the implementation.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
---
 Documentation/networking/filter.txt | 161 ++++++++++++++++++++++++++++++++++++
 1 file changed, 161 insertions(+)

diff --git a/Documentation/networking/filter.txt b/Documentation/networking/filter.txt
index 1c7fc6b..ee78eba 100644
--- a/Documentation/networking/filter.txt
+++ b/Documentation/networking/filter.txt
@@ -834,6 +834,167 @@ loops and other CFG validation; second step starts from the first insn and
 descends all possible paths. It simulates execution of every insn and observes
 the state change of registers and stack.
 
+eBPF opcode encoding
+--------------------
+
+eBPF is reusing most of the opcode encoding from classic to simplify conversion
+of classic BPF to eBPF. For arithmetic and jump instructions the 8-bit 'code'
+field is divided into three parts:
+
+  +----------------+--------+--------------------+
+  |   4 bits       |  1 bit |   3 bits           |
+  | operation code | source | instruction class  |
+  +----------------+--------+--------------------+
+  (MSB)                                      (LSB)
+
+Three LSB bits store instruction class which is one of:
+
+  Classic BPF classes:    eBPF classes:
+
+  BPF_LD    0x00          BPF_LD    0x00
+  BPF_LDX   0x01          BPF_LDX   0x01
+  BPF_ST    0x02          BPF_ST    0x02
+  BPF_STX   0x03          BPF_STX   0x03
+  BPF_ALU   0x04          BPF_ALU   0x04
+  BPF_JMP   0x05          BPF_JMP   0x05
+  BPF_RET   0x06          [ class 6 unused, for future if needed ]
+  BPF_MISC  0x07          BPF_ALU64 0x07
+
+When BPF_CLASS(code) == BPF_ALU or BPF_JMP, 4th bit encodes source operand ...
+
+  BPF_K     0x00
+  BPF_X     0x08
+
+ * in classic BPF, this means:
+
+  BPF_SRC(code) == BPF_X - use register X as source operand
+  BPF_SRC(code) == BPF_K - use 32-bit immediate as source operand
+
+ * in eBPF, this means:
+
+  BPF_SRC(code) == BPF_X - use 'src_reg' register as source operand
+  BPF_SRC(code) == BPF_K - use 32-bit immediate as source operand
+
+... and four MSB bits store operation code.
+
+If BPF_CLASS(code) == BPF_ALU or BPF_ALU64 [ in eBPF ], BPF_OP(code) is one of:
+
+  BPF_ADD   0x00
+  BPF_SUB   0x10
+  BPF_MUL   0x20
+  BPF_DIV   0x30
+  BPF_OR    0x40
+  BPF_AND   0x50
+  BPF_LSH   0x60
+  BPF_RSH   0x70
+  BPF_NEG   0x80
+  BPF_MOD   0x90
+  BPF_XOR   0xa0
+  BPF_MOV   0xb0  /* eBPF only: mov reg to reg */
+  BPF_ARSH  0xc0  /* eBPF only: sign extending shift right */
+  BPF_END   0xd0  /* eBPF only: endianness conversion */
+
+If BPF_CLASS(code) == BPF_JMP, BPF_OP(code) is one of:
+
+  BPF_JA    0x00
+  BPF_JEQ   0x10
+  BPF_JGT   0x20
+  BPF_JGE   0x30
+  BPF_JSET  0x40
+  BPF_JNE   0x50  /* eBPF only: jump != */
+  BPF_JSGT  0x60  /* eBPF only: signed '>' */
+  BPF_JSGE  0x70  /* eBPF only: signed '>=' */
+  BPF_CALL  0x80  /* eBPF only: function call */
+  BPF_EXIT  0x90  /* eBPF only: function return */
+
+So BPF_ADD | BPF_X | BPF_ALU means 32-bit addition in both classic BPF
+and eBPF. There are only two registers in classic BPF, so it means A += X.
+In eBPF it means dst_reg = (u32) dst_reg + (u32) src_reg; similarly,
+BPF_XOR | BPF_K | BPF_ALU means A ^= imm32 in classic BPF and analogous
+src_reg = (u32) src_reg ^ (u32) imm32 in eBPF.
+
+Classic BPF is using BPF_MISC class to represent A = X and X = A moves.
+eBPF is using BPF_MOV | BPF_X | BPF_ALU code instead. Since there are no
+BPF_MISC operations in eBPF, the class 7 is used as BPF_ALU64 to mean
+exactly the same operations as BPF_ALU, but with 64-bit wide operands
+instead. So BPF_ADD | BPF_X | BPF_ALU64 means 64-bit addition, i.e.:
+dst_reg = dst_reg + src_reg
+
+Classic BPF wastes the whole BPF_RET class to represent a single 'ret'
+operation. Classic BPF_RET | BPF_K means copy imm32 into return register
+and perform function exit. eBPF is modeled to match CPU, so BPF_JMP | BPF_EXIT
+in eBPF means function exit only. The eBPF program needs to store return
+value into register R0 before doing a BPF_EXIT. Class 6 in eBPF is currently
+unused and reserved for future use.
+
+For load and store instructions the 8-bit 'code' field is divided as:
+
+  +--------+--------+-------------------+
+  | 3 bits | 2 bits |   3 bits          |
+  |  mode  |  size  | instruction class |
+  +--------+--------+-------------------+
+  (MSB)                             (LSB)
+
+Size modifier is one of ...
+
+  BPF_W   0x00    /* word */
+  BPF_H   0x08    /* half word */
+  BPF_B   0x10    /* byte */
+  BPF_DW  0x18    /* eBPF only, double word */
+
+... which encodes size of load/store operation:
+
+ B  - 1 byte
+ H  - 2 byte
+ W  - 4 byte
+ DW - 8 byte (eBPF only)
+
+Mode modifier is one of:
+
+  BPF_IMM  0x00  /* classic BPF only, reserved in eBPF */
+  BPF_ABS  0x20
+  BPF_IND  0x40
+  BPF_MEM  0x60
+  BPF_LEN  0x80  /* classic BPF only, reserved in eBPF */
+  BPF_MSH  0xa0  /* classic BPF only, reserved in eBPF */
+  BPF_XADD 0xc0  /* eBPF only, exclusive add */
+
+eBPF has two non-generic instructions: (BPF_ABS | <size> | BPF_LD) and
+(BPF_IND | <size> | BPF_LD) which are used to access packet data.
+
+They had to be carried over from classic to have strong performance of
+socket filters running in eBPF interpreter. These instructions can only
+be used when interpreter context is a pointer to 'struct sk_buff' and
+have seven implicit operands. Register R6 is an implicit input that must
+contain pointer to sk_buff. Register R0 is an implicit output which contains
+the data fetched from the packet. Registers R1-R5 are scratch registers
+and must not be used to store the data across BPF_ABS | BPF_LD or
+BPF_IND | BPF_LD instructions.
+
+These instructions have implicit program exit condition as well. When
+eBPF program is trying to access the data beyond the packet boundary,
+the interpreter will abort the execution of the program. JIT compilers
+therefore must preserve this property. src_reg and imm32 fields are
+explicit inputs to these instructions.
+
+For example:
+
+  BPF_IND | BPF_W | BPF_LD means:
+
+    R0 = ntohl(*(u32 *) (((struct sk_buff *) R6)->data + src_reg + imm32))
+    and R1 - R5 were scratched.
+
+Unlike classic BPF instruction set, eBPF has generic load/store operations:
+
+BPF_MEM | <size> | BPF_STX:  *(size *) (dst_reg + off) = src_reg
+BPF_MEM | <size> | BPF_ST:   *(size *) (dst_reg + off) = imm32
+BPF_MEM | <size> | BPF_LDX:  dst_reg = *(size *) (src_reg + off)
+BPF_XADD | BPF_W  | BPF_STX: lock xadd *(u32 *)(dst_reg + off16) += src_reg
+BPF_XADD | BPF_DW | BPF_STX: lock xadd *(u64 *)(dst_reg + off16) += src_reg
+
+Where size is one of: BPF_B or BPF_H or BPF_W or BPF_DW. Note that 1 and
+2 byte atomic increments are not supported.
+
 Testing
 -------
 
-- 
1.7.11.7

^ permalink raw reply related	[flat|nested] 4+ messages in thread

* Re: [PATCH net-next 0/2] Update BPF documentation
  2014-06-10 15:44 [PATCH net-next 0/2] Update BPF documentation Daniel Borkmann
  2014-06-10 15:44 ` [PATCH net-next 1/2] net: filter: mention eBPF terminology as well Daniel Borkmann
  2014-06-10 15:44 ` [PATCH net-next 2/2] net: filter: document internal instruction encoding Daniel Borkmann
@ 2014-06-11 22:40 ` David Miller
  2 siblings, 0 replies; 4+ messages in thread
From: David Miller @ 2014-06-11 22:40 UTC (permalink / raw)
  To: dborkman; +Cc: ast, netdev

From: Daniel Borkmann <dborkman@redhat.com>
Date: Tue, 10 Jun 2014 17:44:05 +0200

> This set contains some important updates on the BPF documentation.
> I have rebased the set on top of the pending rename in [1] that
> touches one line from the doc as well, but actually there shouldn't
> be conflicts either way. If so nevertheless, please let me know.

Series applied.

^ permalink raw reply	[flat|nested] 4+ messages in thread

end of thread, other threads:[~2014-06-11 22:40 UTC | newest]

Thread overview: 4+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2014-06-10 15:44 [PATCH net-next 0/2] Update BPF documentation Daniel Borkmann
2014-06-10 15:44 ` [PATCH net-next 1/2] net: filter: mention eBPF terminology as well Daniel Borkmann
2014-06-10 15:44 ` [PATCH net-next 2/2] net: filter: document internal instruction encoding Daniel Borkmann
2014-06-11 22:40 ` [PATCH net-next 0/2] Update BPF documentation David Miller

This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.