All of lore.kernel.org
 help / color / mirror / Atom feed
* [PATCH 1/2] reimplement flush_workqueue()
@ 2006-12-29 17:18 Oleg Nesterov
  2007-01-09  5:01 ` Srivatsa Vaddagiri
  0 siblings, 1 reply; 3+ messages in thread
From: Oleg Nesterov @ 2006-12-29 17:18 UTC (permalink / raw)
  To: Andrew Morton
  Cc: Ingo Molnar, David Howells, Christoph Hellwig, Gautham R Shenoy,
	linux-kernel

Remove ->remove_sequence, ->insert_sequence, and ->work_done from struct
cpu_workqueue_struct. To implement flush_workqueue() we can queue a barrier
work on each CPU and wait for its completition.

The barrier is queued under workqueue_mutex to ensure that per cpu wq->cpu_wq
is alive, we drop this mutex before going to sleep. If CPU goes down while we
are waiting for completition, take_over_work() will move the barrier on another
CPU, and the handler will wake up us eventually.

I removed 'int cpu' parameter, flush_workqueue() locks/unlocks workqueue_mutex
unconditionally. It may be restored, but I think it doesn't make much sense, we
take the mutex for the very short time, and the code becomes simpler.

Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>

 workqueue.c |   92 ++++++++++++++++++++++--------------------------------------
 1 files changed, 34 insertions(+), 58 deletions(-)

--- mm-6.20-rc2/kernel/workqueue.c~1_flush_q	2006-12-29 17:16:37.000000000 +0300
+++ mm-6.20-rc2/kernel/workqueue.c	2006-12-29 17:44:43.000000000 +0300
@@ -36,23 +36,13 @@
 /*
  * The per-CPU workqueue (if single thread, we always use the first
  * possible cpu).
- *
- * The sequence counters are for flush_scheduled_work().  It wants to wait
- * until all currently-scheduled works are completed, but it doesn't
- * want to be livelocked by new, incoming ones.  So it waits until
- * remove_sequence is >= the insert_sequence which pertained when
- * flush_scheduled_work() was called.
  */
 struct cpu_workqueue_struct {
 
 	spinlock_t lock;
 
-	long remove_sequence;	/* Least-recently added (next to run) */
-	long insert_sequence;	/* Next to add */
-
 	struct list_head worklist;
 	wait_queue_head_t more_work;
-	wait_queue_head_t work_done;
 
 	struct workqueue_struct *wq;
 	struct task_struct *thread;
@@ -138,8 +128,6 @@ static int __run_work(struct cpu_workque
 		f(work);
 
 		spin_lock_irqsave(&cwq->lock, flags);
-		cwq->remove_sequence++;
-		wake_up(&cwq->work_done);
 		ret = 1;
 	}
 	spin_unlock_irqrestore(&cwq->lock, flags);
@@ -187,7 +175,6 @@ static void __queue_work(struct cpu_work
 	spin_lock_irqsave(&cwq->lock, flags);
 	set_wq_data(work, cwq);
 	list_add_tail(&work->entry, &cwq->worklist);
-	cwq->insert_sequence++;
 	wake_up(&cwq->more_work);
 	spin_unlock_irqrestore(&cwq->lock, flags);
 }
@@ -338,8 +325,6 @@ static void run_workqueue(struct cpu_wor
 		}
 
 		spin_lock_irqsave(&cwq->lock, flags);
-		cwq->remove_sequence++;
-		wake_up(&cwq->work_done);
 	}
 	cwq->run_depth--;
 	spin_unlock_irqrestore(&cwq->lock, flags);
@@ -394,45 +379,44 @@ static int worker_thread(void *__cwq)
 	return 0;
 }
 
-/*
- * If cpu == -1 it's a single-threaded workqueue and the caller does not hold
- * workqueue_mutex
- */
-static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq, int cpu)
+struct wq_barrier {
+	struct work_struct	work;
+	struct completion	done;
+};
+
+static void wq_barrier_func(struct work_struct *work)
+{
+	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
+	complete(&barr->done);
+}
+
+static inline void init_wq_barrier(struct wq_barrier *barr)
+{
+	INIT_WORK(&barr->work, wq_barrier_func);
+	__set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
+
+	init_completion(&barr->done);
+}
+
+static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
 {
 	if (cwq->thread == current) {
 		/*
 		 * Probably keventd trying to flush its own queue. So simply run
 		 * it by hand rather than deadlocking.
 		 */
-		if (cpu != -1)
-			mutex_unlock(&workqueue_mutex);
+		mutex_unlock(&workqueue_mutex);
 		run_workqueue(cwq);
-		if (cpu != -1)
-			mutex_lock(&workqueue_mutex);
+		mutex_lock(&workqueue_mutex);
 	} else {
-		DEFINE_WAIT(wait);
-		long sequence_needed;
+		struct wq_barrier barr;
 
-		spin_lock_irq(&cwq->lock);
-		sequence_needed = cwq->insert_sequence;
+		init_wq_barrier(&barr);
+		__queue_work(cwq, &barr.work);
 
-		while (sequence_needed - cwq->remove_sequence > 0) {
-			prepare_to_wait(&cwq->work_done, &wait,
-					TASK_UNINTERRUPTIBLE);
-			spin_unlock_irq(&cwq->lock);
-			if (cpu != -1)
-				mutex_unlock(&workqueue_mutex);
-			schedule();
-			if (cpu != -1) {
-				mutex_lock(&workqueue_mutex);
-				if (!cpu_online(cpu))
-					return; /* oops, CPU unplugged */
-			}
-			spin_lock_irq(&cwq->lock);
-		}
-		finish_wait(&cwq->work_done, &wait);
-		spin_unlock_irq(&cwq->lock);
+		mutex_unlock(&workqueue_mutex);
+		wait_for_completion(&barr.done);
+		mutex_lock(&workqueue_mutex);
 	}
 }
 
@@ -443,30 +427,25 @@ static void flush_cpu_workqueue(struct c
  * Forces execution of the workqueue and blocks until its completion.
  * This is typically used in driver shutdown handlers.
  *
- * This function will sample each workqueue's current insert_sequence number and
- * will sleep until the head sequence is greater than or equal to that.  This
- * means that we sleep until all works which were queued on entry have been
- * handled, but we are not livelocked by new incoming ones.
+ * We sleep until all works which were queued on entry have been handled,
+ * but we are not livelocked by new incoming ones.
  *
  * This function used to run the workqueues itself.  Now we just wait for the
  * helper threads to do it.
  */
 void fastcall flush_workqueue(struct workqueue_struct *wq)
 {
-	might_sleep();
-
+	mutex_lock(&workqueue_mutex);
 	if (is_single_threaded(wq)) {
 		/* Always use first cpu's area. */
-		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu),
-					-1);
+		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
 	} else {
 		int cpu;
 
-		mutex_lock(&workqueue_mutex);
 		for_each_online_cpu(cpu)
-			flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu), cpu);
-		mutex_unlock(&workqueue_mutex);
+			flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
 	}
+	mutex_unlock(&workqueue_mutex);
 }
 EXPORT_SYMBOL_GPL(flush_workqueue);
 
@@ -479,12 +458,9 @@ static struct task_struct *create_workqu
 	spin_lock_init(&cwq->lock);
 	cwq->wq = wq;
 	cwq->thread = NULL;
-	cwq->insert_sequence = 0;
-	cwq->remove_sequence = 0;
 	cwq->freezeable = freezeable;
 	INIT_LIST_HEAD(&cwq->worklist);
 	init_waitqueue_head(&cwq->more_work);
-	init_waitqueue_head(&cwq->work_done);
 
 	if (is_single_threaded(wq))
 		p = kthread_create(worker_thread, cwq, "%s", wq->name);


^ permalink raw reply	[flat|nested] 3+ messages in thread

* Re: [PATCH 1/2] reimplement flush_workqueue()
  2006-12-29 17:18 [PATCH 1/2] reimplement flush_workqueue() Oleg Nesterov
@ 2007-01-09  5:01 ` Srivatsa Vaddagiri
  2007-01-09 15:55   ` Oleg Nesterov
  0 siblings, 1 reply; 3+ messages in thread
From: Srivatsa Vaddagiri @ 2007-01-09  5:01 UTC (permalink / raw)
  To: Oleg Nesterov
  Cc: Andrew Morton, Ingo Molnar, David Howells, Christoph Hellwig,
	Gautham R Shenoy, linux-kernel

On Fri, Dec 29, 2006 at 08:18:27PM +0300, Oleg Nesterov wrote:
> Remove ->remove_sequence, ->insert_sequence, and ->work_done from struct
> cpu_workqueue_struct. To implement flush_workqueue() we can queue a barrier
> work on each CPU and wait for its completition.

Oleg,
	Because of this change, was curious to know if this is possible:


CPU0					CPU1
(Thread0)

flush_workqueue()
					queue_work(W1)	
  flush_cpu_workqueue(cpu1)
    insert_barrier(B1)
      wait_on_completion();
	
					run_workqueue()
					   W1.func();
					     flush_workqueue();
						B1.func(); <- wakes Thread0

The intention of barrier B1 was to wait untill W1 was -complete-. If
W1.func()->....->something() were to call flush_workqueue on the same
workqueue, then we would be returning from the barrier prematurely.

Looks possible in theory. Don't know if it is a practical issue.

-- 
Regards,
vatsa

^ permalink raw reply	[flat|nested] 3+ messages in thread

* Re: [PATCH 1/2] reimplement flush_workqueue()
  2007-01-09  5:01 ` Srivatsa Vaddagiri
@ 2007-01-09 15:55   ` Oleg Nesterov
  0 siblings, 0 replies; 3+ messages in thread
From: Oleg Nesterov @ 2007-01-09 15:55 UTC (permalink / raw)
  To: Srivatsa Vaddagiri
  Cc: Andrew Morton, Ingo Molnar, David Howells, Christoph Hellwig,
	Gautham R Shenoy, linux-kernel

On 01/09, Srivatsa Vaddagiri wrote:
>
> On Fri, Dec 29, 2006 at 08:18:27PM +0300, Oleg Nesterov wrote:
> > Remove ->remove_sequence, ->insert_sequence, and ->work_done from struct
> > cpu_workqueue_struct. To implement flush_workqueue() we can queue a barrier
> > work on each CPU and wait for its completition.
> 
> Oleg,
> 	Because of this change, was curious to know if this is possible:
> 
> 
> CPU0					CPU1
> (Thread0)
> 
> flush_workqueue()
> 					queue_work(W1)	
>   flush_cpu_workqueue(cpu1)
>     insert_barrier(B1)
>       wait_on_completion();
> 	
> 					run_workqueue()
> 					   W1.func();
> 					     flush_workqueue();
> 						B1.func(); <- wakes Thread0
> 
> The intention of barrier B1 was to wait untill W1 was -complete-. If
> W1.func()->....->something() were to call flush_workqueue on the same
> workqueue, then we would be returning from the barrier prematurely.

But there is nothing new?

insert_sequence = remove_sequence = 0.

queue_work(W1) sets insert_sequence = 1.

flush_cpu_workqueue(cpu1):  wait until remove_sequence >= 1

Now suppose antother thread adds a work to cpu1 before W1.func()
calls flush_cpu_workqueue(cpu1). insert_sequence == 2.

When W1.func() does flush_workqueue(), run_workqueue() fires
that work, increments remove_sequence to 1 and wakes up Thread0.

In other words: currently flush_cpu_workqueue() waits until N
works form the queue will be flushed. If some work also does
flush_workqueue()->run_workqueue(), it just needs to execute one
"extra" work to confuse the first flush_cpu_workqueue().

Oleg.


^ permalink raw reply	[flat|nested] 3+ messages in thread

end of thread, other threads:[~2007-01-09 15:55 UTC | newest]

Thread overview: 3+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2006-12-29 17:18 [PATCH 1/2] reimplement flush_workqueue() Oleg Nesterov
2007-01-09  5:01 ` Srivatsa Vaddagiri
2007-01-09 15:55   ` Oleg Nesterov

This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.