All of lore.kernel.org
 help / color / mirror / Atom feed
* [Qemu-devel] [PATCH v1 0/8] DRAFT AVR Patches
@ 2019-05-04  8:36 ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, A.M.King, E.J.C.Robbins, mrolnik

This series of patches adds support for 8 bit Atmel (Microchip) AVR microcontrollers.
All documented instructions except DES, SPM, and WDR are implemented.
These patches include very incomplete peripheral emulation, and only a single example board definition.

All instructions except LAC, LAS, LAT, XCH, BREAK, and SLEEP have been tested by comparing their behaviours against hardware.
The test programs used were designed specifically to exercise as many instruction variants as possible.
More details, source code, and results are available here: https://github.com/seharris/qemu-avr-tests/tree/master/instruction-tests

Additionally, it has been confirmed that this emulation can run FreeRTOS (an open source realtime operating system).
AVRs don't have memory management hardware and typically only have a few kilobytes of RAM so booting something more standard, e.g. Linux, wasn't feasible.
Two peripherals were needed (USART and 16 bit timer) for this test and are included in these patches.
The implementations are somewhat limited, mostly because QEMU doesn't seem to have much in the way of facilities to handle low-level electrical interfaces like GPIO pins.
A simple LED indicator peripheral was also used, but is not included because it isn't likely to be generally useful.
The FreeRTOS build and LED patch are available here: https://github.com/seharris/qemu-avr-tests/tree/master/free-rtos

These patches are based on work by Michael Rolnik, last discussed here in 2017: https://lists.gnu.org/archive/html/qemu-devel/2017-06/msg02290.html
This series is derived from the version found in this repository: https://github.com/michaelrolnik/qemu-avr
Changes from that version:
- rebase onto current master
- fixes for some accumulated bitrot (including a crash at startup)
- minor improvements to sample board firmware loading
- fixes for bugs in instruction translations (POP, ASR, LSR, ROR, FMUL, FMULS, FMULSU, MUL, MULS, MULSU, OR, SBC, SBCI)
- new instruction decoder to avoid some awkward dependencies
- general cleanup (style fixes, fixing unclear comments, making code easier to follow)

On a personal note, I'm unfamiliar with this style of submission so I hope I haven't broken anything!

Sarah Harris (8):
  target/avr: Add instruction decoder
  target/avr: Add mechanism to check for active debugger connection
  target/avr: Add outward facing interfaces and core CPU logic
  target/avr: Add instruction helpers
  target/avr: Add instruction translation
  target/avr: Add limited support for USART and 16 bit timer peripherals
  target/avr: Add example board configuration
  target/avr: Register AVR support with the rest of QEMU, the build
    system, and the MAINTAINERS file

 MAINTAINERS                     |    6 +
 arch_init.c                     |    2 +
 configure                       |    6 +
 default-configs/avr-softmmu.mak |    5 +
 gdbstub.c                       |    5 +
 hw/Kconfig                      |    1 +
 hw/avr/Kconfig                  |    4 +
 hw/avr/Makefile.objs            |    1 +
 hw/avr/sample.c                 |  177 ++
 hw/char/Kconfig                 |    3 +
 hw/char/Makefile.objs           |    1 +
 hw/char/avr_usart.c             |  316 ++++
 hw/timer/Kconfig                |    3 +
 hw/timer/Makefile.objs          |    1 +
 hw/timer/avr_timer16.c          |  587 ++++++
 include/disas/dis-asm.h         |    6 +
 include/exec/gdbstub.h          |    4 +
 include/hw/char/avr_usart.h     |   99 +
 include/hw/timer/avr_timer16.h  |   99 +
 include/sysemu/arch_init.h      |    1 +
 qapi/common.json                |    2 +-
 target/avr/Makefile.objs        |   23 +
 target/avr/cpu-qom.h            |   83 +
 target/avr/cpu.c                |  570 ++++++
 target/avr/cpu.h                |  238 +++
 target/avr/decode.c             |  441 +++++
 target/avr/decode.h             |   68 +
 target/avr/gdbstub.c            |   85 +
 target/avr/helper.c             |  343 ++++
 target/avr/helper.h             |   28 +
 target/avr/machine.c            |  122 ++
 target/avr/translate-inst.h     |  695 +++++++
 target/avr/translate.c          | 3013 +++++++++++++++++++++++++++++++
 tests/machine-none-test.c       |    1 +
 34 files changed, 7038 insertions(+), 1 deletion(-)
 create mode 100644 default-configs/avr-softmmu.mak
 create mode 100644 hw/avr/Kconfig
 create mode 100644 hw/avr/Makefile.objs
 create mode 100644 hw/avr/sample.c
 create mode 100644 hw/char/avr_usart.c
 create mode 100644 hw/timer/avr_timer16.c
 create mode 100644 include/hw/char/avr_usart.h
 create mode 100644 include/hw/timer/avr_timer16.h
 create mode 100644 target/avr/Makefile.objs
 create mode 100644 target/avr/cpu-qom.h
 create mode 100644 target/avr/cpu.c
 create mode 100644 target/avr/cpu.h
 create mode 100644 target/avr/decode.c
 create mode 100644 target/avr/decode.h
 create mode 100644 target/avr/gdbstub.c
 create mode 100644 target/avr/helper.c
 create mode 100644 target/avr/helper.h
 create mode 100644 target/avr/machine.c
 create mode 100644 target/avr/translate-inst.h
 create mode 100644 target/avr/translate.c

-- 
2.21.0

^ permalink raw reply	[flat|nested] 31+ messages in thread

* [Qemu-devel] [PATCH v1 0/8] DRAFT AVR Patches
@ 2019-05-04  8:36 ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, mrolnik, A.M.King, E.J.C.Robbins

This series of patches adds support for 8 bit Atmel (Microchip) AVR microcontrollers.
All documented instructions except DES, SPM, and WDR are implemented.
These patches include very incomplete peripheral emulation, and only a single example board definition.

All instructions except LAC, LAS, LAT, XCH, BREAK, and SLEEP have been tested by comparing their behaviours against hardware.
The test programs used were designed specifically to exercise as many instruction variants as possible.
More details, source code, and results are available here: https://github.com/seharris/qemu-avr-tests/tree/master/instruction-tests

Additionally, it has been confirmed that this emulation can run FreeRTOS (an open source realtime operating system).
AVRs don't have memory management hardware and typically only have a few kilobytes of RAM so booting something more standard, e.g. Linux, wasn't feasible.
Two peripherals were needed (USART and 16 bit timer) for this test and are included in these patches.
The implementations are somewhat limited, mostly because QEMU doesn't seem to have much in the way of facilities to handle low-level electrical interfaces like GPIO pins.
A simple LED indicator peripheral was also used, but is not included because it isn't likely to be generally useful.
The FreeRTOS build and LED patch are available here: https://github.com/seharris/qemu-avr-tests/tree/master/free-rtos

These patches are based on work by Michael Rolnik, last discussed here in 2017: https://lists.gnu.org/archive/html/qemu-devel/2017-06/msg02290.html
This series is derived from the version found in this repository: https://github.com/michaelrolnik/qemu-avr
Changes from that version:
- rebase onto current master
- fixes for some accumulated bitrot (including a crash at startup)
- minor improvements to sample board firmware loading
- fixes for bugs in instruction translations (POP, ASR, LSR, ROR, FMUL, FMULS, FMULSU, MUL, MULS, MULSU, OR, SBC, SBCI)
- new instruction decoder to avoid some awkward dependencies
- general cleanup (style fixes, fixing unclear comments, making code easier to follow)

On a personal note, I'm unfamiliar with this style of submission so I hope I haven't broken anything!

Sarah Harris (8):
  target/avr: Add instruction decoder
  target/avr: Add mechanism to check for active debugger connection
  target/avr: Add outward facing interfaces and core CPU logic
  target/avr: Add instruction helpers
  target/avr: Add instruction translation
  target/avr: Add limited support for USART and 16 bit timer peripherals
  target/avr: Add example board configuration
  target/avr: Register AVR support with the rest of QEMU, the build
    system, and the MAINTAINERS file

 MAINTAINERS                     |    6 +
 arch_init.c                     |    2 +
 configure                       |    6 +
 default-configs/avr-softmmu.mak |    5 +
 gdbstub.c                       |    5 +
 hw/Kconfig                      |    1 +
 hw/avr/Kconfig                  |    4 +
 hw/avr/Makefile.objs            |    1 +
 hw/avr/sample.c                 |  177 ++
 hw/char/Kconfig                 |    3 +
 hw/char/Makefile.objs           |    1 +
 hw/char/avr_usart.c             |  316 ++++
 hw/timer/Kconfig                |    3 +
 hw/timer/Makefile.objs          |    1 +
 hw/timer/avr_timer16.c          |  587 ++++++
 include/disas/dis-asm.h         |    6 +
 include/exec/gdbstub.h          |    4 +
 include/hw/char/avr_usart.h     |   99 +
 include/hw/timer/avr_timer16.h  |   99 +
 include/sysemu/arch_init.h      |    1 +
 qapi/common.json                |    2 +-
 target/avr/Makefile.objs        |   23 +
 target/avr/cpu-qom.h            |   83 +
 target/avr/cpu.c                |  570 ++++++
 target/avr/cpu.h                |  238 +++
 target/avr/decode.c             |  441 +++++
 target/avr/decode.h             |   68 +
 target/avr/gdbstub.c            |   85 +
 target/avr/helper.c             |  343 ++++
 target/avr/helper.h             |   28 +
 target/avr/machine.c            |  122 ++
 target/avr/translate-inst.h     |  695 +++++++
 target/avr/translate.c          | 3013 +++++++++++++++++++++++++++++++
 tests/machine-none-test.c       |    1 +
 34 files changed, 7038 insertions(+), 1 deletion(-)
 create mode 100644 default-configs/avr-softmmu.mak
 create mode 100644 hw/avr/Kconfig
 create mode 100644 hw/avr/Makefile.objs
 create mode 100644 hw/avr/sample.c
 create mode 100644 hw/char/avr_usart.c
 create mode 100644 hw/timer/avr_timer16.c
 create mode 100644 include/hw/char/avr_usart.h
 create mode 100644 include/hw/timer/avr_timer16.h
 create mode 100644 target/avr/Makefile.objs
 create mode 100644 target/avr/cpu-qom.h
 create mode 100644 target/avr/cpu.c
 create mode 100644 target/avr/cpu.h
 create mode 100644 target/avr/decode.c
 create mode 100644 target/avr/decode.h
 create mode 100644 target/avr/gdbstub.c
 create mode 100644 target/avr/helper.c
 create mode 100644 target/avr/helper.h
 create mode 100644 target/avr/machine.c
 create mode 100644 target/avr/translate-inst.h
 create mode 100644 target/avr/translate.c

-- 
2.21.0



^ permalink raw reply	[flat|nested] 31+ messages in thread

* [Qemu-devel] [PATCH v1 1/8] target/avr: Add instruction decoder
@ 2019-05-04  8:36   ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, A.M.King, E.J.C.Robbins, mrolnik

This utility module builds a decision tree to decode instructions, starting from a human readable list of instruction bit patterns.
Automatic tree generation will hopefully be more efficient and more maintainable than a hand-designed opcode parser.

Tree generation happens at startup because this seemed simpler to implement than adding a new build step.

Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
---
 target/avr/decode.c | 441 ++++++++++++++++++++++++++++++++++++++++++++
 target/avr/decode.h |  68 +++++++
 2 files changed, 509 insertions(+)
 create mode 100644 target/avr/decode.c
 create mode 100644 target/avr/decode.h

diff --git a/target/avr/decode.c b/target/avr/decode.c
new file mode 100644
index 0000000000..a984806d96
--- /dev/null
+++ b/target/avr/decode.c
@@ -0,0 +1,441 @@
+/*
+ * AVR instruction decoder.
+ *
+ * Copyright (c) 2019 University of Kent
+ * Author: Sarah Harris
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+/*
+ * # Why is this here?
+ * This decoder takes a list of human readable descriptions of instructions
+ * and uses it to build a binary decision tree used to choose translation
+ * functions for opcodes.
+ * It's built like this because figuring out the structure of AVR instructions
+ * was too hard and writing a Big Nested Switch by hand seemed too painful.
+ * This seems to be the simplest answer that doesn't use loads (>0.5MB) of RAM.
+ *
+ * # How does it work?
+ * This is based J. R. Quinlan's ID3 algorithm, tweaked to add weights to each
+ * instruction.
+ * Having a binary tree branch on opcode bits seems obvious, but the awkward
+ * part is deciding which order to test the bits.
+ * Getting the order right means that redundant bits can be ignored and fewer
+ * branches are needed; i.e. less memory and faster lookups.
+ * Here, the tests are ordered by an estimate of information gain based on
+ * Shannon Entropy.
+ * In short, we guess how much each bit tells us and pick the one that gives
+ * us most progress toward knowing which instruction we're seeing.
+ * The weights are currently only used to prioritise legal opcodes over
+ * illegal opcodes, which significantly reduces the tree size.
+ *
+ * # Why are you doing this at run time?
+ * It was easier than building and running a special purpose tool during
+ * QEMU's build process.
+ * The tree is only built once, during startup, and hopefully doesn't take long
+ * enough to be noticeable.
+ */
+
+#include <math.h>
+#include "qemu/osdep.h"
+#include "qemu/bitops.h"
+#include "qemu/error-report.h"
+#include "decode.h"
+
+/* #define DEBUG_DECODER */
+
+/* Wide enough for the largest AVR instruction. */
+#define OPCODE_T uint16_t
+#define OPCODE_SIZE 16
+
+/*
+ * Probability estimate for each instruction.
+ * Larger values mean higher priority.
+ */
+#define WEIGHT_T uint64_t
+#define WEIGHT_LEGAL (1 << 16)
+#define WEIGHT_ILLEGAL 1
+
+typedef union Tree Tree;
+
+typedef struct {
+    bool is_leaf;
+    /* Bit to test */
+    uint bit;
+    const Tree *zero;
+    const Tree *one;
+} Branch;
+
+typedef struct {
+    bool is_leaf;
+    TranslateFn decoder;
+    /* Instruction length in bits */
+    uint32_t length;
+    const char *name;
+} Leaf;
+
+union Tree {
+    bool is_leaf;
+    Branch branch;
+    Leaf leaf;
+};
+
+/* Additional (generated) instruction data */
+typedef struct {
+    const Instruction *instruction;
+    /* Instruction length in bits */
+    uint32_t length;
+    WEIGHT_T weight;
+    /*
+     * Bit pattern matched in opcodes.
+     * For each 1 in mask, the same bit in the opcode must match that from bits.
+     */
+    OPCODE_T bits;
+    OPCODE_T mask;
+} Pattern;
+
+/* Cached decoding tree */
+Tree *cache;
+
+/* Return calculated bit pattern and length for an instruction */
+static Pattern get_info(const Instruction *instruction)
+{
+    OPCODE_T bit = 1 << (OPCODE_SIZE - 1);
+    OPCODE_T bits = 0;
+    OPCODE_T mask = 0;
+    uint32_t length = 0;
+    const char *c = instruction->pattern;
+    while (*c != '\0') {
+        switch (*c) {
+        case '0':
+            mask |= bit;
+            bit >>= 1;
+            length++;
+            break;
+        case '1':
+            bits |= bit;
+            mask |= bit;
+            bit >>= 1;
+            length++;
+            break;
+        case '*':
+            bit >>= 1;
+            length++;
+            break;
+        case '_':
+            /* NOP */
+            break;
+        default:
+            assert(0);
+        }
+        c++;
+    }
+    const Pattern pattern = {
+        .instruction = instruction,
+        .length = length,
+        .weight = WEIGHT_LEGAL,
+        .bits = bits,
+        .mask = mask
+    };
+    return pattern;
+}
+
+/* Return true if an instruction matches a pattern of known/unknown bits */
+static bool matches(const Pattern *const pattern, const OPCODE_T bits,
+    const OPCODE_T mask)
+{
+    OPCODE_T overlap = pattern->mask & mask;
+    return (pattern->bits & overlap) == (bits & overlap);
+}
+
+/* Return number of instructions that match a pattern of known/unknown bits */
+static size_t count_legal(const Pattern *patterns, const size_t size,
+    const OPCODE_T bits, const OPCODE_T mask)
+{
+    size_t sum = 0;
+    size_t i;
+    for (i = 0; i < size; i++) {
+        if (matches(&patterns[i], bits, mask)) {
+            sum++;
+        }
+    }
+    return sum;
+}
+
+/* Return the number of opcodes that could match a bit pattern */
+static uint64_t count_opcodes(const OPCODE_T _bits, OPCODE_T mask)
+{
+    uint64_t matches = 1;
+    int i;
+    assert(sizeof(matches) * 8 > OPCODE_SIZE);
+    for (i = 0; i < OPCODE_SIZE; i++) {
+        if (!(mask & 1)) {
+            matches <<= 1;
+        }
+        mask >>= 1;
+    }
+    return matches;
+}
+
+/*
+ * Return a known/unknown bit pattern that only matches opcodes matched by both
+ * of the given patterns.
+ */
+static void intersection(const OPCODE_T a_bits, const OPCODE_T a_mask,
+    const OPCODE_T b_bits, const OPCODE_T b_mask,
+    OPCODE_T *const out_bits, OPCODE_T *const out_mask)
+{
+    const OPCODE_T overlap = a_mask & b_mask;
+    /* The two patterns mustn't have conflicting requirements */
+    assert((a_bits & overlap) == (b_bits & overlap));
+    *out_bits = (a_bits & a_mask) | (b_bits & b_mask);
+    *out_mask = a_mask | b_mask;
+}
+
+/*
+ * Return one if any opcode allowed by a pattern of known/unknown bits is
+ * illegal.
+ */
+static size_t count_illegal(const Pattern *patterns, const size_t size,
+    const OPCODE_T bits, const OPCODE_T mask)
+{
+    size_t i;
+    const uint64_t no_opcodes = count_opcodes(bits, mask);
+    uint64_t no_legal = 0;
+
+    /* Count opcodes that match instructions */
+    for (i = 0; i < size; i++) {
+        const Pattern *pattern = &patterns[i];
+        if (matches(pattern, bits, mask)) {
+            OPCODE_T both_bits, both_mask;
+            intersection(
+                bits, mask,
+                pattern->bits, pattern->mask,
+                &both_bits, &both_mask
+            );
+            no_legal += count_opcodes(both_bits, both_mask);
+        }
+    }
+
+    assert(no_legal <= no_opcodes);
+    if (no_legal == no_opcodes) {
+        return 0;
+    } else {
+        return 1;
+    }
+}
+
+/* Return the first matching instruction for a pattern of known/unknown bits */
+static const Pattern *find_match(const Pattern *patterns, const size_t size,
+    const OPCODE_T bits, const OPCODE_T mask)
+{
+    size_t i;
+    for (i = 0; i < size; i++) {
+        if (matches(&patterns[i], bits, mask)) {
+            return &patterns[i];
+        }
+    }
+    return NULL;
+}
+
+/* Return sum of weights of instructions that match a bit pattern */
+static WEIGHT_T weigh_matches(const Pattern *patterns, const size_t size,
+    const OPCODE_T bits, const OPCODE_T mask)
+{
+    size_t i;
+    WEIGHT_T illegal = (WEIGHT_T)count_illegal(patterns, size, bits, mask)
+        * WEIGHT_ILLEGAL;
+    WEIGHT_T legal = 0;
+    for (i = 0; i < size; i++) {
+        if (matches(&patterns[i], bits, mask)) {
+            legal += patterns[i].weight;
+        }
+    }
+    return legal + illegal;
+}
+
+/*
+ * Return "effort" (estimated information needed) to decide tree outcome.
+ * bits and mask give the opcode bits already decided by the parent tree.
+ * parent_weight gives the sum of the weights of instructions that the
+ * parent tree matches.
+ */
+static float subtree_effort(const Pattern *patterns, const size_t size,
+    const OPCODE_T bits, const OPCODE_T mask, const WEIGHT_T parent_weight)
+{
+    const WEIGHT_T weight = weigh_matches(patterns, size, bits, mask);
+    float entropy_legal, entropy_illegal, probability;
+    size_t i;
+
+    /* Sum information needed to decide legal instructions */
+    entropy_legal = 0.0;
+    for (i = 0; i < size; i++) {
+        const Pattern *const pattern = &patterns[i];
+        if (matches(pattern, bits, mask)) {
+            probability = (float)pattern->weight / (float)weight;
+            entropy_legal += -probability * log2(probability);
+        }
+    }
+
+    /* Sum information needed to decide illegal instructions */
+    probability = (float)WEIGHT_ILLEGAL / (float)weight;
+    entropy_illegal = -probability * log2(probability) *
+        (float)count_illegal(patterns, size, bits, mask);
+
+    return ((float)weight / (float)parent_weight) *
+        (entropy_legal + entropy_illegal);
+}
+
+/* Return recursively built binary tree for decoding an opcode to instruction */
+static Tree *build_tree(const Pattern *patterns, const size_t size,
+    OPCODE_T bits, OPCODE_T mask)
+{
+    /* Check if we've reached a leaf */
+    size_t matching_illegal = count_illegal(patterns, size, bits, mask);
+    size_t matching_legal = count_legal(patterns, size, bits, mask);
+    size_t matching = matching_illegal + matching_legal;
+    assert(matching > 0); /* At last an illegal instruction should match */
+    if (matching_legal == 0) {
+        /* Illegal instruction */
+        Leaf *leaf = g_new0(Leaf, 1);
+        leaf->is_leaf = true;
+        leaf->decoder = NULL;
+        leaf->length = 16;
+        leaf->name = "illegal";
+        return (Tree *)leaf;
+    }
+    if (matching_legal == 1 && matching_illegal == 0) {
+        /* Legal instruction */
+        const Pattern *pattern = find_match(patterns, size, bits, mask);
+        assert(pattern != NULL);
+        const Instruction *const instruction = pattern->instruction;
+        Leaf *leaf = g_new0(Leaf, 1);
+        leaf->is_leaf = true;
+        leaf->decoder = instruction->decoder;
+        leaf->length = pattern->length;
+        leaf->name = instruction->name;
+        return (Tree *)leaf;
+    }
+
+    /* Work out which bit to branch on */
+    const WEIGHT_T tree_weight = weigh_matches(patterns, size, bits, mask);
+    float min_effort = 0.0;
+    ssize_t min_bit = -1;
+    size_t i;
+    for (i = 0; i < OPCODE_SIZE; i++) {
+        float effort;
+        const OPCODE_T bit = 1 << i;
+        if (mask & bit) {
+            /* This bit already branched on, skip */
+            continue;
+        }
+        effort = subtree_effort(patterns, size, bits, mask | bit, tree_weight) +
+            subtree_effort(patterns, size, bits | bit, mask | bit, tree_weight);
+        if (min_bit < 0 || effort < min_effort) {
+            min_bit = i;
+            min_effort = effort;
+        }
+    }
+
+    /*
+     * Setup branch on bit that gives most information gain.
+     * (AKA minimum information/effort needed to decide remaining branches.
+     */
+    assert(min_bit >= 0); /* Probably multiple instructions match one opcode */
+    const OPCODE_T bit = 1 << min_bit;
+    const Tree *zero = build_tree(patterns, size, bits, mask | bit);
+    const Tree *one = build_tree(patterns, size, bits | bit, mask | bit);
+    Branch *branch = g_new0(Branch, 1);
+    branch->is_leaf = false;
+    branch->bit = min_bit;
+    branch->zero = zero;
+    branch->one = one;
+    return (Tree *)branch;
+}
+
+#ifdef DEBUG_DECODER
+static size_t depth(const Tree *const tree);
+static size_t depth(const Tree *const tree)
+{
+    if (tree->is_leaf) {
+        return 1;
+    }
+    size_t zero = depth(tree->branch.zero);
+    size_t one = depth(tree->branch.one);
+    if (zero > one) {
+        return zero + 1;
+    }
+    return one + 1;
+}
+static size_t count(const Tree *const tree);
+static size_t count(const Tree *const tree)
+{
+    if (tree->is_leaf) {
+        return 1;
+    }
+    return 1 + count(tree->branch.zero) + count(tree->branch.one);
+}
+#endif
+
+void avr_decoder_init(const Instruction instructions[], const size_t size)
+{
+    assert(cache == NULL); /* Shouldn't be initialised more than once */
+    Pattern *const patterns = g_new0(Pattern, size);
+    size_t i;
+    for (i = 0; i < size; i++) {
+        patterns[i] = get_info(&instructions[i]);
+    }
+    cache = build_tree(patterns, size, 0, 0);
+    g_free(patterns);
+#ifdef DEBUG_DECODER
+    printf("AVR decoder init, depth=%lu, size=%lu\n",
+        depth(cache), count(cache));
+#endif
+}
+
+TranslateFn avr_decode(const uint32_t opcode, uint32_t *const length_out)
+{
+    assert(cache != NULL); /* Must be initialised */
+    const Tree *node = cache;
+    while (1) {
+        assert(node != NULL);
+        if (node->is_leaf) {
+            const Leaf *const leaf = &node->leaf;
+            if (leaf->decoder == NULL) {
+                /* Illegal instruction */
+                error_report("Illegal AVR instruction");
+                exit(1);
+            }
+#ifdef DEBUG_DECODER
+            printf("AVR decoder: %s\n", leaf->name);
+#endif
+            *length_out = leaf->length;
+            return leaf->decoder;
+        } else {
+            const Branch *const branch = &node->branch;
+            const OPCODE_T mask = 1 << branch->bit;
+            if (opcode & mask) {
+                node = branch->one;
+            } else {
+                node = branch->zero;
+            }
+        }
+    }
+}
diff --git a/target/avr/decode.h b/target/avr/decode.h
new file mode 100644
index 0000000000..415406544a
--- /dev/null
+++ b/target/avr/decode.h
@@ -0,0 +1,68 @@
+/*
+ * AVR instruction decoder.
+ *
+ * Copyright (c) 2019 University of Kent
+ * Author: Sarah Harris
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#ifndef AVR_DECODER_H
+#define AVR_DECODER_H
+
+/* Pointer to functions used to do final decoding step from opcode to TCG. */
+typedef struct DisasContext DisasContext;
+typedef int (*TranslateFn)(DisasContext *ctx, uint32_t opcode);
+
+/*
+ * Human readable instruction descriptions used to generate decoder.
+ * Doing this at runtime avoids a complicated new build step.
+ */
+typedef struct {
+    /* Instruction mnemonic for debugging */
+    const char *name;
+    /*
+     * Bit pattern describing the instruction's opcode.
+     * Each character represents a bit:
+     * - '1' means bit must be set
+     * - '0' means bit must be cleared
+     * - '*' means don't care
+     * - '_' is ignored (i.e. whitespace), please use to aid readability
+     */
+    const char *pattern;
+    /* Function used to translate this instruction to TCG */
+    TranslateFn decoder;
+} Instruction;
+
+/*
+ * Converts a list of instruction descriptions to a decoding tree
+ * and caches it.
+ * Must only be called once.
+ * `size` is the number of instructions in the given list.
+ */
+void avr_decoder_init(const Instruction instructions[], const size_t size);
+
+/*
+ * Returns the translation function and length of an instruction, given
+ * the opcode.
+ * avr_decoder_init() must be called first to build the decoding tree.
+ */
+TranslateFn avr_decode(const uint32_t opcode, uint32_t *const length_out);
+
+#endif /* AVR_DECODER_H */
-- 
2.21.0

^ permalink raw reply related	[flat|nested] 31+ messages in thread

* [Qemu-devel] [PATCH v1 1/8] target/avr: Add instruction decoder
@ 2019-05-04  8:36   ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, mrolnik, A.M.King, E.J.C.Robbins

This utility module builds a decision tree to decode instructions, starting from a human readable list of instruction bit patterns.
Automatic tree generation will hopefully be more efficient and more maintainable than a hand-designed opcode parser.

Tree generation happens at startup because this seemed simpler to implement than adding a new build step.

Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
---
 target/avr/decode.c | 441 ++++++++++++++++++++++++++++++++++++++++++++
 target/avr/decode.h |  68 +++++++
 2 files changed, 509 insertions(+)
 create mode 100644 target/avr/decode.c
 create mode 100644 target/avr/decode.h

diff --git a/target/avr/decode.c b/target/avr/decode.c
new file mode 100644
index 0000000000..a984806d96
--- /dev/null
+++ b/target/avr/decode.c
@@ -0,0 +1,441 @@
+/*
+ * AVR instruction decoder.
+ *
+ * Copyright (c) 2019 University of Kent
+ * Author: Sarah Harris
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+/*
+ * # Why is this here?
+ * This decoder takes a list of human readable descriptions of instructions
+ * and uses it to build a binary decision tree used to choose translation
+ * functions for opcodes.
+ * It's built like this because figuring out the structure of AVR instructions
+ * was too hard and writing a Big Nested Switch by hand seemed too painful.
+ * This seems to be the simplest answer that doesn't use loads (>0.5MB) of RAM.
+ *
+ * # How does it work?
+ * This is based J. R. Quinlan's ID3 algorithm, tweaked to add weights to each
+ * instruction.
+ * Having a binary tree branch on opcode bits seems obvious, but the awkward
+ * part is deciding which order to test the bits.
+ * Getting the order right means that redundant bits can be ignored and fewer
+ * branches are needed; i.e. less memory and faster lookups.
+ * Here, the tests are ordered by an estimate of information gain based on
+ * Shannon Entropy.
+ * In short, we guess how much each bit tells us and pick the one that gives
+ * us most progress toward knowing which instruction we're seeing.
+ * The weights are currently only used to prioritise legal opcodes over
+ * illegal opcodes, which significantly reduces the tree size.
+ *
+ * # Why are you doing this at run time?
+ * It was easier than building and running a special purpose tool during
+ * QEMU's build process.
+ * The tree is only built once, during startup, and hopefully doesn't take long
+ * enough to be noticeable.
+ */
+
+#include <math.h>
+#include "qemu/osdep.h"
+#include "qemu/bitops.h"
+#include "qemu/error-report.h"
+#include "decode.h"
+
+/* #define DEBUG_DECODER */
+
+/* Wide enough for the largest AVR instruction. */
+#define OPCODE_T uint16_t
+#define OPCODE_SIZE 16
+
+/*
+ * Probability estimate for each instruction.
+ * Larger values mean higher priority.
+ */
+#define WEIGHT_T uint64_t
+#define WEIGHT_LEGAL (1 << 16)
+#define WEIGHT_ILLEGAL 1
+
+typedef union Tree Tree;
+
+typedef struct {
+    bool is_leaf;
+    /* Bit to test */
+    uint bit;
+    const Tree *zero;
+    const Tree *one;
+} Branch;
+
+typedef struct {
+    bool is_leaf;
+    TranslateFn decoder;
+    /* Instruction length in bits */
+    uint32_t length;
+    const char *name;
+} Leaf;
+
+union Tree {
+    bool is_leaf;
+    Branch branch;
+    Leaf leaf;
+};
+
+/* Additional (generated) instruction data */
+typedef struct {
+    const Instruction *instruction;
+    /* Instruction length in bits */
+    uint32_t length;
+    WEIGHT_T weight;
+    /*
+     * Bit pattern matched in opcodes.
+     * For each 1 in mask, the same bit in the opcode must match that from bits.
+     */
+    OPCODE_T bits;
+    OPCODE_T mask;
+} Pattern;
+
+/* Cached decoding tree */
+Tree *cache;
+
+/* Return calculated bit pattern and length for an instruction */
+static Pattern get_info(const Instruction *instruction)
+{
+    OPCODE_T bit = 1 << (OPCODE_SIZE - 1);
+    OPCODE_T bits = 0;
+    OPCODE_T mask = 0;
+    uint32_t length = 0;
+    const char *c = instruction->pattern;
+    while (*c != '\0') {
+        switch (*c) {
+        case '0':
+            mask |= bit;
+            bit >>= 1;
+            length++;
+            break;
+        case '1':
+            bits |= bit;
+            mask |= bit;
+            bit >>= 1;
+            length++;
+            break;
+        case '*':
+            bit >>= 1;
+            length++;
+            break;
+        case '_':
+            /* NOP */
+            break;
+        default:
+            assert(0);
+        }
+        c++;
+    }
+    const Pattern pattern = {
+        .instruction = instruction,
+        .length = length,
+        .weight = WEIGHT_LEGAL,
+        .bits = bits,
+        .mask = mask
+    };
+    return pattern;
+}
+
+/* Return true if an instruction matches a pattern of known/unknown bits */
+static bool matches(const Pattern *const pattern, const OPCODE_T bits,
+    const OPCODE_T mask)
+{
+    OPCODE_T overlap = pattern->mask & mask;
+    return (pattern->bits & overlap) == (bits & overlap);
+}
+
+/* Return number of instructions that match a pattern of known/unknown bits */
+static size_t count_legal(const Pattern *patterns, const size_t size,
+    const OPCODE_T bits, const OPCODE_T mask)
+{
+    size_t sum = 0;
+    size_t i;
+    for (i = 0; i < size; i++) {
+        if (matches(&patterns[i], bits, mask)) {
+            sum++;
+        }
+    }
+    return sum;
+}
+
+/* Return the number of opcodes that could match a bit pattern */
+static uint64_t count_opcodes(const OPCODE_T _bits, OPCODE_T mask)
+{
+    uint64_t matches = 1;
+    int i;
+    assert(sizeof(matches) * 8 > OPCODE_SIZE);
+    for (i = 0; i < OPCODE_SIZE; i++) {
+        if (!(mask & 1)) {
+            matches <<= 1;
+        }
+        mask >>= 1;
+    }
+    return matches;
+}
+
+/*
+ * Return a known/unknown bit pattern that only matches opcodes matched by both
+ * of the given patterns.
+ */
+static void intersection(const OPCODE_T a_bits, const OPCODE_T a_mask,
+    const OPCODE_T b_bits, const OPCODE_T b_mask,
+    OPCODE_T *const out_bits, OPCODE_T *const out_mask)
+{
+    const OPCODE_T overlap = a_mask & b_mask;
+    /* The two patterns mustn't have conflicting requirements */
+    assert((a_bits & overlap) == (b_bits & overlap));
+    *out_bits = (a_bits & a_mask) | (b_bits & b_mask);
+    *out_mask = a_mask | b_mask;
+}
+
+/*
+ * Return one if any opcode allowed by a pattern of known/unknown bits is
+ * illegal.
+ */
+static size_t count_illegal(const Pattern *patterns, const size_t size,
+    const OPCODE_T bits, const OPCODE_T mask)
+{
+    size_t i;
+    const uint64_t no_opcodes = count_opcodes(bits, mask);
+    uint64_t no_legal = 0;
+
+    /* Count opcodes that match instructions */
+    for (i = 0; i < size; i++) {
+        const Pattern *pattern = &patterns[i];
+        if (matches(pattern, bits, mask)) {
+            OPCODE_T both_bits, both_mask;
+            intersection(
+                bits, mask,
+                pattern->bits, pattern->mask,
+                &both_bits, &both_mask
+            );
+            no_legal += count_opcodes(both_bits, both_mask);
+        }
+    }
+
+    assert(no_legal <= no_opcodes);
+    if (no_legal == no_opcodes) {
+        return 0;
+    } else {
+        return 1;
+    }
+}
+
+/* Return the first matching instruction for a pattern of known/unknown bits */
+static const Pattern *find_match(const Pattern *patterns, const size_t size,
+    const OPCODE_T bits, const OPCODE_T mask)
+{
+    size_t i;
+    for (i = 0; i < size; i++) {
+        if (matches(&patterns[i], bits, mask)) {
+            return &patterns[i];
+        }
+    }
+    return NULL;
+}
+
+/* Return sum of weights of instructions that match a bit pattern */
+static WEIGHT_T weigh_matches(const Pattern *patterns, const size_t size,
+    const OPCODE_T bits, const OPCODE_T mask)
+{
+    size_t i;
+    WEIGHT_T illegal = (WEIGHT_T)count_illegal(patterns, size, bits, mask)
+        * WEIGHT_ILLEGAL;
+    WEIGHT_T legal = 0;
+    for (i = 0; i < size; i++) {
+        if (matches(&patterns[i], bits, mask)) {
+            legal += patterns[i].weight;
+        }
+    }
+    return legal + illegal;
+}
+
+/*
+ * Return "effort" (estimated information needed) to decide tree outcome.
+ * bits and mask give the opcode bits already decided by the parent tree.
+ * parent_weight gives the sum of the weights of instructions that the
+ * parent tree matches.
+ */
+static float subtree_effort(const Pattern *patterns, const size_t size,
+    const OPCODE_T bits, const OPCODE_T mask, const WEIGHT_T parent_weight)
+{
+    const WEIGHT_T weight = weigh_matches(patterns, size, bits, mask);
+    float entropy_legal, entropy_illegal, probability;
+    size_t i;
+
+    /* Sum information needed to decide legal instructions */
+    entropy_legal = 0.0;
+    for (i = 0; i < size; i++) {
+        const Pattern *const pattern = &patterns[i];
+        if (matches(pattern, bits, mask)) {
+            probability = (float)pattern->weight / (float)weight;
+            entropy_legal += -probability * log2(probability);
+        }
+    }
+
+    /* Sum information needed to decide illegal instructions */
+    probability = (float)WEIGHT_ILLEGAL / (float)weight;
+    entropy_illegal = -probability * log2(probability) *
+        (float)count_illegal(patterns, size, bits, mask);
+
+    return ((float)weight / (float)parent_weight) *
+        (entropy_legal + entropy_illegal);
+}
+
+/* Return recursively built binary tree for decoding an opcode to instruction */
+static Tree *build_tree(const Pattern *patterns, const size_t size,
+    OPCODE_T bits, OPCODE_T mask)
+{
+    /* Check if we've reached a leaf */
+    size_t matching_illegal = count_illegal(patterns, size, bits, mask);
+    size_t matching_legal = count_legal(patterns, size, bits, mask);
+    size_t matching = matching_illegal + matching_legal;
+    assert(matching > 0); /* At last an illegal instruction should match */
+    if (matching_legal == 0) {
+        /* Illegal instruction */
+        Leaf *leaf = g_new0(Leaf, 1);
+        leaf->is_leaf = true;
+        leaf->decoder = NULL;
+        leaf->length = 16;
+        leaf->name = "illegal";
+        return (Tree *)leaf;
+    }
+    if (matching_legal == 1 && matching_illegal == 0) {
+        /* Legal instruction */
+        const Pattern *pattern = find_match(patterns, size, bits, mask);
+        assert(pattern != NULL);
+        const Instruction *const instruction = pattern->instruction;
+        Leaf *leaf = g_new0(Leaf, 1);
+        leaf->is_leaf = true;
+        leaf->decoder = instruction->decoder;
+        leaf->length = pattern->length;
+        leaf->name = instruction->name;
+        return (Tree *)leaf;
+    }
+
+    /* Work out which bit to branch on */
+    const WEIGHT_T tree_weight = weigh_matches(patterns, size, bits, mask);
+    float min_effort = 0.0;
+    ssize_t min_bit = -1;
+    size_t i;
+    for (i = 0; i < OPCODE_SIZE; i++) {
+        float effort;
+        const OPCODE_T bit = 1 << i;
+        if (mask & bit) {
+            /* This bit already branched on, skip */
+            continue;
+        }
+        effort = subtree_effort(patterns, size, bits, mask | bit, tree_weight) +
+            subtree_effort(patterns, size, bits | bit, mask | bit, tree_weight);
+        if (min_bit < 0 || effort < min_effort) {
+            min_bit = i;
+            min_effort = effort;
+        }
+    }
+
+    /*
+     * Setup branch on bit that gives most information gain.
+     * (AKA minimum information/effort needed to decide remaining branches.
+     */
+    assert(min_bit >= 0); /* Probably multiple instructions match one opcode */
+    const OPCODE_T bit = 1 << min_bit;
+    const Tree *zero = build_tree(patterns, size, bits, mask | bit);
+    const Tree *one = build_tree(patterns, size, bits | bit, mask | bit);
+    Branch *branch = g_new0(Branch, 1);
+    branch->is_leaf = false;
+    branch->bit = min_bit;
+    branch->zero = zero;
+    branch->one = one;
+    return (Tree *)branch;
+}
+
+#ifdef DEBUG_DECODER
+static size_t depth(const Tree *const tree);
+static size_t depth(const Tree *const tree)
+{
+    if (tree->is_leaf) {
+        return 1;
+    }
+    size_t zero = depth(tree->branch.zero);
+    size_t one = depth(tree->branch.one);
+    if (zero > one) {
+        return zero + 1;
+    }
+    return one + 1;
+}
+static size_t count(const Tree *const tree);
+static size_t count(const Tree *const tree)
+{
+    if (tree->is_leaf) {
+        return 1;
+    }
+    return 1 + count(tree->branch.zero) + count(tree->branch.one);
+}
+#endif
+
+void avr_decoder_init(const Instruction instructions[], const size_t size)
+{
+    assert(cache == NULL); /* Shouldn't be initialised more than once */
+    Pattern *const patterns = g_new0(Pattern, size);
+    size_t i;
+    for (i = 0; i < size; i++) {
+        patterns[i] = get_info(&instructions[i]);
+    }
+    cache = build_tree(patterns, size, 0, 0);
+    g_free(patterns);
+#ifdef DEBUG_DECODER
+    printf("AVR decoder init, depth=%lu, size=%lu\n",
+        depth(cache), count(cache));
+#endif
+}
+
+TranslateFn avr_decode(const uint32_t opcode, uint32_t *const length_out)
+{
+    assert(cache != NULL); /* Must be initialised */
+    const Tree *node = cache;
+    while (1) {
+        assert(node != NULL);
+        if (node->is_leaf) {
+            const Leaf *const leaf = &node->leaf;
+            if (leaf->decoder == NULL) {
+                /* Illegal instruction */
+                error_report("Illegal AVR instruction");
+                exit(1);
+            }
+#ifdef DEBUG_DECODER
+            printf("AVR decoder: %s\n", leaf->name);
+#endif
+            *length_out = leaf->length;
+            return leaf->decoder;
+        } else {
+            const Branch *const branch = &node->branch;
+            const OPCODE_T mask = 1 << branch->bit;
+            if (opcode & mask) {
+                node = branch->one;
+            } else {
+                node = branch->zero;
+            }
+        }
+    }
+}
diff --git a/target/avr/decode.h b/target/avr/decode.h
new file mode 100644
index 0000000000..415406544a
--- /dev/null
+++ b/target/avr/decode.h
@@ -0,0 +1,68 @@
+/*
+ * AVR instruction decoder.
+ *
+ * Copyright (c) 2019 University of Kent
+ * Author: Sarah Harris
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#ifndef AVR_DECODER_H
+#define AVR_DECODER_H
+
+/* Pointer to functions used to do final decoding step from opcode to TCG. */
+typedef struct DisasContext DisasContext;
+typedef int (*TranslateFn)(DisasContext *ctx, uint32_t opcode);
+
+/*
+ * Human readable instruction descriptions used to generate decoder.
+ * Doing this at runtime avoids a complicated new build step.
+ */
+typedef struct {
+    /* Instruction mnemonic for debugging */
+    const char *name;
+    /*
+     * Bit pattern describing the instruction's opcode.
+     * Each character represents a bit:
+     * - '1' means bit must be set
+     * - '0' means bit must be cleared
+     * - '*' means don't care
+     * - '_' is ignored (i.e. whitespace), please use to aid readability
+     */
+    const char *pattern;
+    /* Function used to translate this instruction to TCG */
+    TranslateFn decoder;
+} Instruction;
+
+/*
+ * Converts a list of instruction descriptions to a decoding tree
+ * and caches it.
+ * Must only be called once.
+ * `size` is the number of instructions in the given list.
+ */
+void avr_decoder_init(const Instruction instructions[], const size_t size);
+
+/*
+ * Returns the translation function and length of an instruction, given
+ * the opcode.
+ * avr_decoder_init() must be called first to build the decoding tree.
+ */
+TranslateFn avr_decode(const uint32_t opcode, uint32_t *const length_out);
+
+#endif /* AVR_DECODER_H */
-- 
2.21.0



^ permalink raw reply related	[flat|nested] 31+ messages in thread

* [Qemu-devel] [PATCH v1 2/8] target/avr: Add mechanism to check for active debugger connection
@ 2019-05-04  8:36   ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, A.M.King, E.J.C.Robbins, mrolnik

AVR CPUs have a BREAK instruction which behaves differently depending on whether debugging is enabled.
Since the hardware fuses that normally control this are difficult to emulate, and the BREAK instruction is useful for testing, the BREAK instruction is instead enabled/disabled depending on whether a GDB session is attached.

Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
---
 gdbstub.c              | 5 +++++
 include/exec/gdbstub.h | 4 ++++
 2 files changed, 9 insertions(+)

diff --git a/gdbstub.c b/gdbstub.c
index d54abd17cc..a254a364e6 100644
--- a/gdbstub.c
+++ b/gdbstub.c
@@ -1793,6 +1793,11 @@ static int gdb_handle_packet(GDBState *s, const char *line_buf)
     return RS_IDLE;
 }
 
+bool gdb_is_active(void)
+{
+    return gdbserver_state != NULL;
+}
+
 void gdb_set_stop_cpu(CPUState *cpu)
 {
     GDBProcess *p = gdb_get_cpu_process(gdbserver_state, cpu);
diff --git a/include/exec/gdbstub.h b/include/exec/gdbstub.h
index 08363969c1..d059bf5339 100644
--- a/include/exec/gdbstub.h
+++ b/include/exec/gdbstub.h
@@ -45,6 +45,10 @@ void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...);
  */
 void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va);
 int use_gdb_syscalls(void);
+/**
+ * gdb_is_active: return true if debugging in progress
+ */
+bool gdb_is_active(void);
 void gdb_set_stop_cpu(CPUState *cpu);
 void gdb_exit(CPUArchState *, int);
 #ifdef CONFIG_USER_ONLY
-- 
2.21.0

^ permalink raw reply related	[flat|nested] 31+ messages in thread

* [Qemu-devel] [PATCH v1 2/8] target/avr: Add mechanism to check for active debugger connection
@ 2019-05-04  8:36   ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, mrolnik, A.M.King, E.J.C.Robbins

AVR CPUs have a BREAK instruction which behaves differently depending on whether debugging is enabled.
Since the hardware fuses that normally control this are difficult to emulate, and the BREAK instruction is useful for testing, the BREAK instruction is instead enabled/disabled depending on whether a GDB session is attached.

Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
---
 gdbstub.c              | 5 +++++
 include/exec/gdbstub.h | 4 ++++
 2 files changed, 9 insertions(+)

diff --git a/gdbstub.c b/gdbstub.c
index d54abd17cc..a254a364e6 100644
--- a/gdbstub.c
+++ b/gdbstub.c
@@ -1793,6 +1793,11 @@ static int gdb_handle_packet(GDBState *s, const char *line_buf)
     return RS_IDLE;
 }
 
+bool gdb_is_active(void)
+{
+    return gdbserver_state != NULL;
+}
+
 void gdb_set_stop_cpu(CPUState *cpu)
 {
     GDBProcess *p = gdb_get_cpu_process(gdbserver_state, cpu);
diff --git a/include/exec/gdbstub.h b/include/exec/gdbstub.h
index 08363969c1..d059bf5339 100644
--- a/include/exec/gdbstub.h
+++ b/include/exec/gdbstub.h
@@ -45,6 +45,10 @@ void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...);
  */
 void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va);
 int use_gdb_syscalls(void);
+/**
+ * gdb_is_active: return true if debugging in progress
+ */
+bool gdb_is_active(void);
 void gdb_set_stop_cpu(CPUState *cpu);
 void gdb_exit(CPUArchState *, int);
 #ifdef CONFIG_USER_ONLY
-- 
2.21.0



^ permalink raw reply related	[flat|nested] 31+ messages in thread

* [Qemu-devel] [PATCH v1 3/8] target/avr: Add outward facing interfaces and core CPU logic
@ 2019-05-04  8:36   ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, A.M.King, E.J.C.Robbins, mrolnik

This includes:
- CPU data structures
- object model classes and functions
- migration functions
- GDB hooks

Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
---
 target/avr/cpu-qom.h |  83 +++++++
 target/avr/cpu.c     | 570 +++++++++++++++++++++++++++++++++++++++++++
 target/avr/cpu.h     | 238 ++++++++++++++++++
 target/avr/gdbstub.c |  85 +++++++
 target/avr/machine.c | 122 +++++++++
 5 files changed, 1098 insertions(+)
 create mode 100644 target/avr/cpu-qom.h
 create mode 100644 target/avr/cpu.c
 create mode 100644 target/avr/cpu.h
 create mode 100644 target/avr/gdbstub.c
 create mode 100644 target/avr/machine.c

diff --git a/target/avr/cpu-qom.h b/target/avr/cpu-qom.h
new file mode 100644
index 0000000000..8085567b87
--- /dev/null
+++ b/target/avr/cpu-qom.h
@@ -0,0 +1,83 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#ifndef QEMU_AVR_CPU_QOM_H
+#define QEMU_AVR_CPU_QOM_H
+
+#include "qom/cpu.h"
+
+#define TYPE_AVR_CPU "avr"
+
+#define AVR_CPU_CLASS(klass) \
+                    OBJECT_CLASS_CHECK(AVRCPUClass, (klass), TYPE_AVR_CPU)
+#define AVR_CPU(obj) \
+                    OBJECT_CHECK(AVRCPU, (obj), TYPE_AVR_CPU)
+#define AVR_CPU_GET_CLASS(obj) \
+                    OBJECT_GET_CLASS(AVRCPUClass, (obj), TYPE_AVR_CPU)
+
+/**
+ *  AVRCPUClass:
+ *  @parent_realize: The parent class' realize handler.
+ *  @parent_reset: The parent class' reset handler.
+ *  @vr: Version Register value.
+ *
+ *  A AVR CPU model.
+ */
+typedef struct AVRCPUClass {
+    CPUClass parent_class;
+
+    DeviceRealize parent_realize;
+    void (*parent_reset)(CPUState *cpu);
+} AVRCPUClass;
+
+/**
+ *  AVRCPU:
+ *  @env: #CPUAVRState
+ *
+ *  A AVR CPU.
+ */
+typedef struct AVRCPU {
+    /*< private >*/
+    CPUState parent_obj;
+    /*< public >*/
+
+    CPUAVRState env;
+} AVRCPU;
+
+static inline AVRCPU *avr_env_get_cpu(CPUAVRState *env)
+{
+    return container_of(env, AVRCPU, env);
+}
+
+#define ENV_GET_CPU(e) CPU(avr_env_get_cpu(e))
+#define ENV_OFFSET offsetof(AVRCPU, env)
+
+#ifndef CONFIG_USER_ONLY
+extern const struct VMStateDescription vms_avr_cpu;
+#endif
+
+void avr_cpu_do_interrupt(CPUState *cpu);
+bool avr_cpu_exec_interrupt(CPUState *cpu, int int_req);
+void avr_cpu_dump_state(CPUState *cs, FILE *f, int flags);
+hwaddr avr_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
+int avr_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
+int avr_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
+
+#endif
diff --git a/target/avr/cpu.c b/target/avr/cpu.c
new file mode 100644
index 0000000000..19ce1d7386
--- /dev/null
+++ b/target/avr/cpu.c
@@ -0,0 +1,570 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/qemu-print.h"
+#include "qapi/error.h"
+#include "cpu.h"
+#include "qemu-common.h"
+#include "migration/vmstate.h"
+
+static void avr_cpu_set_pc(CPUState *cs, vaddr value)
+{
+    AVRCPU *cpu = AVR_CPU(cs);
+
+    cpu->env.pc_w = value / 2; /* internally PC points to words */
+}
+
+static bool avr_cpu_has_work(CPUState *cs)
+{
+    AVRCPU *cpu = AVR_CPU(cs);
+    CPUAVRState *env = &cpu->env;
+
+    return (cs->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_RESET))
+            && cpu_interrupts_enabled(env);
+}
+
+static void avr_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
+{
+    AVRCPU *cpu = AVR_CPU(cs);
+    CPUAVRState *env = &cpu->env;
+
+    env->pc_w = tb->pc / 2; /* internally PC points to words */
+}
+
+static void avr_cpu_reset(CPUState *s)
+{
+    AVRCPU *cpu = AVR_CPU(s);
+    AVRCPUClass *mcc = AVR_CPU_GET_CLASS(cpu);
+    CPUAVRState *env = &cpu->env;
+
+    mcc->parent_reset(s);
+
+    env->pc_w = 0;
+    env->sregI = 1;
+    env->sregC = 0;
+    env->sregZ = 0;
+    env->sregN = 0;
+    env->sregV = 0;
+    env->sregS = 0;
+    env->sregH = 0;
+    env->sregT = 0;
+
+    env->rampD = 0;
+    env->rampX = 0;
+    env->rampY = 0;
+    env->rampZ = 0;
+    env->eind = 0;
+    env->sp = 0;
+
+    memset(env->r, 0, sizeof(env->r));
+
+    tlb_flush(s);
+}
+
+static void avr_cpu_disas_set_info(CPUState *cpu, disassemble_info *info)
+{
+    info->mach = bfd_arch_avr;
+    info->print_insn = NULL;
+}
+
+static void avr_cpu_realizefn(DeviceState *dev, Error **errp)
+{
+    CPUState *cs = CPU(dev);
+    AVRCPUClass *mcc = AVR_CPU_GET_CLASS(dev);
+    Error *local_err = NULL;
+
+    cpu_exec_realizefn(cs, &local_err);
+    if (local_err != NULL) {
+        error_propagate(errp, local_err);
+        return;
+    }
+    qemu_init_vcpu(cs);
+    cpu_reset(cs);
+
+    mcc->parent_realize(dev, errp);
+}
+
+static void avr_cpu_set_int(void *opaque, int irq, int level)
+{
+    AVRCPU *cpu = opaque;
+    CPUAVRState *env = &cpu->env;
+    CPUState *cs = CPU(cpu);
+
+    uint64_t mask = (1ull << irq);
+    if (level) {
+        env->intsrc |= mask;
+        cpu_interrupt(cs, CPU_INTERRUPT_HARD);
+    } else {
+        env->intsrc &= ~mask;
+        if (env->intsrc == 0) {
+            cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
+        }
+    }
+}
+
+static void avr_cpu_initfn(Object *obj)
+{
+    CPUState *cs = CPU(obj);
+    AVRCPU *cpu = AVR_CPU(obj);
+
+    cs->env_ptr = &cpu->env;
+
+#ifndef CONFIG_USER_ONLY
+    /* Set the number of interrupts supported by the CPU. */
+    qdev_init_gpio_in(DEVICE(cpu), avr_cpu_set_int, 57);
+#endif
+}
+
+static ObjectClass *avr_cpu_class_by_name(const char *cpu_model)
+{
+    ObjectClass *oc;
+    char *name;
+
+    if (!cpu_model) {
+        return NULL;
+    }
+
+    oc = object_class_by_name(cpu_model);
+    if (oc != NULL && object_class_dynamic_cast(oc, TYPE_AVR_CPU) != NULL &&
+        !object_class_is_abstract(oc)) {
+        return oc;
+    }
+
+    name = g_strdup_printf(AVR_CPU_TYPE_NAME("%s"), cpu_model);
+    oc = object_class_by_name(name);
+    g_free(name);
+    if (oc != NULL && object_class_dynamic_cast(oc, TYPE_AVR_CPU) != NULL &&
+        !object_class_is_abstract(oc)) {
+        return oc;
+    }
+
+    return NULL;
+}
+
+static void avr_cpu_class_init(ObjectClass *oc, void *data)
+{
+    DeviceClass *dc = DEVICE_CLASS(oc);
+    CPUClass *cc = CPU_CLASS(oc);
+    AVRCPUClass *mcc = AVR_CPU_CLASS(oc);
+
+    mcc->parent_realize = dc->realize;
+    dc->realize = avr_cpu_realizefn;
+
+    mcc->parent_reset = cc->reset;
+    cc->reset = avr_cpu_reset;
+
+    cc->class_by_name = avr_cpu_class_by_name;
+
+    cc->has_work = avr_cpu_has_work;
+    cc->do_interrupt = avr_cpu_do_interrupt;
+    cc->cpu_exec_interrupt = avr_cpu_exec_interrupt;
+    cc->dump_state = avr_cpu_dump_state;
+    cc->set_pc = avr_cpu_set_pc;
+#if !defined(CONFIG_USER_ONLY)
+    cc->memory_rw_debug = avr_cpu_memory_rw_debug;
+#endif
+#ifdef CONFIG_USER_ONLY
+    cc->handle_mmu_fault = avr_cpu_handle_mmu_fault;
+#else
+    cc->get_phys_page_debug = avr_cpu_get_phys_page_debug;
+    cc->vmsd = &vms_avr_cpu;
+#endif
+    cc->disas_set_info = avr_cpu_disas_set_info;
+    cc->tcg_initialize = avr_cpu_tcg_init;
+    cc->synchronize_from_tb = avr_cpu_synchronize_from_tb;
+    cc->gdb_read_register = avr_cpu_gdb_read_register;
+    cc->gdb_write_register = avr_cpu_gdb_write_register;
+    cc->gdb_num_core_regs = 35;
+}
+
+static void avr_avr1_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+}
+
+static void avr_avr2_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+}
+
+static void avr_avr25_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+}
+
+static void avr_avr3_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+}
+
+static void avr_avr31_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_RAMPZ);
+    avr_set_feature(env, AVR_FEATURE_ELPM);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+}
+
+static void avr_avr35_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+}
+
+static void avr_avr4_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+}
+
+static void avr_avr5_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+}
+
+static void avr_avr51_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_RAMPZ);
+    avr_set_feature(env, AVR_FEATURE_ELPMX);
+    avr_set_feature(env, AVR_FEATURE_ELPM);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+}
+
+static void avr_avr6_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_3_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_RAMPZ);
+    avr_set_feature(env, AVR_FEATURE_EIJMP_EICALL);
+    avr_set_feature(env, AVR_FEATURE_ELPMX);
+    avr_set_feature(env, AVR_FEATURE_ELPM);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+}
+
+static void avr_xmega2_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+    avr_set_feature(env, AVR_FEATURE_RMW);
+}
+
+static void avr_xmega4_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_RAMPZ);
+    avr_set_feature(env, AVR_FEATURE_ELPMX);
+    avr_set_feature(env, AVR_FEATURE_ELPM);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+    avr_set_feature(env, AVR_FEATURE_RMW);
+}
+
+static void avr_xmega5_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_RAMPD);
+    avr_set_feature(env, AVR_FEATURE_RAMPX);
+    avr_set_feature(env, AVR_FEATURE_RAMPY);
+    avr_set_feature(env, AVR_FEATURE_RAMPZ);
+    avr_set_feature(env, AVR_FEATURE_ELPMX);
+    avr_set_feature(env, AVR_FEATURE_ELPM);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+    avr_set_feature(env, AVR_FEATURE_RMW);
+}
+
+static void avr_xmega6_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_3_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_RAMPZ);
+    avr_set_feature(env, AVR_FEATURE_EIJMP_EICALL);
+    avr_set_feature(env, AVR_FEATURE_ELPMX);
+    avr_set_feature(env, AVR_FEATURE_ELPM);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+    avr_set_feature(env, AVR_FEATURE_RMW);
+}
+
+static void avr_xmega7_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_3_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_RAMPD);
+    avr_set_feature(env, AVR_FEATURE_RAMPX);
+    avr_set_feature(env, AVR_FEATURE_RAMPY);
+    avr_set_feature(env, AVR_FEATURE_RAMPZ);
+    avr_set_feature(env, AVR_FEATURE_EIJMP_EICALL);
+    avr_set_feature(env, AVR_FEATURE_ELPMX);
+    avr_set_feature(env, AVR_FEATURE_ELPM);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+    avr_set_feature(env, AVR_FEATURE_RMW);
+}
+
+typedef struct AVRCPUInfo {
+    const char *name;
+    void (*initfn)(Object *obj);
+} AVRCPUInfo;
+
+static gint avr_cpu_list_compare(gconstpointer a, gconstpointer b)
+{
+    ObjectClass *class_a = (ObjectClass *)a;
+    ObjectClass *class_b = (ObjectClass *)b;
+    const char *name_a;
+    const char *name_b;
+
+    name_a = object_class_get_name(class_a);
+    name_b = object_class_get_name(class_b);
+
+    return strcmp(name_a, name_b);
+}
+
+static void avr_cpu_list_entry(gpointer data, gpointer user_data)
+{
+    ObjectClass *oc = data;
+    const char *typename = object_class_get_name(oc);
+    size_t len = strlen(typename);
+    size_t suffix_len = strlen(AVR_CPU_TYPE_SUFFIX);
+
+    if (len > suffix_len) {
+        qemu_printf("  %.*s\n", (int)(len - suffix_len), typename);
+    } else {
+        qemu_printf("  %s\n", typename);
+    }
+}
+
+void avr_cpu_list(void)
+{
+    GSList *list;
+    list = object_class_get_list(TYPE_AVR_CPU, false);
+    list = g_slist_sort(list, avr_cpu_list_compare);
+    qemu_printf("Available CPUs:\n");
+    g_slist_foreach(list, avr_cpu_list_entry, NULL);
+    g_slist_free(list);
+}
+
+#define DEFINE_AVR_CPU_TYPE(model, initfn) \
+    {                                      \
+        .parent = TYPE_AVR_CPU,            \
+        .instance_init = initfn,           \
+        .name = AVR_CPU_TYPE_NAME(model),  \
+    }
+
+static const TypeInfo avr_cpu_type_info[] = {
+    {
+        .name = TYPE_AVR_CPU,
+        .parent = TYPE_CPU,
+        .instance_size = sizeof(AVRCPU),
+        .instance_init = avr_cpu_initfn,
+        .class_size = sizeof(AVRCPUClass),
+        .class_init = avr_cpu_class_init,
+        .abstract = false,
+    },
+    DEFINE_AVR_CPU_TYPE("avr1", avr_avr1_initfn),
+    DEFINE_AVR_CPU_TYPE("avr2", avr_avr2_initfn),
+    DEFINE_AVR_CPU_TYPE("avr25", avr_avr25_initfn),
+    DEFINE_AVR_CPU_TYPE("avr3", avr_avr3_initfn),
+    DEFINE_AVR_CPU_TYPE("avr31", avr_avr31_initfn),
+    DEFINE_AVR_CPU_TYPE("avr35", avr_avr35_initfn),
+    DEFINE_AVR_CPU_TYPE("avr4", avr_avr4_initfn),
+    DEFINE_AVR_CPU_TYPE("avr5", avr_avr5_initfn),
+    DEFINE_AVR_CPU_TYPE("avr51", avr_avr51_initfn),
+    DEFINE_AVR_CPU_TYPE("avr6", avr_avr6_initfn),
+    DEFINE_AVR_CPU_TYPE("xmega2", avr_xmega2_initfn),
+    DEFINE_AVR_CPU_TYPE("xmega4", avr_xmega4_initfn),
+    DEFINE_AVR_CPU_TYPE("xmega5", avr_xmega5_initfn),
+    DEFINE_AVR_CPU_TYPE("xmega6", avr_xmega6_initfn),
+    DEFINE_AVR_CPU_TYPE("xmega7", avr_xmega7_initfn),
+};
+
+DEFINE_TYPES(avr_cpu_type_info)
diff --git a/target/avr/cpu.h b/target/avr/cpu.h
new file mode 100644
index 0000000000..ee9e827070
--- /dev/null
+++ b/target/avr/cpu.h
@@ -0,0 +1,238 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#if !defined(CPU_AVR_H)
+#define CPU_AVR_H
+
+#include "qemu-common.h"
+
+#define TARGET_LONG_BITS 32
+
+#define CPUArchState struct CPUAVRState
+
+#include "exec/cpu-defs.h"
+#include "fpu/softfloat.h"
+
+/*
+ * TARGET_PAGE_BITS cannot be more than 8 bits because
+ * 1.  all IO registers occupy [0x0000 .. 0x00ff] address range, and they
+ *     should be implemented as a device and not memory
+ * 2.  SRAM starts at the address 0x0100
+ */
+#define TARGET_PAGE_BITS 8
+#define TARGET_PHYS_ADDR_SPACE_BITS 24
+#define TARGET_VIRT_ADDR_SPACE_BITS 24
+#define NB_MMU_MODES 2
+
+/*
+ * AVR has two memory spaces, data & code.
+ * e.g. both have 0 address
+ * ST/LD instructions access data space
+ * LPM/SPM and instruction fetching access code memory space
+ */
+#define MMU_CODE_IDX 0
+#define MMU_DATA_IDX 1
+
+#define EXCP_RESET 1
+#define EXCP_INT(n) (EXCP_RESET + (n) + 1)
+
+/* Number of CPU registers */
+#define NO_CPU_REGISTERS 32
+/* Number of IO registers accessible by ld/st/in/out */
+#define NO_IO_REGISTERS 64
+
+/*
+ * Offsets of AVR memory regions in host memory space.
+ *
+ * This is needed because the AVR has separate code and data address
+ * spaces that both have start from zero but have to go somewhere in
+ * host memory.
+ *
+ * It's also useful to know where some things are, like the IO registers.
+ */
+/* Flash program memory */
+#define OFFSET_CODE 0x00000000
+/* CPU registers, IO registers, and SRAM */
+#define OFFSET_DATA 0x00800000
+/* CPU registers specifically, these are mapped at the start of data */
+#define OFFSET_CPU_REGISTERS OFFSET_DATA
+/*
+ * IO registers, including status register, stack pointer, and memory
+ * mapped peripherals, mapped just after CPU registers
+ */
+#define OFFSET_IO_REGISTERS (OFFSET_DATA + NO_CPU_REGISTERS)
+
+enum avr_features {
+    AVR_FEATURE_SRAM,
+
+    AVR_FEATURE_1_BYTE_PC,
+    AVR_FEATURE_2_BYTE_PC,
+    AVR_FEATURE_3_BYTE_PC,
+
+    AVR_FEATURE_1_BYTE_SP,
+    AVR_FEATURE_2_BYTE_SP,
+
+    AVR_FEATURE_BREAK,
+    AVR_FEATURE_DES,
+    AVR_FEATURE_RMW, /* Read Modify Write - XCH LAC LAS LAT */
+
+    AVR_FEATURE_EIJMP_EICALL,
+    AVR_FEATURE_IJMP_ICALL,
+    AVR_FEATURE_JMP_CALL,
+
+    AVR_FEATURE_ADIW_SBIW,
+
+    AVR_FEATURE_SPM,
+    AVR_FEATURE_SPMX,
+
+    AVR_FEATURE_ELPMX,
+    AVR_FEATURE_ELPM,
+    AVR_FEATURE_LPMX,
+    AVR_FEATURE_LPM,
+
+    AVR_FEATURE_MOVW,
+    AVR_FEATURE_MUL,
+    AVR_FEATURE_RAMPD,
+    AVR_FEATURE_RAMPX,
+    AVR_FEATURE_RAMPY,
+    AVR_FEATURE_RAMPZ,
+};
+
+typedef struct CPUAVRState CPUAVRState;
+
+struct CPUAVRState {
+    uint32_t pc_w; /* 0x003fffff up to 22 bits */
+
+    uint32_t sregC; /* 0x00000001 1 bits */
+    uint32_t sregZ; /* 0x0000ffff 16 bits, negative logic; */
+                    /* 0=flag set, >0=flag cleared */
+    uint32_t sregN; /* 0x00000001 1 bits */
+    uint32_t sregV; /* 0x00000001 1 bits */
+    uint32_t sregS; /* 0x00000001 1 bits */
+    uint32_t sregH; /* 0x00000001 1 bits */
+    uint32_t sregT; /* 0x00000001 1 bits */
+    uint32_t sregI; /* 0x00000001 1 bits */
+
+    uint32_t rampD; /* 0x00ff0000 8 bits */
+    uint32_t rampX; /* 0x00ff0000 8 bits */
+    uint32_t rampY; /* 0x00ff0000 8 bits */
+    uint32_t rampZ; /* 0x00ff0000 8 bits */
+    uint32_t eind; /* 0x00ff0000 8 bits */
+
+    uint32_t r[NO_CPU_REGISTERS]; /* 8 bits each */
+    uint32_t sp; /* 16 bits */
+
+    uint64_t intsrc; /* interrupt sources */
+    bool fullacc; /* CPU/MEM if true MEM only otherwise */
+
+    uint32_t features;
+
+    /* Those resources are used only in QEMU core */
+    CPU_COMMON
+};
+
+static inline int avr_feature(CPUAVRState *env, int feature)
+{
+    return (env->features & (1U << feature)) != 0;
+}
+
+static inline void avr_set_feature(CPUAVRState *env, int feature)
+{
+    env->features |= (1U << feature);
+}
+
+#define cpu_list avr_cpu_list
+#define cpu_signal_handler cpu_avr_signal_handler
+
+#include "exec/cpu-all.h"
+#include "cpu-qom.h"
+
+#define AVR_CPU_TYPE_SUFFIX "-" TYPE_AVR_CPU
+#define AVR_CPU_TYPE_NAME(model) model AVR_CPU_TYPE_SUFFIX
+#define CPU_RESOLVING_TYPE TYPE_AVR_CPU
+
+static inline int cpu_mmu_index(CPUAVRState *env, bool ifetch)
+{
+    return ifetch ? MMU_CODE_IDX : MMU_DATA_IDX;
+}
+
+void avr_cpu_tcg_init(void);
+
+void avr_cpu_list(void);
+int cpu_avr_exec(CPUState *cpu);
+int cpu_avr_signal_handler(int host_signum, void *pinfo, void *puc);
+int avr_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int size,
+                                int rw, int mmu_idx);
+int avr_cpu_memory_rw_debug(CPUState *cs, vaddr address, uint8_t *buf,
+                                int len, bool is_write);
+
+enum {
+    TB_FLAGS_FULL_ACCESS = 1,
+};
+
+static inline void cpu_get_tb_cpu_state(CPUAVRState *env, target_ulong *pc,
+                                target_ulong *cs_base, uint32_t *pflags)
+{
+    uint32_t flags = 0;
+
+    *pc = env->pc_w * 2;
+    *cs_base = 0;
+
+    if (env->fullacc) {
+        flags |= TB_FLAGS_FULL_ACCESS;
+    }
+
+    *pflags = flags;
+}
+
+static inline int cpu_interrupts_enabled(CPUAVRState *env)
+{
+    return env->sregI != 0;
+}
+
+static inline uint8_t cpu_get_sreg(CPUAVRState *env)
+{
+    uint8_t sreg;
+    sreg = (env->sregC & 0x01) << 0
+         | (env->sregZ == 0 ? 1 : 0) << 1
+         | (env->sregN) << 2
+         | (env->sregV) << 3
+         | (env->sregS) << 4
+         | (env->sregH) << 5
+         | (env->sregT) << 6
+         | (env->sregI) << 7;
+    return sreg;
+}
+
+static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg)
+{
+    env->sregC = (sreg >> 0) & 0x01;
+    env->sregZ = (sreg >> 1) & 0x01 ? 0 : 1;
+    env->sregN = (sreg >> 2) & 0x01;
+    env->sregV = (sreg >> 3) & 0x01;
+    env->sregS = (sreg >> 4) & 0x01;
+    env->sregH = (sreg >> 5) & 0x01;
+    env->sregT = (sreg >> 6) & 0x01;
+    env->sregI = (sreg >> 7) & 0x01;
+}
+
+#include "exec/exec-all.h"
+
+#endif /* !defined (CPU_AVR_H) */
diff --git a/target/avr/gdbstub.c b/target/avr/gdbstub.c
new file mode 100644
index 0000000000..537dc7226e
--- /dev/null
+++ b/target/avr/gdbstub.c
@@ -0,0 +1,85 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#include "qemu/osdep.h"
+#include "qemu-common.h"
+#include "exec/gdbstub.h"
+
+int avr_cpu_gdb_read_register(CPUState *cs, uint8_t *mem_buf, int n)
+{
+    AVRCPU *cpu = AVR_CPU(cs);
+    CPUAVRState *env = &cpu->env;
+
+    /*  R */
+    if (n < 32) {
+        return gdb_get_reg8(mem_buf, env->r[n]);
+    }
+
+    /*  SREG */
+    if (n == 32) {
+        uint8_t sreg = cpu_get_sreg(env);
+
+        return gdb_get_reg8(mem_buf, sreg);
+    }
+
+    /*  SP */
+    if (n == 33) {
+        return gdb_get_reg16(mem_buf, env->sp & 0x0000ffff);
+    }
+
+    /*  PC */
+    if (n == 34) {
+        return gdb_get_reg32(mem_buf, env->pc_w * 2);
+    }
+
+    return 0;
+}
+
+int avr_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
+{
+    AVRCPU *cpu = AVR_CPU(cs);
+    CPUAVRState *env = &cpu->env;
+
+    /*  R */
+    if (n < 32) {
+        env->r[n] = *mem_buf;
+        return 1;
+    }
+
+    /*  SREG */
+    if (n == 32) {
+        cpu_set_sreg(env, *mem_buf);
+        return 1;
+    }
+
+    /*  SP */
+    if (n == 33) {
+        env->sp = lduw_p(mem_buf);
+        return 2;
+    }
+
+    /*  PC */
+    if (n == 34) {
+        env->pc_w = ldl_p(mem_buf) / 2;
+        return 4;
+    }
+
+    return 0;
+}
diff --git a/target/avr/machine.c b/target/avr/machine.c
new file mode 100644
index 0000000000..438c8a6cb5
--- /dev/null
+++ b/target/avr/machine.c
@@ -0,0 +1,122 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#include "qemu/osdep.h"
+#include "hw/hw.h"
+#include "cpu.h"
+#include "hw/boards.h"
+#include "migration/qemu-file.h"
+
+static int get_sreg(QEMUFile *f, void *opaque, size_t size,
+    const VMStateField *field)
+{
+    CPUAVRState *env = opaque;
+    uint8_t sreg;
+
+    sreg = qemu_get_byte(f);
+    cpu_set_sreg(env, sreg);
+    return 0;
+}
+
+static int put_sreg(
+    QEMUFile *f, void *opaque, size_t size,
+    const VMStateField *field, QJSON *vmdesc)
+{
+    CPUAVRState *env = opaque;
+    uint8_t sreg = cpu_get_sreg(env);
+
+    qemu_put_byte(f, sreg);
+    return 0;
+}
+
+static const VMStateInfo vms_sreg = {
+    .name = "sreg",
+    .get = get_sreg,
+    .put = put_sreg,
+};
+
+static int get_segment(
+    QEMUFile *f, void *opaque, size_t size, const VMStateField *field)
+{
+    uint32_t *ramp = opaque;
+    uint8_t temp;
+
+    temp = qemu_get_byte(f);
+    *ramp = ((uint32_t)temp) << 16;
+    return 0;
+}
+
+static int put_segment(
+    QEMUFile *f, void *opaque, size_t size,
+    const VMStateField *field, QJSON *vmdesc)
+{
+    uint32_t *ramp = opaque;
+    uint8_t temp = *ramp >> 16;
+
+    qemu_put_byte(f, temp);
+    return 0;
+}
+
+static const VMStateInfo vms_rampD = {
+    .name = "rampD",
+    .get = get_segment,
+    .put = put_segment,
+};
+static const VMStateInfo vms_rampX = {
+    .name = "rampX",
+    .get = get_segment,
+    .put = put_segment,
+};
+static const VMStateInfo vms_rampY = {
+    .name = "rampY",
+    .get = get_segment,
+    .put = put_segment,
+};
+static const VMStateInfo vms_rampZ = {
+    .name = "rampZ",
+    .get = get_segment,
+    .put = put_segment,
+};
+static const VMStateInfo vms_eind = {
+    .name = "eind",
+    .get = get_segment,
+    .put = put_segment,
+};
+
+const VMStateDescription vms_avr_cpu = {
+    .name = "cpu",
+    .version_id = 0,
+    .minimum_version_id = 0,
+    .fields = (VMStateField[]) {
+        VMSTATE_UINT32(env.pc_w, AVRCPU),
+        VMSTATE_UINT32(env.sp, AVRCPU),
+
+        VMSTATE_UINT32_ARRAY(env.r, AVRCPU, NO_CPU_REGISTERS),
+
+        VMSTATE_SINGLE(env, AVRCPU, 0, vms_sreg, CPUAVRState),
+        VMSTATE_SINGLE(env.rampD, AVRCPU, 0, vms_rampD, uint32_t),
+        VMSTATE_SINGLE(env.rampX, AVRCPU, 0, vms_rampX, uint32_t),
+        VMSTATE_SINGLE(env.rampY, AVRCPU, 0, vms_rampY, uint32_t),
+        VMSTATE_SINGLE(env.rampZ, AVRCPU, 0, vms_rampZ, uint32_t),
+        VMSTATE_SINGLE(env.eind, AVRCPU, 0, vms_eind, uint32_t),
+
+        VMSTATE_END_OF_LIST()
+    }
+};
-- 
2.21.0

^ permalink raw reply related	[flat|nested] 31+ messages in thread

* [Qemu-devel] [PATCH v1 3/8] target/avr: Add outward facing interfaces and core CPU logic
@ 2019-05-04  8:36   ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, mrolnik, A.M.King, E.J.C.Robbins

This includes:
- CPU data structures
- object model classes and functions
- migration functions
- GDB hooks

Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
---
 target/avr/cpu-qom.h |  83 +++++++
 target/avr/cpu.c     | 570 +++++++++++++++++++++++++++++++++++++++++++
 target/avr/cpu.h     | 238 ++++++++++++++++++
 target/avr/gdbstub.c |  85 +++++++
 target/avr/machine.c | 122 +++++++++
 5 files changed, 1098 insertions(+)
 create mode 100644 target/avr/cpu-qom.h
 create mode 100644 target/avr/cpu.c
 create mode 100644 target/avr/cpu.h
 create mode 100644 target/avr/gdbstub.c
 create mode 100644 target/avr/machine.c

diff --git a/target/avr/cpu-qom.h b/target/avr/cpu-qom.h
new file mode 100644
index 0000000000..8085567b87
--- /dev/null
+++ b/target/avr/cpu-qom.h
@@ -0,0 +1,83 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#ifndef QEMU_AVR_CPU_QOM_H
+#define QEMU_AVR_CPU_QOM_H
+
+#include "qom/cpu.h"
+
+#define TYPE_AVR_CPU "avr"
+
+#define AVR_CPU_CLASS(klass) \
+                    OBJECT_CLASS_CHECK(AVRCPUClass, (klass), TYPE_AVR_CPU)
+#define AVR_CPU(obj) \
+                    OBJECT_CHECK(AVRCPU, (obj), TYPE_AVR_CPU)
+#define AVR_CPU_GET_CLASS(obj) \
+                    OBJECT_GET_CLASS(AVRCPUClass, (obj), TYPE_AVR_CPU)
+
+/**
+ *  AVRCPUClass:
+ *  @parent_realize: The parent class' realize handler.
+ *  @parent_reset: The parent class' reset handler.
+ *  @vr: Version Register value.
+ *
+ *  A AVR CPU model.
+ */
+typedef struct AVRCPUClass {
+    CPUClass parent_class;
+
+    DeviceRealize parent_realize;
+    void (*parent_reset)(CPUState *cpu);
+} AVRCPUClass;
+
+/**
+ *  AVRCPU:
+ *  @env: #CPUAVRState
+ *
+ *  A AVR CPU.
+ */
+typedef struct AVRCPU {
+    /*< private >*/
+    CPUState parent_obj;
+    /*< public >*/
+
+    CPUAVRState env;
+} AVRCPU;
+
+static inline AVRCPU *avr_env_get_cpu(CPUAVRState *env)
+{
+    return container_of(env, AVRCPU, env);
+}
+
+#define ENV_GET_CPU(e) CPU(avr_env_get_cpu(e))
+#define ENV_OFFSET offsetof(AVRCPU, env)
+
+#ifndef CONFIG_USER_ONLY
+extern const struct VMStateDescription vms_avr_cpu;
+#endif
+
+void avr_cpu_do_interrupt(CPUState *cpu);
+bool avr_cpu_exec_interrupt(CPUState *cpu, int int_req);
+void avr_cpu_dump_state(CPUState *cs, FILE *f, int flags);
+hwaddr avr_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
+int avr_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
+int avr_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
+
+#endif
diff --git a/target/avr/cpu.c b/target/avr/cpu.c
new file mode 100644
index 0000000000..19ce1d7386
--- /dev/null
+++ b/target/avr/cpu.c
@@ -0,0 +1,570 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/qemu-print.h"
+#include "qapi/error.h"
+#include "cpu.h"
+#include "qemu-common.h"
+#include "migration/vmstate.h"
+
+static void avr_cpu_set_pc(CPUState *cs, vaddr value)
+{
+    AVRCPU *cpu = AVR_CPU(cs);
+
+    cpu->env.pc_w = value / 2; /* internally PC points to words */
+}
+
+static bool avr_cpu_has_work(CPUState *cs)
+{
+    AVRCPU *cpu = AVR_CPU(cs);
+    CPUAVRState *env = &cpu->env;
+
+    return (cs->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_RESET))
+            && cpu_interrupts_enabled(env);
+}
+
+static void avr_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
+{
+    AVRCPU *cpu = AVR_CPU(cs);
+    CPUAVRState *env = &cpu->env;
+
+    env->pc_w = tb->pc / 2; /* internally PC points to words */
+}
+
+static void avr_cpu_reset(CPUState *s)
+{
+    AVRCPU *cpu = AVR_CPU(s);
+    AVRCPUClass *mcc = AVR_CPU_GET_CLASS(cpu);
+    CPUAVRState *env = &cpu->env;
+
+    mcc->parent_reset(s);
+
+    env->pc_w = 0;
+    env->sregI = 1;
+    env->sregC = 0;
+    env->sregZ = 0;
+    env->sregN = 0;
+    env->sregV = 0;
+    env->sregS = 0;
+    env->sregH = 0;
+    env->sregT = 0;
+
+    env->rampD = 0;
+    env->rampX = 0;
+    env->rampY = 0;
+    env->rampZ = 0;
+    env->eind = 0;
+    env->sp = 0;
+
+    memset(env->r, 0, sizeof(env->r));
+
+    tlb_flush(s);
+}
+
+static void avr_cpu_disas_set_info(CPUState *cpu, disassemble_info *info)
+{
+    info->mach = bfd_arch_avr;
+    info->print_insn = NULL;
+}
+
+static void avr_cpu_realizefn(DeviceState *dev, Error **errp)
+{
+    CPUState *cs = CPU(dev);
+    AVRCPUClass *mcc = AVR_CPU_GET_CLASS(dev);
+    Error *local_err = NULL;
+
+    cpu_exec_realizefn(cs, &local_err);
+    if (local_err != NULL) {
+        error_propagate(errp, local_err);
+        return;
+    }
+    qemu_init_vcpu(cs);
+    cpu_reset(cs);
+
+    mcc->parent_realize(dev, errp);
+}
+
+static void avr_cpu_set_int(void *opaque, int irq, int level)
+{
+    AVRCPU *cpu = opaque;
+    CPUAVRState *env = &cpu->env;
+    CPUState *cs = CPU(cpu);
+
+    uint64_t mask = (1ull << irq);
+    if (level) {
+        env->intsrc |= mask;
+        cpu_interrupt(cs, CPU_INTERRUPT_HARD);
+    } else {
+        env->intsrc &= ~mask;
+        if (env->intsrc == 0) {
+            cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
+        }
+    }
+}
+
+static void avr_cpu_initfn(Object *obj)
+{
+    CPUState *cs = CPU(obj);
+    AVRCPU *cpu = AVR_CPU(obj);
+
+    cs->env_ptr = &cpu->env;
+
+#ifndef CONFIG_USER_ONLY
+    /* Set the number of interrupts supported by the CPU. */
+    qdev_init_gpio_in(DEVICE(cpu), avr_cpu_set_int, 57);
+#endif
+}
+
+static ObjectClass *avr_cpu_class_by_name(const char *cpu_model)
+{
+    ObjectClass *oc;
+    char *name;
+
+    if (!cpu_model) {
+        return NULL;
+    }
+
+    oc = object_class_by_name(cpu_model);
+    if (oc != NULL && object_class_dynamic_cast(oc, TYPE_AVR_CPU) != NULL &&
+        !object_class_is_abstract(oc)) {
+        return oc;
+    }
+
+    name = g_strdup_printf(AVR_CPU_TYPE_NAME("%s"), cpu_model);
+    oc = object_class_by_name(name);
+    g_free(name);
+    if (oc != NULL && object_class_dynamic_cast(oc, TYPE_AVR_CPU) != NULL &&
+        !object_class_is_abstract(oc)) {
+        return oc;
+    }
+
+    return NULL;
+}
+
+static void avr_cpu_class_init(ObjectClass *oc, void *data)
+{
+    DeviceClass *dc = DEVICE_CLASS(oc);
+    CPUClass *cc = CPU_CLASS(oc);
+    AVRCPUClass *mcc = AVR_CPU_CLASS(oc);
+
+    mcc->parent_realize = dc->realize;
+    dc->realize = avr_cpu_realizefn;
+
+    mcc->parent_reset = cc->reset;
+    cc->reset = avr_cpu_reset;
+
+    cc->class_by_name = avr_cpu_class_by_name;
+
+    cc->has_work = avr_cpu_has_work;
+    cc->do_interrupt = avr_cpu_do_interrupt;
+    cc->cpu_exec_interrupt = avr_cpu_exec_interrupt;
+    cc->dump_state = avr_cpu_dump_state;
+    cc->set_pc = avr_cpu_set_pc;
+#if !defined(CONFIG_USER_ONLY)
+    cc->memory_rw_debug = avr_cpu_memory_rw_debug;
+#endif
+#ifdef CONFIG_USER_ONLY
+    cc->handle_mmu_fault = avr_cpu_handle_mmu_fault;
+#else
+    cc->get_phys_page_debug = avr_cpu_get_phys_page_debug;
+    cc->vmsd = &vms_avr_cpu;
+#endif
+    cc->disas_set_info = avr_cpu_disas_set_info;
+    cc->tcg_initialize = avr_cpu_tcg_init;
+    cc->synchronize_from_tb = avr_cpu_synchronize_from_tb;
+    cc->gdb_read_register = avr_cpu_gdb_read_register;
+    cc->gdb_write_register = avr_cpu_gdb_write_register;
+    cc->gdb_num_core_regs = 35;
+}
+
+static void avr_avr1_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+}
+
+static void avr_avr2_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+}
+
+static void avr_avr25_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+}
+
+static void avr_avr3_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+}
+
+static void avr_avr31_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_RAMPZ);
+    avr_set_feature(env, AVR_FEATURE_ELPM);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+}
+
+static void avr_avr35_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+}
+
+static void avr_avr4_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+}
+
+static void avr_avr5_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+}
+
+static void avr_avr51_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_RAMPZ);
+    avr_set_feature(env, AVR_FEATURE_ELPMX);
+    avr_set_feature(env, AVR_FEATURE_ELPM);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+}
+
+static void avr_avr6_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_3_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_RAMPZ);
+    avr_set_feature(env, AVR_FEATURE_EIJMP_EICALL);
+    avr_set_feature(env, AVR_FEATURE_ELPMX);
+    avr_set_feature(env, AVR_FEATURE_ELPM);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+}
+
+static void avr_xmega2_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+    avr_set_feature(env, AVR_FEATURE_RMW);
+}
+
+static void avr_xmega4_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_RAMPZ);
+    avr_set_feature(env, AVR_FEATURE_ELPMX);
+    avr_set_feature(env, AVR_FEATURE_ELPM);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+    avr_set_feature(env, AVR_FEATURE_RMW);
+}
+
+static void avr_xmega5_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_RAMPD);
+    avr_set_feature(env, AVR_FEATURE_RAMPX);
+    avr_set_feature(env, AVR_FEATURE_RAMPY);
+    avr_set_feature(env, AVR_FEATURE_RAMPZ);
+    avr_set_feature(env, AVR_FEATURE_ELPMX);
+    avr_set_feature(env, AVR_FEATURE_ELPM);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+    avr_set_feature(env, AVR_FEATURE_RMW);
+}
+
+static void avr_xmega6_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_3_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_RAMPZ);
+    avr_set_feature(env, AVR_FEATURE_EIJMP_EICALL);
+    avr_set_feature(env, AVR_FEATURE_ELPMX);
+    avr_set_feature(env, AVR_FEATURE_ELPM);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+    avr_set_feature(env, AVR_FEATURE_RMW);
+}
+
+static void avr_xmega7_initfn(Object *obj)
+{
+    AVRCPU *cpu = AVR_CPU(obj);
+    CPUAVRState *env = &cpu->env;
+
+    avr_set_feature(env, AVR_FEATURE_LPM);
+    avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+    avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+    avr_set_feature(env, AVR_FEATURE_SRAM);
+    avr_set_feature(env, AVR_FEATURE_BREAK);
+
+    avr_set_feature(env, AVR_FEATURE_3_BYTE_PC);
+    avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+    avr_set_feature(env, AVR_FEATURE_RAMPD);
+    avr_set_feature(env, AVR_FEATURE_RAMPX);
+    avr_set_feature(env, AVR_FEATURE_RAMPY);
+    avr_set_feature(env, AVR_FEATURE_RAMPZ);
+    avr_set_feature(env, AVR_FEATURE_EIJMP_EICALL);
+    avr_set_feature(env, AVR_FEATURE_ELPMX);
+    avr_set_feature(env, AVR_FEATURE_ELPM);
+    avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+    avr_set_feature(env, AVR_FEATURE_LPMX);
+    avr_set_feature(env, AVR_FEATURE_MOVW);
+    avr_set_feature(env, AVR_FEATURE_MUL);
+    avr_set_feature(env, AVR_FEATURE_RMW);
+}
+
+typedef struct AVRCPUInfo {
+    const char *name;
+    void (*initfn)(Object *obj);
+} AVRCPUInfo;
+
+static gint avr_cpu_list_compare(gconstpointer a, gconstpointer b)
+{
+    ObjectClass *class_a = (ObjectClass *)a;
+    ObjectClass *class_b = (ObjectClass *)b;
+    const char *name_a;
+    const char *name_b;
+
+    name_a = object_class_get_name(class_a);
+    name_b = object_class_get_name(class_b);
+
+    return strcmp(name_a, name_b);
+}
+
+static void avr_cpu_list_entry(gpointer data, gpointer user_data)
+{
+    ObjectClass *oc = data;
+    const char *typename = object_class_get_name(oc);
+    size_t len = strlen(typename);
+    size_t suffix_len = strlen(AVR_CPU_TYPE_SUFFIX);
+
+    if (len > suffix_len) {
+        qemu_printf("  %.*s\n", (int)(len - suffix_len), typename);
+    } else {
+        qemu_printf("  %s\n", typename);
+    }
+}
+
+void avr_cpu_list(void)
+{
+    GSList *list;
+    list = object_class_get_list(TYPE_AVR_CPU, false);
+    list = g_slist_sort(list, avr_cpu_list_compare);
+    qemu_printf("Available CPUs:\n");
+    g_slist_foreach(list, avr_cpu_list_entry, NULL);
+    g_slist_free(list);
+}
+
+#define DEFINE_AVR_CPU_TYPE(model, initfn) \
+    {                                      \
+        .parent = TYPE_AVR_CPU,            \
+        .instance_init = initfn,           \
+        .name = AVR_CPU_TYPE_NAME(model),  \
+    }
+
+static const TypeInfo avr_cpu_type_info[] = {
+    {
+        .name = TYPE_AVR_CPU,
+        .parent = TYPE_CPU,
+        .instance_size = sizeof(AVRCPU),
+        .instance_init = avr_cpu_initfn,
+        .class_size = sizeof(AVRCPUClass),
+        .class_init = avr_cpu_class_init,
+        .abstract = false,
+    },
+    DEFINE_AVR_CPU_TYPE("avr1", avr_avr1_initfn),
+    DEFINE_AVR_CPU_TYPE("avr2", avr_avr2_initfn),
+    DEFINE_AVR_CPU_TYPE("avr25", avr_avr25_initfn),
+    DEFINE_AVR_CPU_TYPE("avr3", avr_avr3_initfn),
+    DEFINE_AVR_CPU_TYPE("avr31", avr_avr31_initfn),
+    DEFINE_AVR_CPU_TYPE("avr35", avr_avr35_initfn),
+    DEFINE_AVR_CPU_TYPE("avr4", avr_avr4_initfn),
+    DEFINE_AVR_CPU_TYPE("avr5", avr_avr5_initfn),
+    DEFINE_AVR_CPU_TYPE("avr51", avr_avr51_initfn),
+    DEFINE_AVR_CPU_TYPE("avr6", avr_avr6_initfn),
+    DEFINE_AVR_CPU_TYPE("xmega2", avr_xmega2_initfn),
+    DEFINE_AVR_CPU_TYPE("xmega4", avr_xmega4_initfn),
+    DEFINE_AVR_CPU_TYPE("xmega5", avr_xmega5_initfn),
+    DEFINE_AVR_CPU_TYPE("xmega6", avr_xmega6_initfn),
+    DEFINE_AVR_CPU_TYPE("xmega7", avr_xmega7_initfn),
+};
+
+DEFINE_TYPES(avr_cpu_type_info)
diff --git a/target/avr/cpu.h b/target/avr/cpu.h
new file mode 100644
index 0000000000..ee9e827070
--- /dev/null
+++ b/target/avr/cpu.h
@@ -0,0 +1,238 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#if !defined(CPU_AVR_H)
+#define CPU_AVR_H
+
+#include "qemu-common.h"
+
+#define TARGET_LONG_BITS 32
+
+#define CPUArchState struct CPUAVRState
+
+#include "exec/cpu-defs.h"
+#include "fpu/softfloat.h"
+
+/*
+ * TARGET_PAGE_BITS cannot be more than 8 bits because
+ * 1.  all IO registers occupy [0x0000 .. 0x00ff] address range, and they
+ *     should be implemented as a device and not memory
+ * 2.  SRAM starts at the address 0x0100
+ */
+#define TARGET_PAGE_BITS 8
+#define TARGET_PHYS_ADDR_SPACE_BITS 24
+#define TARGET_VIRT_ADDR_SPACE_BITS 24
+#define NB_MMU_MODES 2
+
+/*
+ * AVR has two memory spaces, data & code.
+ * e.g. both have 0 address
+ * ST/LD instructions access data space
+ * LPM/SPM and instruction fetching access code memory space
+ */
+#define MMU_CODE_IDX 0
+#define MMU_DATA_IDX 1
+
+#define EXCP_RESET 1
+#define EXCP_INT(n) (EXCP_RESET + (n) + 1)
+
+/* Number of CPU registers */
+#define NO_CPU_REGISTERS 32
+/* Number of IO registers accessible by ld/st/in/out */
+#define NO_IO_REGISTERS 64
+
+/*
+ * Offsets of AVR memory regions in host memory space.
+ *
+ * This is needed because the AVR has separate code and data address
+ * spaces that both have start from zero but have to go somewhere in
+ * host memory.
+ *
+ * It's also useful to know where some things are, like the IO registers.
+ */
+/* Flash program memory */
+#define OFFSET_CODE 0x00000000
+/* CPU registers, IO registers, and SRAM */
+#define OFFSET_DATA 0x00800000
+/* CPU registers specifically, these are mapped at the start of data */
+#define OFFSET_CPU_REGISTERS OFFSET_DATA
+/*
+ * IO registers, including status register, stack pointer, and memory
+ * mapped peripherals, mapped just after CPU registers
+ */
+#define OFFSET_IO_REGISTERS (OFFSET_DATA + NO_CPU_REGISTERS)
+
+enum avr_features {
+    AVR_FEATURE_SRAM,
+
+    AVR_FEATURE_1_BYTE_PC,
+    AVR_FEATURE_2_BYTE_PC,
+    AVR_FEATURE_3_BYTE_PC,
+
+    AVR_FEATURE_1_BYTE_SP,
+    AVR_FEATURE_2_BYTE_SP,
+
+    AVR_FEATURE_BREAK,
+    AVR_FEATURE_DES,
+    AVR_FEATURE_RMW, /* Read Modify Write - XCH LAC LAS LAT */
+
+    AVR_FEATURE_EIJMP_EICALL,
+    AVR_FEATURE_IJMP_ICALL,
+    AVR_FEATURE_JMP_CALL,
+
+    AVR_FEATURE_ADIW_SBIW,
+
+    AVR_FEATURE_SPM,
+    AVR_FEATURE_SPMX,
+
+    AVR_FEATURE_ELPMX,
+    AVR_FEATURE_ELPM,
+    AVR_FEATURE_LPMX,
+    AVR_FEATURE_LPM,
+
+    AVR_FEATURE_MOVW,
+    AVR_FEATURE_MUL,
+    AVR_FEATURE_RAMPD,
+    AVR_FEATURE_RAMPX,
+    AVR_FEATURE_RAMPY,
+    AVR_FEATURE_RAMPZ,
+};
+
+typedef struct CPUAVRState CPUAVRState;
+
+struct CPUAVRState {
+    uint32_t pc_w; /* 0x003fffff up to 22 bits */
+
+    uint32_t sregC; /* 0x00000001 1 bits */
+    uint32_t sregZ; /* 0x0000ffff 16 bits, negative logic; */
+                    /* 0=flag set, >0=flag cleared */
+    uint32_t sregN; /* 0x00000001 1 bits */
+    uint32_t sregV; /* 0x00000001 1 bits */
+    uint32_t sregS; /* 0x00000001 1 bits */
+    uint32_t sregH; /* 0x00000001 1 bits */
+    uint32_t sregT; /* 0x00000001 1 bits */
+    uint32_t sregI; /* 0x00000001 1 bits */
+
+    uint32_t rampD; /* 0x00ff0000 8 bits */
+    uint32_t rampX; /* 0x00ff0000 8 bits */
+    uint32_t rampY; /* 0x00ff0000 8 bits */
+    uint32_t rampZ; /* 0x00ff0000 8 bits */
+    uint32_t eind; /* 0x00ff0000 8 bits */
+
+    uint32_t r[NO_CPU_REGISTERS]; /* 8 bits each */
+    uint32_t sp; /* 16 bits */
+
+    uint64_t intsrc; /* interrupt sources */
+    bool fullacc; /* CPU/MEM if true MEM only otherwise */
+
+    uint32_t features;
+
+    /* Those resources are used only in QEMU core */
+    CPU_COMMON
+};
+
+static inline int avr_feature(CPUAVRState *env, int feature)
+{
+    return (env->features & (1U << feature)) != 0;
+}
+
+static inline void avr_set_feature(CPUAVRState *env, int feature)
+{
+    env->features |= (1U << feature);
+}
+
+#define cpu_list avr_cpu_list
+#define cpu_signal_handler cpu_avr_signal_handler
+
+#include "exec/cpu-all.h"
+#include "cpu-qom.h"
+
+#define AVR_CPU_TYPE_SUFFIX "-" TYPE_AVR_CPU
+#define AVR_CPU_TYPE_NAME(model) model AVR_CPU_TYPE_SUFFIX
+#define CPU_RESOLVING_TYPE TYPE_AVR_CPU
+
+static inline int cpu_mmu_index(CPUAVRState *env, bool ifetch)
+{
+    return ifetch ? MMU_CODE_IDX : MMU_DATA_IDX;
+}
+
+void avr_cpu_tcg_init(void);
+
+void avr_cpu_list(void);
+int cpu_avr_exec(CPUState *cpu);
+int cpu_avr_signal_handler(int host_signum, void *pinfo, void *puc);
+int avr_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int size,
+                                int rw, int mmu_idx);
+int avr_cpu_memory_rw_debug(CPUState *cs, vaddr address, uint8_t *buf,
+                                int len, bool is_write);
+
+enum {
+    TB_FLAGS_FULL_ACCESS = 1,
+};
+
+static inline void cpu_get_tb_cpu_state(CPUAVRState *env, target_ulong *pc,
+                                target_ulong *cs_base, uint32_t *pflags)
+{
+    uint32_t flags = 0;
+
+    *pc = env->pc_w * 2;
+    *cs_base = 0;
+
+    if (env->fullacc) {
+        flags |= TB_FLAGS_FULL_ACCESS;
+    }
+
+    *pflags = flags;
+}
+
+static inline int cpu_interrupts_enabled(CPUAVRState *env)
+{
+    return env->sregI != 0;
+}
+
+static inline uint8_t cpu_get_sreg(CPUAVRState *env)
+{
+    uint8_t sreg;
+    sreg = (env->sregC & 0x01) << 0
+         | (env->sregZ == 0 ? 1 : 0) << 1
+         | (env->sregN) << 2
+         | (env->sregV) << 3
+         | (env->sregS) << 4
+         | (env->sregH) << 5
+         | (env->sregT) << 6
+         | (env->sregI) << 7;
+    return sreg;
+}
+
+static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg)
+{
+    env->sregC = (sreg >> 0) & 0x01;
+    env->sregZ = (sreg >> 1) & 0x01 ? 0 : 1;
+    env->sregN = (sreg >> 2) & 0x01;
+    env->sregV = (sreg >> 3) & 0x01;
+    env->sregS = (sreg >> 4) & 0x01;
+    env->sregH = (sreg >> 5) & 0x01;
+    env->sregT = (sreg >> 6) & 0x01;
+    env->sregI = (sreg >> 7) & 0x01;
+}
+
+#include "exec/exec-all.h"
+
+#endif /* !defined (CPU_AVR_H) */
diff --git a/target/avr/gdbstub.c b/target/avr/gdbstub.c
new file mode 100644
index 0000000000..537dc7226e
--- /dev/null
+++ b/target/avr/gdbstub.c
@@ -0,0 +1,85 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#include "qemu/osdep.h"
+#include "qemu-common.h"
+#include "exec/gdbstub.h"
+
+int avr_cpu_gdb_read_register(CPUState *cs, uint8_t *mem_buf, int n)
+{
+    AVRCPU *cpu = AVR_CPU(cs);
+    CPUAVRState *env = &cpu->env;
+
+    /*  R */
+    if (n < 32) {
+        return gdb_get_reg8(mem_buf, env->r[n]);
+    }
+
+    /*  SREG */
+    if (n == 32) {
+        uint8_t sreg = cpu_get_sreg(env);
+
+        return gdb_get_reg8(mem_buf, sreg);
+    }
+
+    /*  SP */
+    if (n == 33) {
+        return gdb_get_reg16(mem_buf, env->sp & 0x0000ffff);
+    }
+
+    /*  PC */
+    if (n == 34) {
+        return gdb_get_reg32(mem_buf, env->pc_w * 2);
+    }
+
+    return 0;
+}
+
+int avr_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
+{
+    AVRCPU *cpu = AVR_CPU(cs);
+    CPUAVRState *env = &cpu->env;
+
+    /*  R */
+    if (n < 32) {
+        env->r[n] = *mem_buf;
+        return 1;
+    }
+
+    /*  SREG */
+    if (n == 32) {
+        cpu_set_sreg(env, *mem_buf);
+        return 1;
+    }
+
+    /*  SP */
+    if (n == 33) {
+        env->sp = lduw_p(mem_buf);
+        return 2;
+    }
+
+    /*  PC */
+    if (n == 34) {
+        env->pc_w = ldl_p(mem_buf) / 2;
+        return 4;
+    }
+
+    return 0;
+}
diff --git a/target/avr/machine.c b/target/avr/machine.c
new file mode 100644
index 0000000000..438c8a6cb5
--- /dev/null
+++ b/target/avr/machine.c
@@ -0,0 +1,122 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#include "qemu/osdep.h"
+#include "hw/hw.h"
+#include "cpu.h"
+#include "hw/boards.h"
+#include "migration/qemu-file.h"
+
+static int get_sreg(QEMUFile *f, void *opaque, size_t size,
+    const VMStateField *field)
+{
+    CPUAVRState *env = opaque;
+    uint8_t sreg;
+
+    sreg = qemu_get_byte(f);
+    cpu_set_sreg(env, sreg);
+    return 0;
+}
+
+static int put_sreg(
+    QEMUFile *f, void *opaque, size_t size,
+    const VMStateField *field, QJSON *vmdesc)
+{
+    CPUAVRState *env = opaque;
+    uint8_t sreg = cpu_get_sreg(env);
+
+    qemu_put_byte(f, sreg);
+    return 0;
+}
+
+static const VMStateInfo vms_sreg = {
+    .name = "sreg",
+    .get = get_sreg,
+    .put = put_sreg,
+};
+
+static int get_segment(
+    QEMUFile *f, void *opaque, size_t size, const VMStateField *field)
+{
+    uint32_t *ramp = opaque;
+    uint8_t temp;
+
+    temp = qemu_get_byte(f);
+    *ramp = ((uint32_t)temp) << 16;
+    return 0;
+}
+
+static int put_segment(
+    QEMUFile *f, void *opaque, size_t size,
+    const VMStateField *field, QJSON *vmdesc)
+{
+    uint32_t *ramp = opaque;
+    uint8_t temp = *ramp >> 16;
+
+    qemu_put_byte(f, temp);
+    return 0;
+}
+
+static const VMStateInfo vms_rampD = {
+    .name = "rampD",
+    .get = get_segment,
+    .put = put_segment,
+};
+static const VMStateInfo vms_rampX = {
+    .name = "rampX",
+    .get = get_segment,
+    .put = put_segment,
+};
+static const VMStateInfo vms_rampY = {
+    .name = "rampY",
+    .get = get_segment,
+    .put = put_segment,
+};
+static const VMStateInfo vms_rampZ = {
+    .name = "rampZ",
+    .get = get_segment,
+    .put = put_segment,
+};
+static const VMStateInfo vms_eind = {
+    .name = "eind",
+    .get = get_segment,
+    .put = put_segment,
+};
+
+const VMStateDescription vms_avr_cpu = {
+    .name = "cpu",
+    .version_id = 0,
+    .minimum_version_id = 0,
+    .fields = (VMStateField[]) {
+        VMSTATE_UINT32(env.pc_w, AVRCPU),
+        VMSTATE_UINT32(env.sp, AVRCPU),
+
+        VMSTATE_UINT32_ARRAY(env.r, AVRCPU, NO_CPU_REGISTERS),
+
+        VMSTATE_SINGLE(env, AVRCPU, 0, vms_sreg, CPUAVRState),
+        VMSTATE_SINGLE(env.rampD, AVRCPU, 0, vms_rampD, uint32_t),
+        VMSTATE_SINGLE(env.rampX, AVRCPU, 0, vms_rampX, uint32_t),
+        VMSTATE_SINGLE(env.rampY, AVRCPU, 0, vms_rampY, uint32_t),
+        VMSTATE_SINGLE(env.rampZ, AVRCPU, 0, vms_rampZ, uint32_t),
+        VMSTATE_SINGLE(env.eind, AVRCPU, 0, vms_eind, uint32_t),
+
+        VMSTATE_END_OF_LIST()
+    }
+};
-- 
2.21.0



^ permalink raw reply related	[flat|nested] 31+ messages in thread

* [Qemu-devel] [PATCH v1 4/8] target/avr: Add instruction helpers
@ 2019-05-04  8:36   ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, A.M.King, E.J.C.Robbins, mrolnik

Stubs for unimplemented instructions and helpers for instructions that need to interact with QEMU.
SPM and WDR are unimplemented because they require emulation of complex peripherals.
The implementation of SLEEP is very limited due to the lack of peripherals to generate wake interrupts.
Memory access instructions are implemented here because some address ranges actually refer to CPU registers.

Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
---
 target/avr/helper.c | 343 ++++++++++++++++++++++++++++++++++++++++++++
 target/avr/helper.h |  28 ++++
 2 files changed, 371 insertions(+)
 create mode 100644 target/avr/helper.c
 create mode 100644 target/avr/helper.h

diff --git a/target/avr/helper.c b/target/avr/helper.c
new file mode 100644
index 0000000000..29b8bfce02
--- /dev/null
+++ b/target/avr/helper.c
@@ -0,0 +1,343 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#include "qemu/osdep.h"
+
+#include "cpu.h"
+#include "hw/irq.h"
+#include "hw/sysbus.h"
+#include "sysemu/sysemu.h"
+#include "exec/exec-all.h"
+#include "exec/cpu_ldst.h"
+#include "exec/helper-proto.h"
+#include "exec/ioport.h"
+#include "qemu/host-utils.h"
+#include "qemu/error-report.h"
+
+bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
+{
+    bool ret = false;
+    CPUClass *cc = CPU_GET_CLASS(cs);
+    AVRCPU *cpu = AVR_CPU(cs);
+    CPUAVRState *env = &cpu->env;
+
+    if (interrupt_request & CPU_INTERRUPT_RESET) {
+        if (cpu_interrupts_enabled(env)) {
+            cs->exception_index = EXCP_RESET;
+            cc->do_interrupt(cs);
+
+            cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
+
+            ret = true;
+        }
+    }
+    if (interrupt_request & CPU_INTERRUPT_HARD) {
+        if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
+            int index = ctz32(env->intsrc);
+            cs->exception_index = EXCP_INT(index);
+            cc->do_interrupt(cs);
+
+            env->intsrc &= env->intsrc - 1; /* clear the interrupt */
+            cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
+
+            ret = true;
+        }
+    }
+    return ret;
+}
+
+void avr_cpu_do_interrupt(CPUState *cs)
+{
+    AVRCPU *cpu = AVR_CPU(cs);
+    CPUAVRState *env = &cpu->env;
+
+    uint32_t ret = env->pc_w;
+    int vector = 0;
+    int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
+    int base = 0;
+
+    if (cs->exception_index == EXCP_RESET) {
+        vector = 0;
+    } else if (env->intsrc != 0) {
+        vector = ctz32(env->intsrc) + 1;
+    }
+
+    if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
+        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
+        cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
+        cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
+    } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
+        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
+        cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
+    } else {
+        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
+    }
+
+    env->pc_w = base + vector * size;
+    env->sregI = 0; /* clear Global Interrupt Flag */
+
+    cs->exception_index = -1;
+}
+
+int avr_cpu_memory_rw_debug(CPUState *cs, vaddr addr, uint8_t *buf,
+                                int len, bool is_write)
+{
+    return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
+}
+
+hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
+{
+    return addr; /* I assume 1:1 address correspondance */
+}
+
+int avr_cpu_handle_mmu_fault(
+    CPUState *cs, vaddr address, int size, int rw, int mmu_idx)
+{
+    /* currently it's assumed that this will never happen */
+    cs->exception_index = EXCP_DEBUG;
+    cpu_dump_state(cs, stderr, 0);
+    return 1;
+}
+
+void tlb_fill(CPUState *cs, target_ulong vaddr, int size,
+              MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
+{
+    int prot = 0;
+    MemTxAttrs attrs = {};
+    uint32_t paddr;
+
+    vaddr &= TARGET_PAGE_MASK;
+
+    if (mmu_idx == MMU_CODE_IDX) {
+        /* access to code in flash */
+        paddr = OFFSET_CODE + vaddr;
+        prot = PAGE_READ | PAGE_EXEC;
+        if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) {
+            error_report("execution left flash memory");
+            exit(1);
+        }
+    } else if (vaddr < NO_CPU_REGISTERS + NO_IO_REGISTERS) {
+        /*
+         * access to CPU registers, exit and rebuilt this TB to use full access
+         * incase it touches specially handled registers like SREG or SP
+         */
+        AVRCPU *cpu = AVR_CPU(cs);
+        CPUAVRState *env = &cpu->env;
+        env->fullacc = 1;
+        cpu_loop_exit_restore(cs, retaddr);
+    } else {
+        /* access to memory. nothing special */
+        paddr = OFFSET_DATA + vaddr;
+        prot = PAGE_READ | PAGE_WRITE;
+    }
+
+    tlb_set_page_with_attrs(
+        cs, vaddr, paddr, attrs, prot, mmu_idx, TARGET_PAGE_SIZE);
+}
+
+void helper_sleep(CPUAVRState *env)
+{
+    CPUState *cs = CPU(avr_env_get_cpu(env));
+
+    cs->exception_index = EXCP_HLT;
+    cpu_loop_exit(cs);
+}
+
+void helper_unsupported(CPUAVRState *env)
+{
+    CPUState *cs = CPU(avr_env_get_cpu(env));
+
+    /*
+     *  I count not find what happens on the real platform, so
+     *  it's EXCP_DEBUG for meanwhile
+     */
+    cs->exception_index = EXCP_DEBUG;
+    if (qemu_loglevel_mask(LOG_UNIMP)) {
+        qemu_log("UNSUPPORTED\n");
+        cpu_dump_state(cs, qemu_logfile, 0);
+    }
+    cpu_loop_exit(cs);
+}
+
+void helper_debug(CPUAVRState *env)
+{
+    CPUState *cs = CPU(avr_env_get_cpu(env));
+
+    cs->exception_index = EXCP_DEBUG;
+    cpu_loop_exit(cs);
+}
+
+void helper_wdr(CPUAVRState *env)
+{
+    CPUState *cs = CPU(avr_env_get_cpu(env));
+
+    /* WD is not implemented yet, placeholder */
+    cs->exception_index = EXCP_DEBUG;
+    cpu_loop_exit(cs);
+}
+
+/*
+ * This function implements IN instruction
+ *
+ * It does the following
+ * a.  if an IO register belongs to CPU, its value is read and returned
+ * b.  otherwise io address is translated to mem address and physical memory
+ *     is read.
+ * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
+ *
+ */
+target_ulong helper_inb(CPUAVRState *env, uint32_t port)
+{
+    target_ulong data = 0;
+
+    switch (port) {
+    case 0x38: /* RAMPD */
+        data = 0xff & (env->rampD >> 16);
+        break;
+    case 0x39: /* RAMPX */
+        data = 0xff & (env->rampX >> 16);
+        break;
+    case 0x3a: /* RAMPY */
+        data = 0xff & (env->rampY >> 16);
+        break;
+    case 0x3b: /* RAMPZ */
+        data = 0xff & (env->rampZ >> 16);
+        break;
+    case 0x3c: /* EIND */
+        data = 0xff & (env->eind >> 16);
+        break;
+    case 0x3d: /* SPL */
+        data = env->sp & 0x00ff;
+        break;
+    case 0x3e: /* SPH */
+        data = env->sp >> 8;
+        break;
+    case 0x3f: /* SREG */
+        data = cpu_get_sreg(env);
+        break;
+    default:
+        /* not a special register, pass to normal memory access */
+        cpu_physical_memory_read(OFFSET_IO_REGISTERS + port, &data, 1);
+    }
+
+    return data;
+}
+
+/*
+ *  This function implements OUT instruction
+ *
+ *  It does the following
+ *  a.  if an IO register belongs to CPU, its value is written into the register
+ *  b.  otherwise io address is translated to mem address and physical memory
+ *      is written.
+ *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
+ *
+ */
+void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
+{
+    data &= 0x000000ff;
+
+    switch (port) {
+    case 0x38: /* RAMPD */
+        if (avr_feature(env, AVR_FEATURE_RAMPD)) {
+            env->rampD = (data & 0xff) << 16;
+        }
+        break;
+    case 0x39: /* RAMPX */
+        if (avr_feature(env, AVR_FEATURE_RAMPX)) {
+            env->rampX = (data & 0xff) << 16;
+        }
+        break;
+    case 0x3a: /* RAMPY */
+        if (avr_feature(env, AVR_FEATURE_RAMPY)) {
+            env->rampY = (data & 0xff) << 16;
+        }
+        break;
+    case 0x3b: /* RAMPZ */
+        if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
+            env->rampZ = (data & 0xff) << 16;
+        }
+        break;
+    case 0x3c: /* EIDN */
+        env->eind = (data & 0xff) << 16;
+        break;
+    case 0x3d: /* SPL */
+        env->sp = (env->sp & 0xff00) | (data);
+        break;
+    case 0x3e: /* SPH */
+        if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
+            env->sp = (env->sp & 0x00ff) | (data << 8);
+        }
+        break;
+    case 0x3f: /* SREG */
+        cpu_set_sreg(env, data);
+        break;
+    default:
+        /* not a special register, pass to normal memory access */
+        cpu_physical_memory_write(OFFSET_IO_REGISTERS + port, &data, 1);
+    }
+}
+
+/*
+ *  this function implements LD instruction when there is a posibility to read
+ *  from a CPU register
+ */
+target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
+{
+    uint8_t data;
+
+    env->fullacc = false;
+
+    if (addr < NO_CPU_REGISTERS) {
+        /* CPU registers */
+        data = env->r[addr];
+    } else if (addr < NO_CPU_REGISTERS + NO_IO_REGISTERS) {
+        /* IO registers */
+        data = helper_inb(env, addr - NO_CPU_REGISTERS);
+    } else {
+        /* memory */
+        cpu_physical_memory_read(OFFSET_DATA + addr, &data, 1);
+    }
+    return data;
+}
+
+/*
+ *  this function implements ST instruction when there is a posibility to write
+ *  into a CPU register
+ */
+void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
+{
+    env->fullacc = false;
+
+    /* Following logic assumes this: */
+    assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
+    assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS + NO_CPU_REGISTERS);
+
+    if (addr < NO_CPU_REGISTERS) {
+        /* CPU registers */
+        env->r[addr] = data;
+    } else if (addr < NO_CPU_REGISTERS + NO_IO_REGISTERS) {
+        /* IO registers */
+        helper_outb(env, addr - NO_CPU_REGISTERS, data);
+    } else {
+        /* memory */
+        cpu_physical_memory_write(OFFSET_DATA + addr, &data, 1);
+    }
+}
diff --git a/target/avr/helper.h b/target/avr/helper.h
new file mode 100644
index 0000000000..603631520a
--- /dev/null
+++ b/target/avr/helper.h
@@ -0,0 +1,28 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+DEF_HELPER_1(wdr, void, env)
+DEF_HELPER_1(debug, void, env)
+DEF_HELPER_1(sleep, void, env)
+DEF_HELPER_1(unsupported, void, env)
+DEF_HELPER_3(outb, void, env, i32, i32)
+DEF_HELPER_2(inb, tl, env, i32)
+DEF_HELPER_3(fullwr, void, env, i32, i32)
+DEF_HELPER_2(fullrd, tl, env, i32)
-- 
2.21.0

^ permalink raw reply related	[flat|nested] 31+ messages in thread

* [Qemu-devel] [PATCH v1 4/8] target/avr: Add instruction helpers
@ 2019-05-04  8:36   ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, mrolnik, A.M.King, E.J.C.Robbins

Stubs for unimplemented instructions and helpers for instructions that need to interact with QEMU.
SPM and WDR are unimplemented because they require emulation of complex peripherals.
The implementation of SLEEP is very limited due to the lack of peripherals to generate wake interrupts.
Memory access instructions are implemented here because some address ranges actually refer to CPU registers.

Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
---
 target/avr/helper.c | 343 ++++++++++++++++++++++++++++++++++++++++++++
 target/avr/helper.h |  28 ++++
 2 files changed, 371 insertions(+)
 create mode 100644 target/avr/helper.c
 create mode 100644 target/avr/helper.h

diff --git a/target/avr/helper.c b/target/avr/helper.c
new file mode 100644
index 0000000000..29b8bfce02
--- /dev/null
+++ b/target/avr/helper.c
@@ -0,0 +1,343 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#include "qemu/osdep.h"
+
+#include "cpu.h"
+#include "hw/irq.h"
+#include "hw/sysbus.h"
+#include "sysemu/sysemu.h"
+#include "exec/exec-all.h"
+#include "exec/cpu_ldst.h"
+#include "exec/helper-proto.h"
+#include "exec/ioport.h"
+#include "qemu/host-utils.h"
+#include "qemu/error-report.h"
+
+bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
+{
+    bool ret = false;
+    CPUClass *cc = CPU_GET_CLASS(cs);
+    AVRCPU *cpu = AVR_CPU(cs);
+    CPUAVRState *env = &cpu->env;
+
+    if (interrupt_request & CPU_INTERRUPT_RESET) {
+        if (cpu_interrupts_enabled(env)) {
+            cs->exception_index = EXCP_RESET;
+            cc->do_interrupt(cs);
+
+            cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
+
+            ret = true;
+        }
+    }
+    if (interrupt_request & CPU_INTERRUPT_HARD) {
+        if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
+            int index = ctz32(env->intsrc);
+            cs->exception_index = EXCP_INT(index);
+            cc->do_interrupt(cs);
+
+            env->intsrc &= env->intsrc - 1; /* clear the interrupt */
+            cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
+
+            ret = true;
+        }
+    }
+    return ret;
+}
+
+void avr_cpu_do_interrupt(CPUState *cs)
+{
+    AVRCPU *cpu = AVR_CPU(cs);
+    CPUAVRState *env = &cpu->env;
+
+    uint32_t ret = env->pc_w;
+    int vector = 0;
+    int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
+    int base = 0;
+
+    if (cs->exception_index == EXCP_RESET) {
+        vector = 0;
+    } else if (env->intsrc != 0) {
+        vector = ctz32(env->intsrc) + 1;
+    }
+
+    if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
+        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
+        cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
+        cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
+    } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
+        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
+        cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
+    } else {
+        cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
+    }
+
+    env->pc_w = base + vector * size;
+    env->sregI = 0; /* clear Global Interrupt Flag */
+
+    cs->exception_index = -1;
+}
+
+int avr_cpu_memory_rw_debug(CPUState *cs, vaddr addr, uint8_t *buf,
+                                int len, bool is_write)
+{
+    return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
+}
+
+hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
+{
+    return addr; /* I assume 1:1 address correspondance */
+}
+
+int avr_cpu_handle_mmu_fault(
+    CPUState *cs, vaddr address, int size, int rw, int mmu_idx)
+{
+    /* currently it's assumed that this will never happen */
+    cs->exception_index = EXCP_DEBUG;
+    cpu_dump_state(cs, stderr, 0);
+    return 1;
+}
+
+void tlb_fill(CPUState *cs, target_ulong vaddr, int size,
+              MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
+{
+    int prot = 0;
+    MemTxAttrs attrs = {};
+    uint32_t paddr;
+
+    vaddr &= TARGET_PAGE_MASK;
+
+    if (mmu_idx == MMU_CODE_IDX) {
+        /* access to code in flash */
+        paddr = OFFSET_CODE + vaddr;
+        prot = PAGE_READ | PAGE_EXEC;
+        if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) {
+            error_report("execution left flash memory");
+            exit(1);
+        }
+    } else if (vaddr < NO_CPU_REGISTERS + NO_IO_REGISTERS) {
+        /*
+         * access to CPU registers, exit and rebuilt this TB to use full access
+         * incase it touches specially handled registers like SREG or SP
+         */
+        AVRCPU *cpu = AVR_CPU(cs);
+        CPUAVRState *env = &cpu->env;
+        env->fullacc = 1;
+        cpu_loop_exit_restore(cs, retaddr);
+    } else {
+        /* access to memory. nothing special */
+        paddr = OFFSET_DATA + vaddr;
+        prot = PAGE_READ | PAGE_WRITE;
+    }
+
+    tlb_set_page_with_attrs(
+        cs, vaddr, paddr, attrs, prot, mmu_idx, TARGET_PAGE_SIZE);
+}
+
+void helper_sleep(CPUAVRState *env)
+{
+    CPUState *cs = CPU(avr_env_get_cpu(env));
+
+    cs->exception_index = EXCP_HLT;
+    cpu_loop_exit(cs);
+}
+
+void helper_unsupported(CPUAVRState *env)
+{
+    CPUState *cs = CPU(avr_env_get_cpu(env));
+
+    /*
+     *  I count not find what happens on the real platform, so
+     *  it's EXCP_DEBUG for meanwhile
+     */
+    cs->exception_index = EXCP_DEBUG;
+    if (qemu_loglevel_mask(LOG_UNIMP)) {
+        qemu_log("UNSUPPORTED\n");
+        cpu_dump_state(cs, qemu_logfile, 0);
+    }
+    cpu_loop_exit(cs);
+}
+
+void helper_debug(CPUAVRState *env)
+{
+    CPUState *cs = CPU(avr_env_get_cpu(env));
+
+    cs->exception_index = EXCP_DEBUG;
+    cpu_loop_exit(cs);
+}
+
+void helper_wdr(CPUAVRState *env)
+{
+    CPUState *cs = CPU(avr_env_get_cpu(env));
+
+    /* WD is not implemented yet, placeholder */
+    cs->exception_index = EXCP_DEBUG;
+    cpu_loop_exit(cs);
+}
+
+/*
+ * This function implements IN instruction
+ *
+ * It does the following
+ * a.  if an IO register belongs to CPU, its value is read and returned
+ * b.  otherwise io address is translated to mem address and physical memory
+ *     is read.
+ * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
+ *
+ */
+target_ulong helper_inb(CPUAVRState *env, uint32_t port)
+{
+    target_ulong data = 0;
+
+    switch (port) {
+    case 0x38: /* RAMPD */
+        data = 0xff & (env->rampD >> 16);
+        break;
+    case 0x39: /* RAMPX */
+        data = 0xff & (env->rampX >> 16);
+        break;
+    case 0x3a: /* RAMPY */
+        data = 0xff & (env->rampY >> 16);
+        break;
+    case 0x3b: /* RAMPZ */
+        data = 0xff & (env->rampZ >> 16);
+        break;
+    case 0x3c: /* EIND */
+        data = 0xff & (env->eind >> 16);
+        break;
+    case 0x3d: /* SPL */
+        data = env->sp & 0x00ff;
+        break;
+    case 0x3e: /* SPH */
+        data = env->sp >> 8;
+        break;
+    case 0x3f: /* SREG */
+        data = cpu_get_sreg(env);
+        break;
+    default:
+        /* not a special register, pass to normal memory access */
+        cpu_physical_memory_read(OFFSET_IO_REGISTERS + port, &data, 1);
+    }
+
+    return data;
+}
+
+/*
+ *  This function implements OUT instruction
+ *
+ *  It does the following
+ *  a.  if an IO register belongs to CPU, its value is written into the register
+ *  b.  otherwise io address is translated to mem address and physical memory
+ *      is written.
+ *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
+ *
+ */
+void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
+{
+    data &= 0x000000ff;
+
+    switch (port) {
+    case 0x38: /* RAMPD */
+        if (avr_feature(env, AVR_FEATURE_RAMPD)) {
+            env->rampD = (data & 0xff) << 16;
+        }
+        break;
+    case 0x39: /* RAMPX */
+        if (avr_feature(env, AVR_FEATURE_RAMPX)) {
+            env->rampX = (data & 0xff) << 16;
+        }
+        break;
+    case 0x3a: /* RAMPY */
+        if (avr_feature(env, AVR_FEATURE_RAMPY)) {
+            env->rampY = (data & 0xff) << 16;
+        }
+        break;
+    case 0x3b: /* RAMPZ */
+        if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
+            env->rampZ = (data & 0xff) << 16;
+        }
+        break;
+    case 0x3c: /* EIDN */
+        env->eind = (data & 0xff) << 16;
+        break;
+    case 0x3d: /* SPL */
+        env->sp = (env->sp & 0xff00) | (data);
+        break;
+    case 0x3e: /* SPH */
+        if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
+            env->sp = (env->sp & 0x00ff) | (data << 8);
+        }
+        break;
+    case 0x3f: /* SREG */
+        cpu_set_sreg(env, data);
+        break;
+    default:
+        /* not a special register, pass to normal memory access */
+        cpu_physical_memory_write(OFFSET_IO_REGISTERS + port, &data, 1);
+    }
+}
+
+/*
+ *  this function implements LD instruction when there is a posibility to read
+ *  from a CPU register
+ */
+target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
+{
+    uint8_t data;
+
+    env->fullacc = false;
+
+    if (addr < NO_CPU_REGISTERS) {
+        /* CPU registers */
+        data = env->r[addr];
+    } else if (addr < NO_CPU_REGISTERS + NO_IO_REGISTERS) {
+        /* IO registers */
+        data = helper_inb(env, addr - NO_CPU_REGISTERS);
+    } else {
+        /* memory */
+        cpu_physical_memory_read(OFFSET_DATA + addr, &data, 1);
+    }
+    return data;
+}
+
+/*
+ *  this function implements ST instruction when there is a posibility to write
+ *  into a CPU register
+ */
+void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
+{
+    env->fullacc = false;
+
+    /* Following logic assumes this: */
+    assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
+    assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS + NO_CPU_REGISTERS);
+
+    if (addr < NO_CPU_REGISTERS) {
+        /* CPU registers */
+        env->r[addr] = data;
+    } else if (addr < NO_CPU_REGISTERS + NO_IO_REGISTERS) {
+        /* IO registers */
+        helper_outb(env, addr - NO_CPU_REGISTERS, data);
+    } else {
+        /* memory */
+        cpu_physical_memory_write(OFFSET_DATA + addr, &data, 1);
+    }
+}
diff --git a/target/avr/helper.h b/target/avr/helper.h
new file mode 100644
index 0000000000..603631520a
--- /dev/null
+++ b/target/avr/helper.h
@@ -0,0 +1,28 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+DEF_HELPER_1(wdr, void, env)
+DEF_HELPER_1(debug, void, env)
+DEF_HELPER_1(sleep, void, env)
+DEF_HELPER_1(unsupported, void, env)
+DEF_HELPER_3(outb, void, env, i32, i32)
+DEF_HELPER_2(inb, tl, env, i32)
+DEF_HELPER_3(fullwr, void, env, i32, i32)
+DEF_HELPER_2(fullrd, tl, env, i32)
-- 
2.21.0



^ permalink raw reply related	[flat|nested] 31+ messages in thread

* [Qemu-devel] [PATCH v1 5/8] target/avr: Add instruction translation
@ 2019-05-04  8:36   ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, A.M.King, E.J.C.Robbins, mrolnik

This includes:
- table of instruction bit patterns
- intermediate translation functions that extract parameters from opcodes
- TCG translations for each instruction

Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
---
 target/avr/translate-inst.h |  695 ++++++++
 target/avr/translate.c      | 3013 +++++++++++++++++++++++++++++++++++
 2 files changed, 3708 insertions(+)
 create mode 100644 target/avr/translate-inst.h
 create mode 100644 target/avr/translate.c

diff --git a/target/avr/translate-inst.h b/target/avr/translate-inst.h
new file mode 100644
index 0000000000..e27f403ba7
--- /dev/null
+++ b/target/avr/translate-inst.h
@@ -0,0 +1,695 @@
+/*
+ *  QEMU AVR CPU
+ *
+ *  Copyright (c) 2016 Michael Rolnik
+ *
+ *  This library is free software; you can redistribute it and/or
+ *  modify it under the terms of the GNU Lesser General Public
+ *  License as published by the Free Software Foundation; either
+ *  version 2.1 of the License, or (at your option) any later version.
+ *
+ *  This library is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ *  Lesser General Public License for more details.
+ *
+ *  You should have received a copy of the GNU Lesser General Public
+ *  License along with this library; if not, see
+ *  <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+/*
+ * Functions for extracting instruction parameters from raw opcodes.
+ */
+
+#ifndef AVR_TRANSLATE_INST_H_
+#define AVR_TRANSLATE_INST_H_
+
+static inline uint32_t MOVW_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 0, 4);
+}
+
+static inline uint32_t MOVW_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t MULS_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 0, 4);
+}
+
+static inline uint32_t MULS_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t MULSU_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t MULSU_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 3);
+}
+
+static inline uint32_t FMUL_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t FMUL_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 3);
+}
+
+static inline uint32_t FMULS_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t FMULS_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 3);
+}
+
+static inline uint32_t FMULSU_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t FMULSU_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 3);
+}
+
+static inline uint32_t CPC_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t CPC_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t SBC_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t SBC_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t ADD_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t ADD_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t AND_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t AND_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t EOR_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t EOR_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t OR_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t OR_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t MOV_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t MOV_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t CPSE_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t CPSE_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t CP_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t CP_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t SUB_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t SUB_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t ADC_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t ADC_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t CPI_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t CPI_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 8, 4) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t SBCI_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t SBCI_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 8, 4) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t ORI_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t ORI_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 8, 4) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t SUBI_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t SUBI_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 8, 4) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t ANDI_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t ANDI_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 8, 4) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t LDDZ_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LDDZ_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 13, 1) << 5) |
+            (extract32(opcode, 10, 2) << 3) |
+            (extract32(opcode, 0, 3));
+}
+
+static inline uint32_t LDDY_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LDDY_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 13, 1) << 5) |
+            (extract32(opcode, 10, 2) << 3) |
+            (extract32(opcode, 0, 3));
+}
+
+static inline uint32_t STDZ_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STDZ_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 13, 1) << 5) |
+            (extract32(opcode, 10, 2) << 3) |
+            (extract32(opcode, 0, 3));
+}
+
+static inline uint32_t STDY_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STDY_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 13, 1) << 5) |
+            (extract32(opcode, 10, 2) << 3) |
+            (extract32(opcode, 0, 3));
+}
+
+static inline uint32_t LDS_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 0, 16);
+}
+
+static inline uint32_t LDS_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 20, 5);
+}
+
+static inline uint32_t LDZ2_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LDZ3_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LPM2_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LPMX_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t ELPM2_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t ELPMX_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LDY2_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LDY3_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LDX1_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LDX2_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LDX3_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t POP_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STS_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 0, 16);
+}
+
+static inline uint32_t STS_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 20, 5);
+}
+
+static inline uint32_t STZ2_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STZ3_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t XCH_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LAS_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LAC_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LAT_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STY2_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STY3_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STX1_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STX2_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STX3_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t PUSH_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t COM_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t NEG_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t SWAP_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t INC_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t ASR_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LSR_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t ROR_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t BSET_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 4, 3);
+}
+
+static inline uint32_t BCLR_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 4, 3);
+}
+
+static inline uint32_t DEC_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t DES_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t JMP_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 20, 5) << 17) |
+            (extract32(opcode, 0, 17));
+}
+
+static inline uint32_t CALL_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 20, 5) << 17) |
+            (extract32(opcode, 0, 17));
+}
+
+static inline uint32_t ADIW_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 2);
+}
+
+static inline uint32_t ADIW_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 6, 2) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t SBIW_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 2);
+}
+
+static inline uint32_t SBIW_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 6, 2) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t CBI_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t CBI_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 3, 5);
+}
+
+static inline uint32_t SBIC_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t SBIC_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 3, 5);
+}
+
+static inline uint32_t SBI_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t SBI_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 3, 5);
+}
+
+static inline uint32_t SBIS_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t SBIS_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 3, 5);
+}
+
+static inline uint32_t MUL_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t MUL_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t IN_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t IN_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 2) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t OUT_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t OUT_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 2) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t RJMP_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 0, 12);
+}
+
+static inline uint32_t LDI_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t LDI_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 8, 4) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t RCALL_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 0, 12);
+}
+
+static inline uint32_t BRBS_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t BRBS_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 3, 7);
+}
+
+static inline uint32_t BRBC_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t BRBC_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 3, 7);
+}
+
+static inline uint32_t BLD_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t BLD_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t BST_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t BST_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t SBRC_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t SBRC_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t SBRS_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t SBRS_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+#endif
diff --git a/target/avr/translate.c b/target/avr/translate.c
new file mode 100644
index 0000000000..3be3e258f9
--- /dev/null
+++ b/target/avr/translate.c
@@ -0,0 +1,3013 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/qemu-print.h"
+#include "tcg/tcg.h"
+#include "cpu.h"
+#include "decode.h"
+#include "exec/exec-all.h"
+#include "disas/disas.h"
+#include "tcg-op.h"
+#include "exec/cpu_ldst.h"
+#include "exec/helper-proto.h"
+#include "exec/helper-gen.h"
+#include "exec/log.h"
+#include "exec/gdbstub.h"
+
+static TCGv cpu_pc;
+
+static TCGv cpu_Cf;
+static TCGv cpu_Zf;
+static TCGv cpu_Nf;
+static TCGv cpu_Vf;
+static TCGv cpu_Sf;
+static TCGv cpu_Hf;
+static TCGv cpu_Tf;
+static TCGv cpu_If;
+
+static TCGv cpu_rampD;
+static TCGv cpu_rampX;
+static TCGv cpu_rampY;
+static TCGv cpu_rampZ;
+
+static TCGv cpu_r[32];
+static TCGv cpu_eind;
+static TCGv cpu_sp;
+
+#define REG(x) (cpu_r[x])
+
+enum {
+    BS_NONE = 0, /* Nothing special (none of the below) */
+    BS_STOP = 1, /* We want to stop translation for any reason */
+    BS_BRANCH = 2, /* A branch condition is reached */
+    BS_EXCP = 3, /* An exception condition is reached */
+};
+
+typedef struct DisasContext DisasContext;
+typedef struct InstInfo InstInfo;
+
+struct InstInfo {
+    target_long cpc;
+    target_long npc;
+    uint32_t opcode;
+    TranslateFn translate;
+    unsigned length;
+};
+
+/* This is the state at translation time. */
+struct DisasContext {
+    struct TranslationBlock *tb;
+    CPUAVRState *env;
+
+    InstInfo inst[2];/* two consecutive instructions */
+
+    /* Routine used to access memory */
+    int memidx;
+    int bstate;
+    int singlestep;
+};
+
+static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest)
+{
+    TranslationBlock *tb = ctx->tb;
+
+    if (ctx->singlestep == 0) {
+        tcg_gen_goto_tb(n);
+        tcg_gen_movi_i32(cpu_pc, dest);
+        tcg_gen_exit_tb(tb, n);
+    } else {
+        tcg_gen_movi_i32(cpu_pc, dest);
+        gen_helper_debug(cpu_env);
+        tcg_gen_exit_tb(NULL, 0);
+    }
+}
+
+#include "exec/gen-icount.h"
+#include "translate-inst.h"
+
+static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+    TCGv t3 = tcg_temp_new_i32();
+
+    tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */
+    tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */
+    tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */
+    tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */
+    tcg_gen_or_tl(t1, t1, t3);
+
+    tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */
+    tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */
+    tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
+
+    tcg_temp_free_i32(t3);
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+
+        /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R = (Rd ^ R) & ~(Rd ^ Rr) */
+    tcg_gen_xor_tl(t1, Rd, R);
+    tcg_gen_xor_tl(t2, Rd, Rr);
+    tcg_gen_andc_tl(t1, t1, t2);
+
+    tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
+
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+    TCGv t3 = tcg_temp_new_i32();
+
+    /* Cf & Hf */
+    tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */
+    tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */
+    tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */
+    tcg_gen_and_tl(t3, t3, R);
+    tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */
+    tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */
+    tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */
+    tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
+
+    tcg_temp_free_i32(t3);
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+
+    /* Vf */
+        /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R = (Rd ^ R) & (Rd ^ R) */
+    tcg_gen_xor_tl(t1, Rd, R);
+    tcg_gen_xor_tl(t2, Rd, Rr);
+    tcg_gen_and_tl(t1, t1, t2);
+    tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
+
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+static void gen_rshift_ZNVSf(TCGv R)
+{
+    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+    tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+static void gen_NSf(TCGv R)
+{
+    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+static void gen_ZNSf(TCGv R)
+{
+    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+static void gen_push_ret(DisasContext *ctx, int ret)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
+
+        TCGv t0 = tcg_const_i32((ret & 0x0000ff));
+
+        tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB);
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+        tcg_temp_free_i32(t0);
+    } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
+
+        TCGv t0 = tcg_const_i32((ret & 0x00ffff));
+
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+        tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+        tcg_temp_free_i32(t0);
+
+    } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
+
+        TCGv lo = tcg_const_i32((ret & 0x0000ff));
+        TCGv hi = tcg_const_i32((ret & 0xffff00) >> 8);
+
+        tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 2);
+        tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+        tcg_temp_free_i32(lo);
+        tcg_temp_free_i32(hi);
+    }
+}
+
+static void gen_pop_ret(DisasContext *ctx, TCGv ret)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
+
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+        tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB);
+
+    } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
+
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+        tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+
+    } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
+
+        TCGv lo = tcg_temp_new_i32();
+        TCGv hi = tcg_temp_new_i32();
+
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+        tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 2);
+        tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
+
+        tcg_gen_deposit_tl(ret, lo, hi, 8, 16);
+
+        tcg_temp_free_i32(lo);
+        tcg_temp_free_i32(hi);
+    }
+}
+
+static void gen_jmp_ez(void)
+{
+    tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
+    tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind);
+    tcg_gen_exit_tb(NULL, 0);
+}
+
+static void gen_jmp_z(void)
+{
+    tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
+    tcg_gen_exit_tb(NULL, 0);
+}
+
+/*
+ *  in the gen_set_addr & gen_get_addr functions
+ *  H assumed to be in 0x00ff0000 format
+ *  M assumed to be in 0x000000ff format
+ *  L assumed to be in 0x000000ff format
+ */
+static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L)
+{
+
+    tcg_gen_andi_tl(L, addr, 0x000000ff);
+
+    tcg_gen_andi_tl(M, addr, 0x0000ff00);
+    tcg_gen_shri_tl(M, M, 8);
+
+    tcg_gen_andi_tl(H, addr, 0x00ff0000);
+}
+
+static void gen_set_xaddr(TCGv addr)
+{
+    gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]);
+}
+
+static void gen_set_yaddr(TCGv addr)
+{
+    gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]);
+}
+
+static void gen_set_zaddr(TCGv addr)
+{
+    gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]);
+}
+
+static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L)
+{
+    TCGv addr = tcg_temp_new_i32();
+
+    tcg_gen_deposit_tl(addr, M, H, 8, 8);
+    tcg_gen_deposit_tl(addr, L, addr, 8, 16);
+
+    return addr;
+}
+
+static TCGv gen_get_xaddr(void)
+{
+    return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]);
+}
+
+static TCGv gen_get_yaddr(void)
+{
+    return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]);
+}
+
+static TCGv gen_get_zaddr(void)
+{
+    return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]);
+}
+
+/*
+ *  Adds two registers and the contents of the C Flag and places the result in
+ *  the destination register Rd.
+ */
+static int translate_ADC(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[ADC_Rd(opcode)];
+    TCGv Rr = cpu_r[ADC_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */
+    tcg_gen_add_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_add_CHf(R, Rd, Rr);
+    gen_add_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Adds two registers without the C Flag and places the result in the
+ *  destination register Rd.
+ */
+static int translate_ADD(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[ADD_Rd(opcode)];
+    TCGv Rr = cpu_r[ADD_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_add_CHf(R, Rd, Rr);
+    gen_add_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Adds an immediate value (0 - 63) to a register pair and places the result
+ *  in the register pair. This instruction operates on the upper four register
+ *  pairs, and is well suited for operations on the pointer registers.  This
+ *  instruction is not available in all devices. Refer to the device specific
+ *  instruction set summary.
+ */
+static int translate_ADIW(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_ADIW_SBIW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv RdL = cpu_r[24 + 2 * ADIW_Rd(opcode)];
+    TCGv RdH = cpu_r[25 + 2 * ADIW_Rd(opcode)];
+    int Imm = (ADIW_Imm(opcode));
+    TCGv R = tcg_temp_new_i32();
+    TCGv Rd = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
+    tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */
+    tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+
+    /* Cf */
+    tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
+    tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15);
+
+    /* Vf */
+    tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */
+    tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15);
+
+    /* Zf */
+    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+
+    /* Nf */
+    tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
+
+    /* Sf */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */
+
+    /* R */
+    tcg_gen_andi_tl(RdL, R, 0xff);
+    tcg_gen_shri_tl(RdH, R, 8);
+
+    tcg_temp_free_i32(Rd);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Performs the logical AND between the contents of register Rd and register
+ *  Rr and places the result in the destination register Rd.
+ */
+static int translate_AND(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[AND_Rd(opcode)];
+    TCGv Rr = cpu_r[AND_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */
+
+    /* Vf */
+    tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+
+    /* Zf */
+    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Performs the logical AND between the contents of register Rd and a constant
+ *  and places the result in the destination register Rd.
+ */
+static int translate_ANDI(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + ANDI_Rd(opcode)];
+    int Imm = (ANDI_Imm(opcode));
+
+    /* op */
+    tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */
+
+    tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+    gen_ZNSf(Rd);
+
+    return BS_NONE;
+}
+
+/*
+ *  Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0
+ *  is loaded into the C Flag of the SREG. This operation effectively divides a
+ *  signed value by two without changing its sign. The Carry Flag can be used to
+ *  round the result.
+ */
+static int translate_ASR(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[ASR_Rd(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+
+    /* Cf */
+    tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
+
+    /* op */
+    tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
+    tcg_gen_shri_tl(Rd, Rd, 1);
+    tcg_gen_or_tl(Rd, Rd, t0);
+
+    gen_rshift_ZNVSf(Rd);
+
+    tcg_temp_free_i32(t0);
+
+    return BS_NONE;
+}
+
+/*
+ *  Clears a single Flag in SREG.
+ */
+static int translate_BCLR(DisasContext *ctx, uint32_t opcode)
+{
+    switch (BCLR_Bit(opcode)) {
+    case 0x00:
+        tcg_gen_movi_tl(cpu_Cf, 0x00);
+        break;
+    case 0x01:
+        tcg_gen_movi_tl(cpu_Zf, 0x01);
+        break;
+    case 0x02:
+        tcg_gen_movi_tl(cpu_Nf, 0x00);
+        break;
+    case 0x03:
+        tcg_gen_movi_tl(cpu_Vf, 0x00);
+        break;
+    case 0x04:
+        tcg_gen_movi_tl(cpu_Sf, 0x00);
+        break;
+    case 0x05:
+        tcg_gen_movi_tl(cpu_Hf, 0x00);
+        break;
+    case 0x06:
+        tcg_gen_movi_tl(cpu_Tf, 0x00);
+        break;
+    case 0x07:
+        tcg_gen_movi_tl(cpu_If, 0x00);
+        break;
+    }
+
+    return BS_NONE;
+}
+
+/*
+ *  Copies the T Flag in the SREG (Status Register) to bit b in register Rd.
+ */
+static int translate_BLD(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[BLD_Rd(opcode)];
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_andi_tl(Rd, Rd, ~(1u << BLD_Bit(opcode))); /* clear bit */
+    tcg_gen_shli_tl(t1, cpu_Tf, BLD_Bit(opcode)); /* create mask */
+    tcg_gen_or_tl(Rd, Rd, t1);
+
+    tcg_temp_free_i32(t1);
+
+    return BS_NONE;
+}
+
+/*
+ *  Conditional relative branch. Tests a single bit in SREG and branches
+ *  relatively to PC if the bit is cleared. This instruction branches relatively
+ *  to PC in either direction (PC - 63 < = destination <= PC + 64). The
+ *  parameter k is the offset from PC and is represented in two's complement
+ *  form.
+ */
+static int translate_BRBC(DisasContext *ctx, uint32_t opcode)
+{
+    TCGLabel *taken = gen_new_label();
+    int Imm = sextract32(BRBC_Imm(opcode), 0, 7);
+
+    switch (BRBC_Bit(opcode)) {
+    case 0x00:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Cf, 0, taken);
+        break;
+    case 0x01:
+        tcg_gen_brcondi_i32(TCG_COND_NE, cpu_Zf, 0, taken);
+        break;
+    case 0x02:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Nf, 0, taken);
+        break;
+    case 0x03:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Vf, 0, taken);
+        break;
+    case 0x04:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Sf, 0, taken);
+        break;
+    case 0x05:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Hf, 0, taken);
+        break;
+    case 0x06:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Tf, 0, taken);
+        break;
+    case 0x07:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_If, 0, taken);
+        break;
+    }
+
+    gen_goto_tb(ctx, 1, ctx->inst[0].npc);
+    gen_set_label(taken);
+    gen_goto_tb(ctx, 0, ctx->inst[0].npc + Imm);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Conditional relative branch. Tests a single bit in SREG and branches
+ *  relatively to PC if the bit is set. This instruction branches relatively to
+ *  PC in either direction (PC - 63 < = destination <= PC + 64). The parameter k
+ *  is the offset from PC and is represented in two's complement form.
+ */
+static int translate_BRBS(DisasContext *ctx, uint32_t opcode)
+{
+    TCGLabel *taken = gen_new_label();
+    int Imm = sextract32(BRBS_Imm(opcode), 0, 7);
+
+    switch (BRBS_Bit(opcode)) {
+    case 0x00:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Cf, 1, taken);
+        break;
+    case 0x01:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Zf, 0, taken);
+        break;
+    case 0x02:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Nf, 1, taken);
+        break;
+    case 0x03:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Vf, 1, taken);
+        break;
+    case 0x04:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Sf, 1, taken);
+        break;
+    case 0x05:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Hf, 1, taken);
+        break;
+    case 0x06:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Tf, 1, taken);
+        break;
+    case 0x07:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_If, 1, taken);
+        break;
+    }
+
+    gen_goto_tb(ctx, 1, ctx->inst[0].npc);
+    gen_set_label(taken);
+    gen_goto_tb(ctx, 0, ctx->inst[0].npc + Imm);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Sets a single Flag or bit in SREG.
+ */
+static int translate_BSET(DisasContext *ctx, uint32_t opcode)
+{
+    switch (BSET_Bit(opcode)) {
+    case 0x00:
+        tcg_gen_movi_tl(cpu_Cf, 0x01);
+        break;
+    case 0x01:
+        tcg_gen_movi_tl(cpu_Zf, 0x00);
+        break;
+    case 0x02:
+        tcg_gen_movi_tl(cpu_Nf, 0x01);
+        break;
+    case 0x03:
+        tcg_gen_movi_tl(cpu_Vf, 0x01);
+        break;
+    case 0x04:
+        tcg_gen_movi_tl(cpu_Sf, 0x01);
+        break;
+    case 0x05:
+        tcg_gen_movi_tl(cpu_Hf, 0x01);
+        break;
+    case 0x06:
+        tcg_gen_movi_tl(cpu_Tf, 0x01);
+        break;
+    case 0x07:
+        tcg_gen_movi_tl(cpu_If, 0x01);
+        break;
+    }
+
+    return BS_NONE;
+}
+
+/*
+ *  The BREAK instruction is used by the On-chip Debug system, and is
+ *  normally not used in the application software. When the BREAK instruction is
+ *  executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip
+ *  Debugger access to internal resources.  If any Lock bits are set, or either
+ *  the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK
+ *  instruction as a NOP and will not enter the Stopped mode.  This instruction
+ *  is not available in all devices. Refer to the device specific instruction
+ *  set summary.
+ */
+static int translate_BREAK(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_BREAK) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    if (gdb_is_active()) {
+        /* Program counter is set to *current* instruction to mimic AVaRICE. */
+        tcg_gen_movi_tl(cpu_pc, ctx->inst[0].cpc);
+        gen_helper_debug(cpu_env);
+    }
+
+    return BS_NONE;
+}
+
+/*
+ *  Stores bit b from Rd to the T Flag in SREG (Status Register).
+ */
+static int translate_BST(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[BST_Rd(opcode)];
+
+    tcg_gen_andi_tl(cpu_Tf, Rd, 1 << BST_Bit(opcode));
+    tcg_gen_shri_tl(cpu_Tf, cpu_Tf, BST_Bit(opcode));
+
+    return BS_NONE;
+}
+
+/*
+ *  Calls to a subroutine within the entire Program memory. The return
+ *  address (to the instruction after the CALL) will be stored onto the Stack.
+ *  (See also RCALL). The Stack Pointer uses a post-decrement scheme during
+ *  CALL.  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+static int translate_CALL(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_JMP_CALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    int Imm = CALL_Imm(opcode);
+    int ret = ctx->inst[0].npc;
+
+    gen_push_ret(ctx, ret);
+    gen_goto_tb(ctx, 0, Imm);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Clears a specified bit in an I/O Register. This instruction operates on
+ *  the lower 32 I/O Registers -- addresses 0-31.
+ */
+static int translate_CBI(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv data = tcg_temp_new_i32();
+    TCGv port = tcg_const_i32(CBI_Imm(opcode));
+
+    gen_helper_inb(data, cpu_env, port);
+    tcg_gen_andi_tl(data, data, ~(1 << CBI_Bit(opcode)));
+    gen_helper_outb(cpu_env, port, data);
+
+    tcg_temp_free_i32(data);
+    tcg_temp_free_i32(port);
+
+    return BS_NONE;
+}
+
+/*
+ *  Clears the specified bits in register Rd. Performs the logical AND
+ *  between the contents of register Rd and the complement of the constant mask
+ *  K. The result will be placed in register Rd.
+ */
+static int translate_COM(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[COM_Rd(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_xori_tl(Rd, Rd, 0xff);
+
+    tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */
+    tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
+    gen_ZNSf(Rd);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs a compare between two registers Rd and Rr.
+ *  None of the registers are changed. All conditional branches can be used
+ *  after this instruction.
+ */
+static int translate_CP(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[CP_Rd(opcode)];
+    TCGv Rr = cpu_r[CP_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs a compare between two registers Rd and Rr and
+ *  also takes into account the previous carry. None of the registers are
+ *  changed. All conditional branches can be used after this instruction.
+ */
+static int translate_CPC(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[CPC_Rd(opcode)];
+    TCGv Rr = cpu_r[CPC_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+    tcg_gen_sub_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_NSf(R);
+
+    /*
+     * Previous value remains unchanged when the result is zero;
+     * cleared otherwise.
+     */
+    tcg_gen_or_tl(cpu_Zf, cpu_Zf, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs a compare between register Rd and a constant.
+ *  The register is not changed. All conditional branches can be used after this
+ *  instruction.
+ */
+static int translate_CPI(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + CPI_Rd(opcode)];
+    int Imm = CPI_Imm(opcode);
+    TCGv Rr = tcg_const_i32(Imm);
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    tcg_temp_free_i32(R);
+    tcg_temp_free_i32(Rr);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs a compare between two registers Rd and Rr, and
+ *  skips the next instruction if Rd = Rr.
+ */
+static int translate_CPSE(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[CPSE_Rd(opcode)];
+    TCGv Rr = cpu_r[CPSE_Rr(opcode)];
+    TCGLabel *skip = gen_new_label();
+
+        /* PC if next inst is skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_brcond_i32(TCG_COND_EQ, Rd, Rr, skip);
+        /* PC if next inst is not skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Subtracts one -1- from the contents of register Rd and places the result
+ *  in the destination register Rd.  The C Flag in SREG is not affected by the
+ *  operation, thus allowing the DEC instruction to be used on a loop counter in
+ *  multiple-precision computations.  When operating on unsigned values, only
+ *  BREQ and BRNE branches can be expected to perform consistently.  When
+ *  operating on two's complement values, all signed branches are available.
+ */
+static int translate_DEC(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[DEC_Rd(opcode)];
+
+    tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */
+    tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */
+
+        /* cpu_Vf = Rd == 0x7f */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f);
+    gen_ZNSf(Rd);
+
+    return BS_NONE;
+}
+
+/*
+ *  The module is an instruction set extension to the AVR CPU, performing
+ *  DES iterations. The 64-bit data block (plaintext or ciphertext) is placed in
+ *  the CPU register file, registers R0-R7, where LSB of data is placed in LSB
+ *  of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including
+ *  parity bits) is placed in registers R8- R15, organized in the register file
+ *  with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES
+ *  instruction performs one round in the DES algorithm. Sixteen rounds must be
+ *  executed in increasing order to form the correct DES ciphertext or
+ *  plaintext. Intermediate results are stored in the register file (R0-R15)
+ *  after each DES instruction. The instruction's operand (K) determines which
+ *  round is executed, and the half carry flag (H) determines whether encryption
+ *  or decryption is performed.  The DES algorithm is described in
+ *  "Specifications for the Data Encryption Standard" (Federal Information
+ *  Processing Standards Publication 46). Intermediate results in this
+ *  implementation differ from the standard because the initial permutation and
+ *  the inverse initial permutation are performed each iteration. This does not
+ *  affect the result in the final ciphertext or plaintext, but reduces
+ *  execution time.
+ */
+static int translate_DES(DisasContext *ctx, uint32_t opcode)
+{
+    /* TODO */
+    if (avr_feature(ctx->env, AVR_FEATURE_DES) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    return BS_NONE;
+}
+
+/*
+ *  Indirect call of a subroutine pointed to by the Z (16 bits) Pointer
+ *  Register in the Register File and the EIND Register in the I/O space. This
+ *  instruction allows for indirect calls to the entire 4M (words) Program
+ *  memory space. See also ICALL. The Stack Pointer uses a post-decrement scheme
+ *  during EICALL.  This instruction is not available in all devices. Refer to
+ *  the device specific instruction set summary.
+ */
+static int translate_EICALL(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_EIJMP_EICALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    int ret = ctx->inst[0].npc;
+
+    gen_push_ret(ctx, ret);
+
+    gen_jmp_ez();
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Indirect jump to the address pointed to by the Z (16 bits) Pointer
+ *  Register in the Register File and the EIND Register in the I/O space. This
+ *  instruction allows for indirect jumps to the entire 4M (words) Program
+ *  memory space. See also IJMP.  This instruction is not available in all
+ *  devices. Refer to the device specific instruction set summary.
+ */
+static int translate_EIJMP(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_EIJMP_EICALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    gen_jmp_ez();
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Loads one byte pointed to by the Z-register and the RAMPZ Register in
+ *  the I/O space, and places this byte in the destination register Rd. This
+ *  instruction features a 100% space effective constant initialization or
+ *  constant data fetch. The Program memory is organized in 16-bit words while
+ *  the Z-pointer is a byte address. Thus, the least significant bit of the
+ *  Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This
+ *  instruction can address the entire Program memory space. The Z-pointer
+ *  Register can either be left unchanged by the operation, or it can be
+ *  incremented. The incrementation applies to the entire 24-bit concatenation
+ *  of the RAMPZ and Z-pointer Registers.  Devices with Self-Programming
+ *  capability can use the ELPM instruction to read the Fuse and Lock bit value.
+ *  Refer to the device documentation for a detailed description.  This
+ *  instruction is not available in all devices. Refer to the device specific
+ *  instruction set summary.
+ */
+static int translate_ELPM1(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_ELPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[0];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_ELPM2(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_ELPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[ELPM2_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_ELPMX(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_ELPMX) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[ELPMX_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Performs the logical EOR between the contents of register Rd and
+ *  register Rr and places the result in the destination register Rd.
+ */
+static int translate_EOR(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[EOR_Rd(opcode)];
+    TCGv Rr = cpu_r[EOR_Rr(opcode)];
+
+    tcg_gen_xor_tl(Rd, Rd, Rr);
+
+    tcg_gen_movi_tl(cpu_Vf, 0);
+    gen_ZNSf(Rd);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit unsigned
+ *  multiplication and shifts the result one bit left.
+ */
+static int translate_FMUL(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + FMUL_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + FMUL_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd *Rr */
+    tcg_gen_shli_tl(R, R, 1);
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+    tcg_gen_andi_tl(R1, R1, 0xff);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
+ *  and shifts the result one bit left.
+ */
+static int translate_FMULS(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + FMULS_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + FMULS_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+    tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
+    tcg_gen_mul_tl(R, t0, t1); /* R = Rd *Rr */
+    tcg_gen_shli_tl(R, R, 1);
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+    tcg_gen_andi_tl(R1, R1, 0xff);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
+ *  and shifts the result one bit left.
+ */
+static int translate_FMULSU(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + FMULSU_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + FMULSU_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+    tcg_gen_mul_tl(R, t0, Rr); /* R = Rd *Rr */
+    tcg_gen_shli_tl(R, R, 1);
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+    tcg_gen_andi_tl(R1, R1, 0xff);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Calls to a subroutine within the entire 4M (words) Program memory. The
+ *  return address (to the instruction after the CALL) will be stored onto the
+ *  Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme during
+ *  CALL.  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+static int translate_ICALL(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_IJMP_ICALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    int ret = ctx->inst[0].npc;
+
+    gen_push_ret(ctx, ret);
+    gen_jmp_z();
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Indirect jump to the address pointed to by the Z (16 bits) Pointer
+ *  Register in the Register File. The Z-pointer Register is 16 bits wide and
+ *  allows jump within the lowest 64K words (128KB) section of Program memory.
+ *  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+static int translate_IJMP(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_IJMP_ICALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    gen_jmp_z();
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Loads data from the I/O Space (Ports, Timers, Configuration Registers,
+ *  etc.) into register Rd in the Register File.
+ */
+static int translate_IN(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[IN_Rd(opcode)];
+    int Imm = IN_Imm(opcode);
+    TCGv port = tcg_const_i32(Imm);
+
+    gen_helper_inb(Rd, cpu_env, port);
+
+    tcg_temp_free_i32(port);
+
+    return BS_NONE;
+}
+
+/*
+ *  Adds one -1- to the contents of register Rd and places the result in the
+ *  destination register Rd.  The C Flag in SREG is not affected by the
+ *  operation, thus allowing the INC instruction to be used on a loop counter in
+ *  multiple-precision computations.  When operating on unsigned numbers, only
+ *  BREQ and BRNE branches can be expected to perform consistently. When
+ *  operating on two's complement values, all signed branches are available.
+ */
+static int translate_INC(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[INC_Rd(opcode)];
+
+    tcg_gen_addi_tl(Rd, Rd, 1);
+    tcg_gen_andi_tl(Rd, Rd, 0xff);
+
+        /* cpu_Vf = Rd == 0x80 */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80);
+    gen_ZNSf(Rd);
+    return BS_NONE;
+}
+
+/*
+ *  Jump to an address within the entire 4M (words) Program memory. See also
+ *  RJMP.  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.0
+ */
+static int translate_JMP(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_JMP_CALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    gen_goto_tb(ctx, 0, JMP_Imm(opcode));
+    return BS_BRANCH;
+}
+
+/*
+ *  Load one byte indirect from data space to register and stores an clear
+ *  the bits in data space specified by the register. The instruction can only
+ *  be used towards internal SRAM.  The data location is pointed to by the Z (16
+ *  bits) Pointer Register in the Register File. Memory access is limited to the
+ *  current data segment of 64KB. To access another data segment in devices with
+ *  more than 64KB data space, the RAMPZ in register in the I/O area has to be
+ *  changed.  The Z-pointer Register is left unchanged by the operation. This
+ *  instruction is especially suited for clearing status bits stored in SRAM.
+ */
+static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr)
+{
+    if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
+        gen_helper_fullwr(cpu_env, data, addr);
+    } else {
+        tcg_gen_qemu_st8(data, addr, MMU_DATA_IDX); /* mem[addr] = data */
+    }
+}
+
+static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr)
+{
+    if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
+        gen_helper_fullrd(data, cpu_env, addr);
+    } else {
+        tcg_gen_qemu_ld8u(data, addr, MMU_DATA_IDX); /* data = mem[addr] */
+    }
+}
+
+static int translate_LAC(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rr = cpu_r[LAC_Rr(opcode)];
+    TCGv addr = gen_get_zaddr();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+        /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */
+    tcg_gen_andc_tl(t1, t0, Rr);
+
+    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
+    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Load one byte indirect from data space to register and set bits in data
+ *  space specified by the register. The instruction can only be used towards
+ *  internal SRAM.  The data location is pointed to by the Z (16 bits) Pointer
+ *  Register in the Register File. Memory access is limited to the current data
+ *  segment of 64KB. To access another data segment in devices with more than
+ *  64KB data space, the RAMPZ in register in the I/O area has to be changed.
+ *  The Z-pointer Register is left unchanged by the operation. This instruction
+ *  is especially suited for setting status bits stored in SRAM.
+ */
+static int translate_LAS(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rr = cpu_r[LAS_Rr(opcode)];
+    TCGv addr = gen_get_zaddr();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+    tcg_gen_or_tl(t1, t0, Rr);
+
+    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
+    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Load one byte indirect from data space to register and toggles bits in
+ *  the data space specified by the register.  The instruction can only be used
+ *  towards SRAM.  The data location is pointed to by the Z (16 bits) Pointer
+ *  Register in the Register File. Memory access is limited to the current data
+ *  segment of 64KB. To access another data segment in devices with more than
+ *  64KB data space, the RAMPZ in register in the I/O area has to be changed.
+ *  The Z-pointer Register is left unchanged by the operation. This instruction
+ *  is especially suited for changing status bits stored in SRAM.
+ */
+static int translate_LAT(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rr = cpu_r[LAT_Rr(opcode)];
+    TCGv addr = gen_get_zaddr();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+    tcg_gen_xor_tl(t1, t0, Rr);
+
+    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
+    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Loads one byte indirect from the data space to a register. For parts
+ *  with SRAM, the data space consists of the Register File, I/O memory and
+ *  internal SRAM (and external SRAM if applicable). For parts without SRAM, the
+ *  data space consists of the Register File only. In some parts the Flash
+ *  Memory has been mapped to the data space and can be read using this command.
+ *  The EEPROM has a separate address space.  The data location is pointed to by
+ *  the X (16 bits) Pointer Register in the Register File. Memory access is
+ *  limited to the current data segment of 64KB. To access another data segment
+ *  in devices with more than 64KB data space, the RAMPX in register in the I/O
+ *  area has to be changed.  The X-pointer Register can either be left unchanged
+ *  by the operation, or it can be post-incremented or predecremented.  These
+ *  features are especially suited for accessing arrays, tables, and Stack
+ *  Pointer usage of the X-pointer Register. Note that only the low byte of the
+ *  X-pointer is updated in devices with no more than 256 bytes data space. For
+ *  such devices, the high byte of the pointer is not used by this instruction
+ *  and can be used for other purposes. The RAMPX Register in the I/O area is
+ *  updated in parts with more than 64KB data space or more than 64KB Program
+ *  memory, and the increment/decrement is added to the entire 24-bit address on
+ *  such devices.  Not all variants of this instruction is available in all
+ *  devices. Refer to the device specific instruction set summary.  In the
+ *  Reduced Core tinyAVR the LD instruction can be used to achieve the same
+ *  operation as LPM since the program memory is mapped to the data memory
+ *  space.
+ */
+static int translate_LDX1(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDX1_Rd(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_load(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_LDX2(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDX2_Rd(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_load(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_LDX3(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDX3_Rd(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_load(ctx, Rd, addr);
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Loads one byte indirect with or without displacement from the data space
+ *  to a register. For parts with SRAM, the data space consists of the Register
+ *  File, I/O memory and internal SRAM (and external SRAM if applicable). For
+ *  parts without SRAM, the data space consists of the Register File only. In
+ *  some parts the Flash Memory has been mapped to the data space and can be
+ *  read using this command. The EEPROM has a separate address space.  The data
+ *  location is pointed to by the Y (16 bits) Pointer Register in the Register
+ *  File. Memory access is limited to the current data segment of 64KB. To
+ *  access another data segment in devices with more than 64KB data space, the
+ *  RAMPY in register in the I/O area has to be changed.  The Y-pointer Register
+ *  can either be left unchanged by the operation, or it can be post-incremented
+ *  or predecremented.  These features are especially suited for accessing
+ *  arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that
+ *  only the low byte of the Y-pointer is updated in devices with no more than
+ *  256 bytes data space. For such devices, the high byte of the pointer is not
+ *  used by this instruction and can be used for other purposes. The RAMPY
+ *  Register in the I/O area is updated in parts with more than 64KB data space
+ *  or more than 64KB Program memory, and the increment/decrement/displacement
+ *  is added to the entire 24-bit address on such devices.  Not all variants of
+ *  this instruction is available in all devices. Refer to the device specific
+ *  instruction set summary.  In the Reduced Core tinyAVR the LD instruction can
+ *  be used to achieve the same operation as LPM since the program memory is
+ *  mapped to the data memory space.
+ */
+static int translate_LDY2(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDY2_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    gen_data_load(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_LDY3(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDY3_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_load(ctx, Rd, addr);
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_LDDY(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDDY_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_addi_tl(addr, addr, LDDY_Imm(opcode)); /* addr = addr + q */
+    gen_data_load(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Loads one byte indirect with or without displacement from the data space
+ *  to a register. For parts with SRAM, the data space consists of the Register
+ *  File, I/O memory and internal SRAM (and external SRAM if applicable). For
+ *  parts without SRAM, the data space consists of the Register File only. In
+ *  some parts the Flash Memory has been mapped to the data space and can be
+ *  read using this command. The EEPROM has a separate address space.  The data
+ *  location is pointed to by the Z (16 bits) Pointer Register in the Register
+ *  File. Memory access is limited to the current data segment of 64KB. To
+ *  access another data segment in devices with more than 64KB data space, the
+ *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer Register
+ *  can either be left unchanged by the operation, or it can be post-incremented
+ *  or predecremented.  These features are especially suited for Stack Pointer
+ *  usage of the Z-pointer Register, however because the Z-pointer Register can
+ *  be used for indirect subroutine calls, indirect jumps and table lookup, it
+ *  is often more convenient to use the X or Y-pointer as a dedicated Stack
+ *  Pointer. Note that only the low byte of the Z-pointer is updated in devices
+ *  with no more than 256 bytes data space. For such devices, the high byte of
+ *  the pointer is not used by this instruction and can be used for other
+ *  purposes. The RAMPZ Register in the I/O area is updated in parts with more
+ *  than 64KB data space or more than 64KB Program memory, and the
+ *  increment/decrement/displacement is added to the entire 24-bit address on
+ *  such devices.  Not all variants of this instruction is available in all
+ *  devices. Refer to the device specific instruction set summary.  In the
+ *  Reduced Core tinyAVR the LD instruction can be used to achieve the same
+ *  operation as LPM since the program memory is mapped to the data memory
+ *  space.  For using the Z-pointer for table lookup in Program memory see the
+ *  LPM and ELPM instructions.
+ */
+static int translate_LDZ2(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDZ2_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    gen_data_load(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_LDZ3(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDZ3_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_load(ctx, Rd, addr);
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_LDDZ(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDDZ_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_addi_tl(addr, addr, LDDZ_Imm(opcode));
+                                                    /* addr = addr + q */
+    gen_data_load(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ * Loads an 8 bit constant directly to register 16 to 31.
+ */
+static int translate_LDI(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + LDI_Rd(opcode)];
+    int imm = LDI_Imm(opcode);
+
+    tcg_gen_movi_tl(Rd, imm);
+
+    return BS_NONE;
+}
+
+/*
+ *  Loads one byte from the data space to a register. For parts with SRAM,
+ *  the data space consists of the Register File, I/O memory and internal SRAM
+ *  (and external SRAM if applicable). For parts without SRAM, the data space
+ *  consists of the register file only. The EEPROM has a separate address space.
+ *  A 16-bit address must be supplied. Memory access is limited to the current
+ *  data segment of 64KB. The LDS instruction uses the RAMPD Register to access
+ *  memory above 64KB. To access another data segment in devices with more than
+ *  64KB data space, the RAMPD in register in the I/O area has to be changed.
+ *  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+static int translate_LDS(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDS_Rd(opcode)];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_rampD;
+
+    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
+    tcg_gen_shli_tl(addr, addr, 16);
+    tcg_gen_ori_tl(addr, addr, LDS_Imm(opcode));
+
+    gen_data_load(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Loads one byte pointed to by the Z-register into the destination
+ *  register Rd. This instruction features a 100% space effective constant
+ *  initialization or constant data fetch. The Program memory is organized in
+ *  16-bit words while the Z-pointer is a byte address. Thus, the least
+ *  significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high
+ *  byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of
+ *  Program memory. The Zpointer Register can either be left unchanged by the
+ *  operation, or it can be incremented. The incrementation does not apply to
+ *  the RAMPZ Register.  Devices with Self-Programming capability can use the
+ *  LPM instruction to read the Fuse and Lock bit values.  Refer to the device
+ *  documentation for a detailed description.  The LPM instruction is not
+ *  available in all devices. Refer to the device specific instruction set
+ *  summary
+ */
+static int translate_LPM1(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_LPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[0];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_r[31];
+    TCGv L = cpu_r[30];
+
+    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+    tcg_gen_or_tl(addr, addr, L);
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_LPM2(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_LPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[LPM2_Rd(opcode)];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_r[31];
+    TCGv L = cpu_r[30];
+
+    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+    tcg_gen_or_tl(addr, addr, L);
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_LPMX(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_LPMX) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[LPMX_Rd(opcode)];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_r[31];
+    TCGv L = cpu_r[30];
+
+    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+    tcg_gen_or_tl(addr, addr, L);
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    tcg_gen_andi_tl(L, addr, 0xff);
+
+    tcg_gen_shri_tl(addr, addr, 8);
+    tcg_gen_andi_tl(H, addr, 0xff);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is
+ *  loaded into the C Flag of the SREG. This operation effectively divides an
+ *  unsigned value by two. The C Flag can be used to round the result.
+ */
+static int translate_LSR(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LSR_Rd(opcode)];
+
+    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
+
+    tcg_gen_shri_tl(Rd, Rd, 1);
+
+    tcg_gen_mov_tl(cpu_Zf, Rd);
+    tcg_gen_movi_tl(cpu_Nf, 0);
+    tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
+    tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction makes a copy of one register into another. The source
+ *  register Rr is left unchanged, while the destination register Rd is loaded
+ *  with a copy of Rr.
+ */
+static int translate_MOV(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[MOV_Rd(opcode)];
+    TCGv Rr = cpu_r[MOV_Rr(opcode)];
+
+    tcg_gen_mov_tl(Rd, Rr);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction makes a copy of one register pair into another register
+ *  pair. The source register pair Rr+1:Rr is left unchanged, while the
+ *  destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr.  This
+ *  instruction is not available in all devices. Refer to the device specific
+ *  instruction set summary.
+ */
+static int translate_MOVW(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_MOVW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv RdL = cpu_r[MOVW_Rd(opcode) * 2 + 0];
+    TCGv RdH = cpu_r[MOVW_Rd(opcode) * 2 + 1];
+    TCGv RrL = cpu_r[MOVW_Rr(opcode) * 2 + 0];
+    TCGv RrH = cpu_r[MOVW_Rr(opcode) * 2 + 1];
+
+    tcg_gen_mov_tl(RdH, RrH);
+    tcg_gen_mov_tl(RdL, RrL);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication.
+ */
+static int translate_MUL(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[MUL_Rd(opcode)];
+    TCGv Rr = cpu_r[MUL_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd *Rr */
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(16) */
+    tcg_gen_mov_tl(cpu_Zf, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication.
+ */
+static int translate_MULS(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + MULS_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + MULS_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+    tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
+    tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(16) */
+    tcg_gen_mov_tl(cpu_Zf, R);
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a
+ *  signed and an unsigned number.
+ */
+static int translate_MULSU(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + MULSU_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + MULSU_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+    tcg_gen_mul_tl(R, t0, Rr); /* R = Rd *Rr */
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+    tcg_gen_mov_tl(cpu_Zf, R);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Replaces the contents of register Rd with its two's complement; the
+ *  value $80 is left unchanged.
+ */
+static int translate_NEG(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[SUB_Rd(opcode)];
+    TCGv t0 = tcg_const_i32(0);
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, t0, Rd);
+    gen_sub_Vf(R, t0, Rd);
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs a single cycle No Operation.
+ */
+static int translate_NOP(DisasContext *ctx, uint32_t opcode)
+{
+
+    /* NOP */
+
+    return BS_NONE;
+}
+
+/*
+ *  Performs the logical OR between the contents of register Rd and register
+ *  Rr and places the result in the destination register Rd.
+ */
+static int translate_OR(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[OR_Rd(opcode)];
+    TCGv Rr = cpu_r[OR_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_or_tl(R, Rd, Rr);
+
+    tcg_gen_movi_tl(cpu_Vf, 0);
+    gen_ZNSf(R);
+
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Performs the logical OR between the contents of register Rd and a
+ *  constant and places the result in the destination register Rd.
+ */
+static int translate_ORI(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + ORI_Rd(opcode)];
+    int Imm = (ORI_Imm(opcode));
+
+    tcg_gen_ori_tl(Rd, Rd, Imm); /* Rd = Rd | Imm */
+
+    tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+    gen_ZNSf(Rd);
+
+    return BS_NONE;
+}
+
+/*
+ *  Stores data from register Rr in the Register File to I/O Space (Ports,
+ *  Timers, Configuration Registers, etc.).
+ */
+static int translate_OUT(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[OUT_Rd(opcode)];
+    int Imm = OUT_Imm(opcode);
+    TCGv port = tcg_const_i32(Imm);
+
+    gen_helper_outb(cpu_env, port, Rd);
+
+    tcg_temp_free_i32(port);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction loads register Rd with a byte from the STACK. The Stack
+ *  Pointer is pre-incremented by 1 before the POP.  This instruction is not
+ *  available in all devices. Refer to the device specific instruction set
+ *  summary.
+ */
+static int translate_POP(DisasContext *ctx, uint32_t opcode)
+{
+    /*
+     * Using a temp to work around some strange behaviour:
+     * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+     * gen_data_load(ctx, Rd, cpu_sp);
+     * seems to cause the add to happen twice.
+     * This doesn't happen if either the add or the load is removed.
+     */
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv Rd = cpu_r[POP_Rd(opcode)];
+
+    tcg_gen_addi_tl(t1, cpu_sp, 1);
+    gen_data_load(ctx, Rd, t1);
+    tcg_gen_mov_tl(cpu_sp, t1);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction stores the contents of register Rr on the STACK. The
+ *  Stack Pointer is post-decremented by 1 after the PUSH.  This instruction is
+ *  not available in all devices. Refer to the device specific instruction set
+ *  summary.
+ */
+static int translate_PUSH(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[PUSH_Rd(opcode)];
+
+    gen_data_store(ctx, Rd, cpu_sp);
+    tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+    return BS_NONE;
+}
+
+/*
+ *  Relative call to an address within PC - 2K + 1 and PC + 2K (words). The
+ *  return address (the instruction after the RCALL) is stored onto the Stack.
+ *  See also CALL. For AVR microcontrollers with Program memory not exceeding 4K
+ *  words (8KB) this instruction can address the entire memory from every
+ *  address location. The Stack Pointer uses a post-decrement scheme during
+ *  RCALL.
+ */
+static int translate_RCALL(DisasContext *ctx, uint32_t opcode)
+{
+    int ret = ctx->inst[0].npc;
+    int dst = ctx->inst[0].npc + sextract32(RCALL_Imm(opcode), 0, 12);
+
+    gen_push_ret(ctx, ret);
+    gen_goto_tb(ctx, 0, dst);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Returns from subroutine. The return address is loaded from the STACK.
+ *  The Stack Pointer uses a preincrement scheme during RET.
+ */
+static int translate_RET(DisasContext *ctx, uint32_t opcode)
+{
+    gen_pop_ret(ctx, cpu_pc);
+
+    tcg_gen_exit_tb(NULL, 0);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Returns from interrupt. The return address is loaded from the STACK and
+ *  the Global Interrupt Flag is set.  Note that the Status Register is not
+ *  automatically stored when entering an interrupt routine, and it is not
+ *  restored when returning from an interrupt routine. This must be handled by
+ *  the application program. The Stack Pointer uses a pre-increment scheme
+ *  during RETI.
+ */
+static int translate_RETI(DisasContext *ctx, uint32_t opcode)
+{
+    gen_pop_ret(ctx, cpu_pc);
+
+    tcg_gen_movi_tl(cpu_If, 1);
+
+    tcg_gen_exit_tb(NULL, 0);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Relative jump to an address within PC - 2K +1 and PC + 2K (words). For
+ *  AVR microcontrollers with Program memory not exceeding 4K words (8KB) this
+ *  instruction can address the entire memory from every address location. See
+ *  also JMP.
+ */
+static int translate_RJMP(DisasContext *ctx, uint32_t opcode)
+{
+    int dst = ctx->inst[0].npc + sextract32(RJMP_Imm(opcode), 0, 12);
+
+    gen_goto_tb(ctx, 0, dst);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Shifts all bits in Rd one place to the right. The C Flag is shifted into
+ *  bit 7 of Rd. Bit 0 is shifted into the C Flag.  This operation, combined
+ *  with ASR, effectively divides multi-byte signed values by two. Combined with
+ *  LSR it effectively divides multi-byte unsigned values by two. The Carry Flag
+ *  can be used to round the result.
+ */
+static int translate_ROR(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[ROR_Rd(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+
+    tcg_gen_shli_tl(t0, cpu_Cf, 7);
+    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
+    tcg_gen_shri_tl(Rd, Rd, 1);
+    tcg_gen_or_tl(Rd, Rd, t0);
+
+    gen_rshift_ZNVSf(Rd);
+
+    tcg_temp_free_i32(t0);
+
+    return BS_NONE;
+}
+
+/*
+ *  Subtracts two registers and subtracts with the C Flag and places the
+ *  result in the destination register Rd.
+ */
+static int translate_SBC(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[SBC_Rd(opcode)];
+    TCGv Rr = cpu_r[SBC_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+    tcg_gen_sub_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_NSf(R);
+
+    /*
+     * Previous value remains unchanged when the result is zero;
+     * cleared otherwise.
+     */
+    tcg_gen_or_tl(cpu_Zf, cpu_Zf, R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  SBCI -- Subtract Immediate with Carry
+ */
+static int translate_SBCI(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + SBCI_Rd(opcode)];
+    TCGv Rr = tcg_const_i32(SBCI_Imm(opcode));
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+    tcg_gen_sub_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_NSf(R);
+
+    /*
+     * Previous value remains unchanged when the result is zero;
+     * cleared otherwise.
+     */
+    tcg_gen_or_tl(cpu_Zf, cpu_Zf, R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+    tcg_temp_free_i32(Rr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Sets a specified bit in an I/O Register. This instruction operates on
+ *  the lower 32 I/O Registers -- addresses 0-31.
+ */
+static int translate_SBI(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv data = tcg_temp_new_i32();
+    TCGv port = tcg_const_i32(SBI_Imm(opcode));
+
+    gen_helper_inb(data, cpu_env, port);
+    tcg_gen_ori_tl(data, data, 1 << SBI_Bit(opcode));
+    gen_helper_outb(cpu_env, port, data);
+
+    tcg_temp_free_i32(port);
+    tcg_temp_free_i32(data);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction tests a single bit in an I/O Register and skips the
+ *  next instruction if the bit is cleared. This instruction operates on the
+ *  lower 32 I/O Registers -- addresses 0-31.
+ */
+static int translate_SBIC(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv data = tcg_temp_new_i32();
+    TCGv port = tcg_const_i32(SBIC_Imm(opcode));
+    TCGLabel *skip = gen_new_label();
+
+    gen_helper_inb(data, cpu_env, port);
+
+        /* PC if next inst is skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_andi_tl(data, data, 1 << SBIC_Bit(opcode));
+    tcg_gen_brcondi_i32(TCG_COND_EQ, data, 0, skip);
+        /* PC if next inst is not skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    tcg_temp_free_i32(port);
+    tcg_temp_free_i32(data);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  This instruction tests a single bit in an I/O Register and skips the
+ *  next instruction if the bit is set. This instruction operates on the lower
+ *  32 I/O Registers -- addresses 0-31.
+ */
+static int translate_SBIS(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv data = tcg_temp_new_i32();
+    TCGv port = tcg_const_i32(SBIS_Imm(opcode));
+    TCGLabel *skip = gen_new_label();
+
+    gen_helper_inb(data, cpu_env, port);
+
+        /* PC if next inst is skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_andi_tl(data, data, 1 << SBIS_Bit(opcode));
+    tcg_gen_brcondi_i32(TCG_COND_NE, data, 0, skip);
+        /* PC if next inst is not skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    tcg_temp_free_i32(port);
+    tcg_temp_free_i32(data);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Subtracts an immediate value (0-63) from a register pair and places the
+ *  result in the register pair. This instruction operates on the upper four
+ *  register pairs, and is well suited for operations on the Pointer Registers.
+ *  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+static int translate_SBIW(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_ADIW_SBIW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv RdL = cpu_r[24 + 2 * SBIW_Rd(opcode)];
+    TCGv RdH = cpu_r[25 + 2 * SBIW_Rd(opcode)];
+    int Imm = (SBIW_Imm(opcode));
+    TCGv R = tcg_temp_new_i32();
+    TCGv Rd = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
+    tcg_gen_subi_tl(R, Rd, Imm); /* R = Rd - Imm */
+    tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+
+    /* Cf */
+    tcg_gen_andc_tl(cpu_Cf, R, Rd);
+    tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); /* Cf = R & ~Rd */
+
+    /* Vf */
+    tcg_gen_andc_tl(cpu_Vf, Rd, R);
+    tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); /* Vf = Rd & ~R */
+
+    /* Zf */
+    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+
+    /* Nf */
+    tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
+
+    /* Sf */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+
+    /* R */
+    tcg_gen_andi_tl(RdL, R, 0xff);
+    tcg_gen_shri_tl(RdH, R, 8);
+
+    tcg_temp_free_i32(Rd);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction tests a single bit in a register and skips the next
+ *  instruction if the bit is cleared.
+ */
+static int translate_SBRC(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rr = cpu_r[SBRC_Rr(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGLabel *skip = gen_new_label();
+
+        /* PC if next inst is skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_andi_tl(t0, Rr, 1 << SBRC_Bit(opcode));
+    tcg_gen_brcondi_i32(TCG_COND_EQ, t0, 0, skip);
+        /* PC if next inst is not skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    tcg_temp_free_i32(t0);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  This instruction tests a single bit in a register and skips the next
+ *  instruction if the bit is set.
+ */
+static int translate_SBRS(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rr = cpu_r[SBRS_Rr(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGLabel *skip = gen_new_label();
+
+        /* PC if next inst is skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_andi_tl(t0, Rr, 1 << SBRS_Bit(opcode));
+    tcg_gen_brcondi_i32(TCG_COND_NE, t0, 0, skip);
+        /* PC if next inst is not skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    tcg_temp_free_i32(t0);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  This instruction sets the circuit in sleep mode defined by the MCU
+ *  Control Register.
+ */
+static int translate_SLEEP(DisasContext *ctx, uint32_t opcode)
+{
+    gen_helper_sleep(cpu_env);
+
+    return BS_EXCP;
+}
+
+/*
+ *  SPM can be used to erase a page in the Program memory, to write a page
+ *  in the Program memory (that is already erased), and to set Boot Loader Lock
+ *  bits. In some devices, the Program memory can be written one word at a time,
+ *  in other devices an entire page can be programmed simultaneously after first
+ *  filling a temporary page buffer. In all cases, the Program memory must be
+ *  erased one page at a time. When erasing the Program memory, the RAMPZ and
+ *  Z-register are used as page address. When writing the Program memory, the
+ *  RAMPZ and Z-register are used as page or word address, and the R1:R0
+ *  register pair is used as data(1). When setting the Boot Loader Lock bits,
+ *  the R1:R0 register pair is used as data. Refer to the device documentation
+ *  for detailed description of SPM usage. This instruction can address the
+ *  entire Program memory.  The SPM instruction is not available in all devices.
+ *  Refer to the device specific instruction set summary.  Note: 1. R1
+ *  determines the instruction high byte, and R0 determines the instruction low
+ *  byte.
+ */
+static int translate_SPM(DisasContext *ctx, uint32_t opcode)
+{
+    /* TODO */
+    if (avr_feature(ctx->env, AVR_FEATURE_SPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    return BS_NONE;
+}
+
+static int translate_SPMX(DisasContext *ctx, uint32_t opcode)
+{
+    /* TODO */
+    if (avr_feature(ctx->env, AVR_FEATURE_SPMX) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    return BS_NONE;
+}
+
+static int translate_STX1(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STX1_Rr(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_store(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_STX2(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STX2_Rr(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_store(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_STX3(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STX3_Rr(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_store(ctx, Rd, addr);
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_STY2(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STY2_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    gen_data_store(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_STY3(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STY3_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_store(ctx, Rd, addr);
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_STDY(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STDY_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_addi_tl(addr, addr, STDY_Imm(opcode));
+                                                /* addr = addr + q */
+    gen_data_store(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_STZ2(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STZ2_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    gen_data_store(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_STZ3(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STZ3_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_store(ctx, Rd, addr);
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_STDZ(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STDZ_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_addi_tl(addr, addr, STDZ_Imm(opcode));
+                                                    /* addr = addr + q */
+    gen_data_store(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Stores one byte from a Register to the data space. For parts with SRAM,
+ *  the data space consists of the Register File, I/O memory and internal SRAM
+ *  (and external SRAM if applicable). For parts without SRAM, the data space
+ *  consists of the Register File only. The EEPROM has a separate address space.
+ *  A 16-bit address must be supplied. Memory access is limited to the current
+ *  data segment of 64KB. The STS instruction uses the RAMPD Register to access
+ *  memory above 64KB. To access another data segment in devices with more than
+ *  64KB data space, the RAMPD in register in the I/O area has to be changed.
+ *  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+static int translate_STS(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STS_Rd(opcode)];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_rampD;
+
+    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
+    tcg_gen_shli_tl(addr, addr, 16);
+    tcg_gen_ori_tl(addr, addr, STS_Imm(opcode));
+
+    gen_data_store(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Subtracts two registers and places the result in the destination
+ *  register Rd.
+ */
+static int translate_SUB(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[SUB_Rd(opcode)];
+    TCGv Rr = cpu_r[SUB_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Subtracts a register and a constant and places the result in the
+ *  destination register Rd. This instruction is working on Register R16 to R31
+ *  and is very well suited for operations on the X, Y, and Z-pointers.
+ */
+static int translate_SUBI(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + SUBI_Rd(opcode)];
+    TCGv Rr = tcg_const_i32(SUBI_Imm(opcode));
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr);
+                                                    /* R = Rd - Imm */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+    tcg_temp_free_i32(Rr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Swaps high and low nibbles in a register.
+ */
+static int translate_SWAP(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[SWAP_Rd(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_andi_tl(t0, Rd, 0x0f);
+    tcg_gen_shli_tl(t0, t0, 4);
+    tcg_gen_andi_tl(t1, Rd, 0xf0);
+    tcg_gen_shri_tl(t1, t1, 4);
+    tcg_gen_or_tl(Rd, t0, t1);
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction resets the Watchdog Timer. This instruction must be
+ *  executed within a limited time given by the WD prescaler. See the Watchdog
+ *  Timer hardware specification.
+ */
+static int translate_WDR(DisasContext *ctx, uint32_t opcode)
+{
+    gen_helper_wdr(cpu_env);
+
+    return BS_NONE;
+}
+
+/*
+ *  Exchanges one byte indirect between register and data space.  The data
+ *  location is pointed to by the Z (16 bits) Pointer Register in the Register
+ *  File. Memory access is limited to the current data segment of 64KB. To
+ *  access another data segment in devices with more than 64KB data space, the
+ *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer Register
+ *  is left unchanged by the operation. This instruction is especially suited
+ *  for writing/reading status bits stored in SRAM.
+ */
+static int translate_XCH(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[XCH_Rd(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv addr = gen_get_zaddr();
+
+    gen_data_load(ctx, t0, addr);
+    gen_data_store(ctx, Rd, addr);
+    tcg_gen_mov_tl(Rd, t0);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+void avr_cpu_tcg_init(void)
+{
+    int i;
+
+    /* Table of instructions in human readable form */
+    const Instruction instructions[] = {
+        {"ADC", "0001_11**_****_****", translate_ADC},
+        {"ADD", "0000_11**_****_****", translate_ADD},
+        {"ADIW", "1001_0110_****_****", translate_ADIW},
+        {"AND", "0010_00**_****_****", translate_AND},
+        {"ANDI", "0111_****_****_****", translate_ANDI},
+        {"ASR", "1001_010*_****_0101", translate_ASR},
+        {"BCLR", "1001_0100_1***_1000", translate_BCLR},
+        {"BLD", "1111_100*_****_0***", translate_BLD},
+        {"BRBC", "1111_01**_****_****", translate_BRBC},
+        {"BRBS", "1111_00**_****_****", translate_BRBS},
+        {"BREAK", "1001_0101_1001_1000", translate_BREAK},
+        {"BSET", "1001_0100_0***_1000", translate_BSET},
+        {"BST", "1111_101*_****_0***", translate_BST},
+        {"CALL", "1001_010*_****_111*__****_****_****_****", translate_CALL},
+        {"CBI", "1001_1000_****_****", translate_CBI},
+        {"COM", "1001_010*_****_0000", translate_COM},
+        {"CP", "0001_01**_****_****", translate_CP},
+        {"CPC", "0000_01**_****_****", translate_CPC},
+        {"CPI", "0011_****_****_****", translate_CPI},
+        {"CPSE", "0001_00**_****_****", translate_CPSE},
+        {"DEC", "1001_010*_****_1010", translate_DEC},
+        {"DES", "1001_0100_****_1011", translate_DES},
+        {"EICALL", "1001_0101_0001_1001", translate_EICALL},
+        {"EIJMP", "1001_0100_0001_1001", translate_EIJMP},
+        {"ELPM1", "1001_0101_1101_1000", translate_ELPM1},
+        {"ELPM2", "1001_000*_****_0110", translate_ELPM2},
+        {"ELPMX", "1001_000*_****_0111", translate_ELPMX},
+        {"EOR", "0010_01**_****_****", translate_EOR},
+        {"FMUL", "0000_0011_0***_1***", translate_FMUL},
+        {"FMULS", "0000_0011_1***_0***", translate_FMULS},
+        {"FMULSU", "0000_0011_1***_1***", translate_FMULSU},
+        {"ICALL", "1001_0101_0000_1001", translate_ICALL},
+        {"IJMP", "1001_0100_0000_1001", translate_IJMP},
+        {"IN", "1011_0***_****_****", translate_IN},
+        {"INC", "1001_010*_****_0011", translate_INC},
+        {"JMP", "1001_010*_****_110*__****_****_****_****", translate_JMP},
+        {"LAC", "1001_001*_****_0110", translate_LAC},
+        {"LAS", "1001_001*_****_0101", translate_LAS},
+        {"LAT", "1001_001*_****_0111", translate_LAT},
+        {"LDX1", "1001_000*_****_1100", translate_LDX1},
+        {"LDX2", "1001_000*_****_1101", translate_LDX2},
+        {"LDX3", "1001_000*_****_1110", translate_LDX3},
+        {"LDY2", "1001_000*_****_1001", translate_LDY2},
+        {"LDY3", "1001_000*_****_1010", translate_LDY3},
+        {"LDDY", "10*0_**0*_****_1***", translate_LDDY},
+        {"LDZ2", "1001_000*_****_0001", translate_LDZ2},
+        {"LDZ3", "1001_000*_****_0010", translate_LDZ3},
+        {"LDDZ", "10*0_**0*_****_0***", translate_LDDZ},
+        {"LDI", "1110_****_****_****", translate_LDI},
+        {"LDS", "1001_000*_****_0000__****_****_****_****", translate_LDS},
+        {"LPM1", "1001_0101_1100_1000", translate_LPM1},
+        {"LPM2", "1001_000*_****_0100", translate_LPM2},
+        {"LPMX", "1001_000*_****_0101", translate_LPMX},
+        {"LSR", "1001_010*_****_0110", translate_LSR},
+        {"MOV", "0010_11**_****_****", translate_MOV},
+        {"MOVW", "0000_0001_****_****", translate_MOVW},
+        {"MUL", "1001_11**_****_****", translate_MUL},
+        {"MULS", "0000_0010_****_****", translate_MULS},
+        {"MULSU", "0000_0011_0***_0***", translate_MULSU},
+        {"NEG", "1001_010*_****_0001", translate_NEG},
+        {"NOP", "0000_0000_0000_0000", translate_NOP},
+        {"OR", "0010_10**_****_****", translate_OR},
+        {"ORI", "0110_****_****_****", translate_ORI},
+        {"OUT", "1011_1***_****_****", translate_OUT},
+        {"POP", "1001_000*_****_1111", translate_POP},
+        {"PUSH", "1001_001*_****_1111", translate_PUSH},
+        {"RCALL", "1101_****_****_****", translate_RCALL},
+        {"RET", "1001_0101_0000_1000", translate_RET},
+        {"RETI", "1001_0101_0001_1000", translate_RETI},
+        {"RJMP", "1100_****_****_****", translate_RJMP},
+        {"ROR", "1001_010*_****_0111", translate_ROR},
+        {"SBC", "0000_10**_****_****", translate_SBC},
+        {"SBCI", "0100_****_****_****", translate_SBCI},
+        {"SBI", "1001_1010_****_****", translate_SBI},
+        {"SBIC", "1001_1001_****_****", translate_SBIC},
+        {"SBIS", "1001_1011_****_****", translate_SBIS},
+        {"SBIW", "1001_0111_****_****", translate_SBIW},
+        {"SBRC", "1111_110*_****_0***", translate_SBRC},
+        {"SBRS", "1111_111*_****_0***", translate_SBRS},
+        {"SLEEP", "1001_0101_1000_1000", translate_SLEEP},
+        {"SPM", "1001_0101_1110_1000", translate_SPM},
+        {"SPMX", "1001_0101_1111_1000", translate_SPMX},
+        {"STX1", "1001_001*_****_1100", translate_STX1},
+        {"STX2", "1001_001*_****_1101", translate_STX2},
+        {"STX3", "1001_001*_****_1110", translate_STX3},
+        {"STY2", "1001_001*_****_1001", translate_STY2},
+        {"STY3", "1001_001*_****_1010", translate_STY3},
+        {"STDY", "10*0_**1*_****_1***", translate_STDY},
+        {"STZ2", "1001_001*_****_0001", translate_STZ2},
+        {"STZ3", "1001_001*_****_0010", translate_STZ3},
+        {"STDZ", "10*0_**1*_****_0***", translate_STDZ},
+        {"STS", "1001_001*_****_0000__****_****_****_****", translate_STS},
+        {"SUB", "0001_10**_****_****", translate_SUB},
+        {"SUBI", "0101_****_****_****", translate_SUBI},
+        {"SWAP", "1001_010*_****_0010", translate_SWAP},
+        {"WDR", "1001_0101_1010_1000", translate_WDR},
+        {"XCH", "1001_001*_****_0100", translate_XCH},
+    };
+    avr_decoder_init(instructions,
+        sizeof(instructions) / sizeof(instructions[0]));
+
+#define AVR_REG_OFFS(x) offsetof(CPUAVRState, x)
+    cpu_pc = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(pc_w), "pc");
+    cpu_Cf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregC), "Cf");
+    cpu_Zf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregZ), "Zf");
+    cpu_Nf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregN), "Nf");
+    cpu_Vf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregV), "Vf");
+    cpu_Sf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregS), "Sf");
+    cpu_Hf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregH), "Hf");
+    cpu_Tf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregT), "Tf");
+    cpu_If = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregI), "If");
+    cpu_rampD = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampD), "rampD");
+    cpu_rampX = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampX), "rampX");
+    cpu_rampY = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampY), "rampY");
+    cpu_rampZ = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampZ), "rampZ");
+    cpu_eind = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(eind), "eind");
+    cpu_sp = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sp), "sp");
+
+    for (i = 0; i < 32; i++) {
+        char name[16];
+
+        sprintf(name, "r[%d]", i);
+
+        cpu_r[i] = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(r[i]), name);
+    }
+}
+
+static void decode_opc(DisasContext *ctx, InstInfo *inst)
+{
+    /* PC points to words.  */
+    inst->opcode = cpu_ldl_code(ctx->env, inst->cpc * 2);
+    inst->length = 0;
+    inst->translate = avr_decode(inst->opcode, &inst->length);
+    assert(inst->length > 0); /* Check length was set */
+
+    if (inst->length == 16) {
+        inst->npc = inst->cpc + 1;
+        /* get opcode as 16bit value */
+        inst->opcode = inst->opcode & 0x0000ffff;
+    }
+    if (inst->length == 32) {
+        inst->npc = inst->cpc + 2;
+        /* get opcode as 32bit value */
+        inst->opcode = (inst->opcode << 16)
+                     | (inst->opcode >> 16);
+    }
+}
+
+void gen_intermediate_code(CPUState *cs, struct TranslationBlock *tb,
+    int max_insns)
+{
+    CPUAVRState *env = cs->env_ptr;
+    DisasContext ctx = {
+        .tb = tb,
+        .env = env,
+        .memidx = 0,
+        .bstate = BS_NONE,
+        .singlestep = cs->singlestep_enabled,
+    };
+    target_ulong pc_start = tb->pc / 2;
+    int num_insns = 0;
+    target_ulong cpc;
+    target_ulong npc;
+
+    if (tb->flags & TB_FLAGS_FULL_ACCESS) {
+        /*
+         * This flag is set by ST/LD instruction we will regenerate it ONLY
+         * with mem/cpu memory access instead of mem access
+         */
+        max_insns = 1;
+    }
+
+    gen_tb_start(tb);
+
+    /* decode first instruction */
+    ctx.inst[0].cpc = pc_start;
+    decode_opc(&ctx, &ctx.inst[0]);
+    do {
+        /* set curr/next PCs */
+        cpc = ctx.inst[0].cpc;
+        npc = ctx.inst[0].npc;
+
+        /* decode next instruction */
+        ctx.inst[1].cpc = ctx.inst[0].npc;
+        decode_opc(&ctx, &ctx.inst[1]);
+
+        /* translate current instruction */
+        tcg_gen_insn_start(cpc);
+        num_insns++;
+
+        /*
+         * this is due to some strange GDB behavior
+         * let's assume main has address 0x100
+         * b main   - sets breakpoint at address 0x00000100 (code)
+         * b *0x100 - sets breakpoint at address 0x00800100 (data)
+         */
+        if (unlikely(cpu_breakpoint_test(cs, OFFSET_CODE + cpc * 2, BP_ANY))
+                 || cpu_breakpoint_test(cs, OFFSET_DATA + cpc * 2, BP_ANY)) {
+            tcg_gen_movi_i32(cpu_pc, cpc);
+            gen_helper_debug(cpu_env);
+            ctx.bstate = BS_EXCP;
+            goto done_generating;
+        }
+
+        if (ctx.inst[0].translate) {
+            ctx.bstate = ctx.inst[0].translate(&ctx, ctx.inst[0].opcode);
+        }
+
+        if (num_insns >= max_insns) {
+            break; /* max translated instructions limit reached */
+        }
+        if (ctx.singlestep) {
+            break; /* single step */
+        }
+        if ((cpc & (TARGET_PAGE_SIZE - 1)) == 0) {
+            break; /* page boundary */
+        }
+
+        ctx.inst[0] = ctx.inst[1]; /* make next inst curr */
+    } while (ctx.bstate == BS_NONE && !tcg_op_buf_full());
+
+    if (tb->cflags & CF_LAST_IO) {
+        gen_io_end();
+    }
+
+    if (ctx.singlestep) {
+        if (ctx.bstate == BS_STOP || ctx.bstate == BS_NONE) {
+            tcg_gen_movi_tl(cpu_pc, npc);
+        }
+        gen_helper_debug(cpu_env);
+        tcg_gen_exit_tb(NULL, 0);
+    } else {
+        switch (ctx.bstate) {
+        case BS_STOP:
+        case BS_NONE:
+            gen_goto_tb(&ctx, 0, npc);
+            break;
+        case BS_EXCP:
+        case BS_BRANCH:
+            tcg_gen_exit_tb(NULL, 0);
+            break;
+        default:
+            break;
+        }
+    }
+
+done_generating:
+    gen_tb_end(tb, num_insns);
+
+    tb->size = (npc - pc_start) * 2;
+    tb->icount = num_insns;
+}
+
+void restore_state_to_opc(CPUAVRState *env, TranslationBlock *tb,
+                            target_ulong *data)
+{
+    env->pc_w = data[0];
+}
+
+void avr_cpu_dump_state(CPUState *cs, FILE *f, int flags)
+{
+    AVRCPU *cpu = AVR_CPU(cs);
+    CPUAVRState *env = &cpu->env;
+    int i;
+
+    qemu_fprintf(f, "\n");
+    qemu_fprintf(f, "PC:    %06x\n", env->pc_w);
+    qemu_fprintf(f, "SP:      %04x\n", env->sp);
+    qemu_fprintf(f, "rampD:     %02x\n", env->rampD >> 16);
+    qemu_fprintf(f, "rampX:     %02x\n", env->rampX >> 16);
+    qemu_fprintf(f, "rampY:     %02x\n", env->rampY >> 16);
+    qemu_fprintf(f, "rampZ:     %02x\n", env->rampZ >> 16);
+    qemu_fprintf(f, "EIND:      %02x\n", env->eind);
+    qemu_fprintf(f, "X:       %02x%02x\n", env->r[27], env->r[26]);
+    qemu_fprintf(f, "Y:       %02x%02x\n", env->r[29], env->r[28]);
+    qemu_fprintf(f, "Z:       %02x%02x\n", env->r[31], env->r[30]);
+    qemu_fprintf(f, "SREG:    [ %c %c %c %c %c %c %c %c ]\n",
+                        env->sregI ? 'I' : '-',
+                        env->sregT ? 'T' : '-',
+                        env->sregH ? 'H' : '-',
+                        env->sregS ? 'S' : '-',
+                        env->sregV ? 'V' : '-',
+                        env->sregN ? '-' : 'N', /* Zf has negative logic */
+                        env->sregZ ? 'Z' : '-',
+                        env->sregC ? 'I' : '-');
+
+    qemu_fprintf(f, "\n");
+    for (i = 0; i < ARRAY_SIZE(env->r); i++) {
+        qemu_fprintf(f, "R[%02d]:  %02x   ", i, env->r[i]);
+
+        if ((i % 8) == 7) {
+            qemu_fprintf(f, "\n");
+        }
+    }
+    qemu_fprintf(f, "\n");
+}
-- 
2.21.0

^ permalink raw reply related	[flat|nested] 31+ messages in thread

* [Qemu-devel] [PATCH v1 5/8] target/avr: Add instruction translation
@ 2019-05-04  8:36   ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, mrolnik, A.M.King, E.J.C.Robbins

This includes:
- table of instruction bit patterns
- intermediate translation functions that extract parameters from opcodes
- TCG translations for each instruction

Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
---
 target/avr/translate-inst.h |  695 ++++++++
 target/avr/translate.c      | 3013 +++++++++++++++++++++++++++++++++++
 2 files changed, 3708 insertions(+)
 create mode 100644 target/avr/translate-inst.h
 create mode 100644 target/avr/translate.c

diff --git a/target/avr/translate-inst.h b/target/avr/translate-inst.h
new file mode 100644
index 0000000000..e27f403ba7
--- /dev/null
+++ b/target/avr/translate-inst.h
@@ -0,0 +1,695 @@
+/*
+ *  QEMU AVR CPU
+ *
+ *  Copyright (c) 2016 Michael Rolnik
+ *
+ *  This library is free software; you can redistribute it and/or
+ *  modify it under the terms of the GNU Lesser General Public
+ *  License as published by the Free Software Foundation; either
+ *  version 2.1 of the License, or (at your option) any later version.
+ *
+ *  This library is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ *  Lesser General Public License for more details.
+ *
+ *  You should have received a copy of the GNU Lesser General Public
+ *  License along with this library; if not, see
+ *  <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+/*
+ * Functions for extracting instruction parameters from raw opcodes.
+ */
+
+#ifndef AVR_TRANSLATE_INST_H_
+#define AVR_TRANSLATE_INST_H_
+
+static inline uint32_t MOVW_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 0, 4);
+}
+
+static inline uint32_t MOVW_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t MULS_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 0, 4);
+}
+
+static inline uint32_t MULS_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t MULSU_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t MULSU_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 3);
+}
+
+static inline uint32_t FMUL_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t FMUL_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 3);
+}
+
+static inline uint32_t FMULS_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t FMULS_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 3);
+}
+
+static inline uint32_t FMULSU_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t FMULSU_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 3);
+}
+
+static inline uint32_t CPC_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t CPC_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t SBC_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t SBC_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t ADD_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t ADD_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t AND_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t AND_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t EOR_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t EOR_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t OR_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t OR_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t MOV_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t MOV_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t CPSE_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t CPSE_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t CP_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t CP_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t SUB_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t SUB_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t ADC_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t ADC_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t CPI_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t CPI_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 8, 4) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t SBCI_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t SBCI_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 8, 4) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t ORI_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t ORI_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 8, 4) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t SUBI_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t SUBI_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 8, 4) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t ANDI_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t ANDI_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 8, 4) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t LDDZ_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LDDZ_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 13, 1) << 5) |
+            (extract32(opcode, 10, 2) << 3) |
+            (extract32(opcode, 0, 3));
+}
+
+static inline uint32_t LDDY_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LDDY_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 13, 1) << 5) |
+            (extract32(opcode, 10, 2) << 3) |
+            (extract32(opcode, 0, 3));
+}
+
+static inline uint32_t STDZ_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STDZ_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 13, 1) << 5) |
+            (extract32(opcode, 10, 2) << 3) |
+            (extract32(opcode, 0, 3));
+}
+
+static inline uint32_t STDY_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STDY_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 13, 1) << 5) |
+            (extract32(opcode, 10, 2) << 3) |
+            (extract32(opcode, 0, 3));
+}
+
+static inline uint32_t LDS_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 0, 16);
+}
+
+static inline uint32_t LDS_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 20, 5);
+}
+
+static inline uint32_t LDZ2_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LDZ3_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LPM2_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LPMX_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t ELPM2_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t ELPMX_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LDY2_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LDY3_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LDX1_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LDX2_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LDX3_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t POP_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STS_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 0, 16);
+}
+
+static inline uint32_t STS_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 20, 5);
+}
+
+static inline uint32_t STZ2_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STZ3_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t XCH_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LAS_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LAC_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LAT_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STY2_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STY3_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STX1_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STX2_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t STX3_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t PUSH_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t COM_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t NEG_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t SWAP_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t INC_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t ASR_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t LSR_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t ROR_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t BSET_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 4, 3);
+}
+
+static inline uint32_t BCLR_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 4, 3);
+}
+
+static inline uint32_t DEC_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t DES_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t JMP_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 20, 5) << 17) |
+            (extract32(opcode, 0, 17));
+}
+
+static inline uint32_t CALL_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 20, 5) << 17) |
+            (extract32(opcode, 0, 17));
+}
+
+static inline uint32_t ADIW_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 2);
+}
+
+static inline uint32_t ADIW_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 6, 2) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t SBIW_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 2);
+}
+
+static inline uint32_t SBIW_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 6, 2) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t CBI_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t CBI_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 3, 5);
+}
+
+static inline uint32_t SBIC_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t SBIC_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 3, 5);
+}
+
+static inline uint32_t SBI_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t SBI_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 3, 5);
+}
+
+static inline uint32_t SBIS_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t SBIS_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 3, 5);
+}
+
+static inline uint32_t MUL_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t MUL_Rr(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 1) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t IN_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t IN_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 2) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t OUT_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t OUT_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 9, 2) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t RJMP_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 0, 12);
+}
+
+static inline uint32_t LDI_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 4);
+}
+
+static inline uint32_t LDI_Imm(uint32_t opcode)
+{
+    return (extract32(opcode, 8, 4) << 4) |
+            (extract32(opcode, 0, 4));
+}
+
+static inline uint32_t RCALL_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 0, 12);
+}
+
+static inline uint32_t BRBS_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t BRBS_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 3, 7);
+}
+
+static inline uint32_t BRBC_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t BRBC_Imm(uint32_t opcode)
+{
+    return extract32(opcode, 3, 7);
+}
+
+static inline uint32_t BLD_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t BLD_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t BST_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t BST_Rd(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t SBRC_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t SBRC_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+static inline uint32_t SBRS_Bit(uint32_t opcode)
+{
+    return extract32(opcode, 0, 3);
+}
+
+static inline uint32_t SBRS_Rr(uint32_t opcode)
+{
+    return extract32(opcode, 4, 5);
+}
+
+#endif
diff --git a/target/avr/translate.c b/target/avr/translate.c
new file mode 100644
index 0000000000..3be3e258f9
--- /dev/null
+++ b/target/avr/translate.c
@@ -0,0 +1,3013 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/qemu-print.h"
+#include "tcg/tcg.h"
+#include "cpu.h"
+#include "decode.h"
+#include "exec/exec-all.h"
+#include "disas/disas.h"
+#include "tcg-op.h"
+#include "exec/cpu_ldst.h"
+#include "exec/helper-proto.h"
+#include "exec/helper-gen.h"
+#include "exec/log.h"
+#include "exec/gdbstub.h"
+
+static TCGv cpu_pc;
+
+static TCGv cpu_Cf;
+static TCGv cpu_Zf;
+static TCGv cpu_Nf;
+static TCGv cpu_Vf;
+static TCGv cpu_Sf;
+static TCGv cpu_Hf;
+static TCGv cpu_Tf;
+static TCGv cpu_If;
+
+static TCGv cpu_rampD;
+static TCGv cpu_rampX;
+static TCGv cpu_rampY;
+static TCGv cpu_rampZ;
+
+static TCGv cpu_r[32];
+static TCGv cpu_eind;
+static TCGv cpu_sp;
+
+#define REG(x) (cpu_r[x])
+
+enum {
+    BS_NONE = 0, /* Nothing special (none of the below) */
+    BS_STOP = 1, /* We want to stop translation for any reason */
+    BS_BRANCH = 2, /* A branch condition is reached */
+    BS_EXCP = 3, /* An exception condition is reached */
+};
+
+typedef struct DisasContext DisasContext;
+typedef struct InstInfo InstInfo;
+
+struct InstInfo {
+    target_long cpc;
+    target_long npc;
+    uint32_t opcode;
+    TranslateFn translate;
+    unsigned length;
+};
+
+/* This is the state at translation time. */
+struct DisasContext {
+    struct TranslationBlock *tb;
+    CPUAVRState *env;
+
+    InstInfo inst[2];/* two consecutive instructions */
+
+    /* Routine used to access memory */
+    int memidx;
+    int bstate;
+    int singlestep;
+};
+
+static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest)
+{
+    TranslationBlock *tb = ctx->tb;
+
+    if (ctx->singlestep == 0) {
+        tcg_gen_goto_tb(n);
+        tcg_gen_movi_i32(cpu_pc, dest);
+        tcg_gen_exit_tb(tb, n);
+    } else {
+        tcg_gen_movi_i32(cpu_pc, dest);
+        gen_helper_debug(cpu_env);
+        tcg_gen_exit_tb(NULL, 0);
+    }
+}
+
+#include "exec/gen-icount.h"
+#include "translate-inst.h"
+
+static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+    TCGv t3 = tcg_temp_new_i32();
+
+    tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */
+    tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */
+    tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */
+    tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */
+    tcg_gen_or_tl(t1, t1, t3);
+
+    tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */
+    tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */
+    tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
+
+    tcg_temp_free_i32(t3);
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+
+        /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R = (Rd ^ R) & ~(Rd ^ Rr) */
+    tcg_gen_xor_tl(t1, Rd, R);
+    tcg_gen_xor_tl(t2, Rd, Rr);
+    tcg_gen_andc_tl(t1, t1, t2);
+
+    tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
+
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+    TCGv t3 = tcg_temp_new_i32();
+
+    /* Cf & Hf */
+    tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */
+    tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */
+    tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */
+    tcg_gen_and_tl(t3, t3, R);
+    tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */
+    tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */
+    tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */
+    tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
+
+    tcg_temp_free_i32(t3);
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr)
+{
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv t2 = tcg_temp_new_i32();
+
+    /* Vf */
+        /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R = (Rd ^ R) & (Rd ^ R) */
+    tcg_gen_xor_tl(t1, Rd, R);
+    tcg_gen_xor_tl(t2, Rd, Rr);
+    tcg_gen_and_tl(t1, t1, t2);
+    tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
+
+    tcg_temp_free_i32(t2);
+    tcg_temp_free_i32(t1);
+}
+
+static void gen_rshift_ZNVSf(TCGv R)
+{
+    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+    tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+static void gen_NSf(TCGv R)
+{
+    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+static void gen_ZNSf(TCGv R)
+{
+    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+static void gen_push_ret(DisasContext *ctx, int ret)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
+
+        TCGv t0 = tcg_const_i32((ret & 0x0000ff));
+
+        tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB);
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+        tcg_temp_free_i32(t0);
+    } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
+
+        TCGv t0 = tcg_const_i32((ret & 0x00ffff));
+
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+        tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+        tcg_temp_free_i32(t0);
+
+    } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
+
+        TCGv lo = tcg_const_i32((ret & 0x0000ff));
+        TCGv hi = tcg_const_i32((ret & 0xffff00) >> 8);
+
+        tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 2);
+        tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+        tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+        tcg_temp_free_i32(lo);
+        tcg_temp_free_i32(hi);
+    }
+}
+
+static void gen_pop_ret(DisasContext *ctx, TCGv ret)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
+
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+        tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB);
+
+    } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
+
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+        tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+
+    } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
+
+        TCGv lo = tcg_temp_new_i32();
+        TCGv hi = tcg_temp_new_i32();
+
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+        tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+
+        tcg_gen_addi_tl(cpu_sp, cpu_sp, 2);
+        tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
+
+        tcg_gen_deposit_tl(ret, lo, hi, 8, 16);
+
+        tcg_temp_free_i32(lo);
+        tcg_temp_free_i32(hi);
+    }
+}
+
+static void gen_jmp_ez(void)
+{
+    tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
+    tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind);
+    tcg_gen_exit_tb(NULL, 0);
+}
+
+static void gen_jmp_z(void)
+{
+    tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
+    tcg_gen_exit_tb(NULL, 0);
+}
+
+/*
+ *  in the gen_set_addr & gen_get_addr functions
+ *  H assumed to be in 0x00ff0000 format
+ *  M assumed to be in 0x000000ff format
+ *  L assumed to be in 0x000000ff format
+ */
+static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L)
+{
+
+    tcg_gen_andi_tl(L, addr, 0x000000ff);
+
+    tcg_gen_andi_tl(M, addr, 0x0000ff00);
+    tcg_gen_shri_tl(M, M, 8);
+
+    tcg_gen_andi_tl(H, addr, 0x00ff0000);
+}
+
+static void gen_set_xaddr(TCGv addr)
+{
+    gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]);
+}
+
+static void gen_set_yaddr(TCGv addr)
+{
+    gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]);
+}
+
+static void gen_set_zaddr(TCGv addr)
+{
+    gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]);
+}
+
+static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L)
+{
+    TCGv addr = tcg_temp_new_i32();
+
+    tcg_gen_deposit_tl(addr, M, H, 8, 8);
+    tcg_gen_deposit_tl(addr, L, addr, 8, 16);
+
+    return addr;
+}
+
+static TCGv gen_get_xaddr(void)
+{
+    return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]);
+}
+
+static TCGv gen_get_yaddr(void)
+{
+    return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]);
+}
+
+static TCGv gen_get_zaddr(void)
+{
+    return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]);
+}
+
+/*
+ *  Adds two registers and the contents of the C Flag and places the result in
+ *  the destination register Rd.
+ */
+static int translate_ADC(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[ADC_Rd(opcode)];
+    TCGv Rr = cpu_r[ADC_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */
+    tcg_gen_add_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_add_CHf(R, Rd, Rr);
+    gen_add_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Adds two registers without the C Flag and places the result in the
+ *  destination register Rd.
+ */
+static int translate_ADD(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[ADD_Rd(opcode)];
+    TCGv Rr = cpu_r[ADD_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_add_CHf(R, Rd, Rr);
+    gen_add_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Adds an immediate value (0 - 63) to a register pair and places the result
+ *  in the register pair. This instruction operates on the upper four register
+ *  pairs, and is well suited for operations on the pointer registers.  This
+ *  instruction is not available in all devices. Refer to the device specific
+ *  instruction set summary.
+ */
+static int translate_ADIW(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_ADIW_SBIW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv RdL = cpu_r[24 + 2 * ADIW_Rd(opcode)];
+    TCGv RdH = cpu_r[25 + 2 * ADIW_Rd(opcode)];
+    int Imm = (ADIW_Imm(opcode));
+    TCGv R = tcg_temp_new_i32();
+    TCGv Rd = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
+    tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */
+    tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+
+    /* Cf */
+    tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
+    tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15);
+
+    /* Vf */
+    tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */
+    tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15);
+
+    /* Zf */
+    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+
+    /* Nf */
+    tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
+
+    /* Sf */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */
+
+    /* R */
+    tcg_gen_andi_tl(RdL, R, 0xff);
+    tcg_gen_shri_tl(RdH, R, 8);
+
+    tcg_temp_free_i32(Rd);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Performs the logical AND between the contents of register Rd and register
+ *  Rr and places the result in the destination register Rd.
+ */
+static int translate_AND(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[AND_Rd(opcode)];
+    TCGv Rr = cpu_r[AND_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */
+
+    /* Vf */
+    tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+
+    /* Zf */
+    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Performs the logical AND between the contents of register Rd and a constant
+ *  and places the result in the destination register Rd.
+ */
+static int translate_ANDI(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + ANDI_Rd(opcode)];
+    int Imm = (ANDI_Imm(opcode));
+
+    /* op */
+    tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */
+
+    tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+    gen_ZNSf(Rd);
+
+    return BS_NONE;
+}
+
+/*
+ *  Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0
+ *  is loaded into the C Flag of the SREG. This operation effectively divides a
+ *  signed value by two without changing its sign. The Carry Flag can be used to
+ *  round the result.
+ */
+static int translate_ASR(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[ASR_Rd(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+
+    /* Cf */
+    tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
+
+    /* op */
+    tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
+    tcg_gen_shri_tl(Rd, Rd, 1);
+    tcg_gen_or_tl(Rd, Rd, t0);
+
+    gen_rshift_ZNVSf(Rd);
+
+    tcg_temp_free_i32(t0);
+
+    return BS_NONE;
+}
+
+/*
+ *  Clears a single Flag in SREG.
+ */
+static int translate_BCLR(DisasContext *ctx, uint32_t opcode)
+{
+    switch (BCLR_Bit(opcode)) {
+    case 0x00:
+        tcg_gen_movi_tl(cpu_Cf, 0x00);
+        break;
+    case 0x01:
+        tcg_gen_movi_tl(cpu_Zf, 0x01);
+        break;
+    case 0x02:
+        tcg_gen_movi_tl(cpu_Nf, 0x00);
+        break;
+    case 0x03:
+        tcg_gen_movi_tl(cpu_Vf, 0x00);
+        break;
+    case 0x04:
+        tcg_gen_movi_tl(cpu_Sf, 0x00);
+        break;
+    case 0x05:
+        tcg_gen_movi_tl(cpu_Hf, 0x00);
+        break;
+    case 0x06:
+        tcg_gen_movi_tl(cpu_Tf, 0x00);
+        break;
+    case 0x07:
+        tcg_gen_movi_tl(cpu_If, 0x00);
+        break;
+    }
+
+    return BS_NONE;
+}
+
+/*
+ *  Copies the T Flag in the SREG (Status Register) to bit b in register Rd.
+ */
+static int translate_BLD(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[BLD_Rd(opcode)];
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_andi_tl(Rd, Rd, ~(1u << BLD_Bit(opcode))); /* clear bit */
+    tcg_gen_shli_tl(t1, cpu_Tf, BLD_Bit(opcode)); /* create mask */
+    tcg_gen_or_tl(Rd, Rd, t1);
+
+    tcg_temp_free_i32(t1);
+
+    return BS_NONE;
+}
+
+/*
+ *  Conditional relative branch. Tests a single bit in SREG and branches
+ *  relatively to PC if the bit is cleared. This instruction branches relatively
+ *  to PC in either direction (PC - 63 < = destination <= PC + 64). The
+ *  parameter k is the offset from PC and is represented in two's complement
+ *  form.
+ */
+static int translate_BRBC(DisasContext *ctx, uint32_t opcode)
+{
+    TCGLabel *taken = gen_new_label();
+    int Imm = sextract32(BRBC_Imm(opcode), 0, 7);
+
+    switch (BRBC_Bit(opcode)) {
+    case 0x00:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Cf, 0, taken);
+        break;
+    case 0x01:
+        tcg_gen_brcondi_i32(TCG_COND_NE, cpu_Zf, 0, taken);
+        break;
+    case 0x02:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Nf, 0, taken);
+        break;
+    case 0x03:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Vf, 0, taken);
+        break;
+    case 0x04:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Sf, 0, taken);
+        break;
+    case 0x05:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Hf, 0, taken);
+        break;
+    case 0x06:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Tf, 0, taken);
+        break;
+    case 0x07:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_If, 0, taken);
+        break;
+    }
+
+    gen_goto_tb(ctx, 1, ctx->inst[0].npc);
+    gen_set_label(taken);
+    gen_goto_tb(ctx, 0, ctx->inst[0].npc + Imm);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Conditional relative branch. Tests a single bit in SREG and branches
+ *  relatively to PC if the bit is set. This instruction branches relatively to
+ *  PC in either direction (PC - 63 < = destination <= PC + 64). The parameter k
+ *  is the offset from PC and is represented in two's complement form.
+ */
+static int translate_BRBS(DisasContext *ctx, uint32_t opcode)
+{
+    TCGLabel *taken = gen_new_label();
+    int Imm = sextract32(BRBS_Imm(opcode), 0, 7);
+
+    switch (BRBS_Bit(opcode)) {
+    case 0x00:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Cf, 1, taken);
+        break;
+    case 0x01:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Zf, 0, taken);
+        break;
+    case 0x02:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Nf, 1, taken);
+        break;
+    case 0x03:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Vf, 1, taken);
+        break;
+    case 0x04:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Sf, 1, taken);
+        break;
+    case 0x05:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Hf, 1, taken);
+        break;
+    case 0x06:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Tf, 1, taken);
+        break;
+    case 0x07:
+        tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_If, 1, taken);
+        break;
+    }
+
+    gen_goto_tb(ctx, 1, ctx->inst[0].npc);
+    gen_set_label(taken);
+    gen_goto_tb(ctx, 0, ctx->inst[0].npc + Imm);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Sets a single Flag or bit in SREG.
+ */
+static int translate_BSET(DisasContext *ctx, uint32_t opcode)
+{
+    switch (BSET_Bit(opcode)) {
+    case 0x00:
+        tcg_gen_movi_tl(cpu_Cf, 0x01);
+        break;
+    case 0x01:
+        tcg_gen_movi_tl(cpu_Zf, 0x00);
+        break;
+    case 0x02:
+        tcg_gen_movi_tl(cpu_Nf, 0x01);
+        break;
+    case 0x03:
+        tcg_gen_movi_tl(cpu_Vf, 0x01);
+        break;
+    case 0x04:
+        tcg_gen_movi_tl(cpu_Sf, 0x01);
+        break;
+    case 0x05:
+        tcg_gen_movi_tl(cpu_Hf, 0x01);
+        break;
+    case 0x06:
+        tcg_gen_movi_tl(cpu_Tf, 0x01);
+        break;
+    case 0x07:
+        tcg_gen_movi_tl(cpu_If, 0x01);
+        break;
+    }
+
+    return BS_NONE;
+}
+
+/*
+ *  The BREAK instruction is used by the On-chip Debug system, and is
+ *  normally not used in the application software. When the BREAK instruction is
+ *  executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip
+ *  Debugger access to internal resources.  If any Lock bits are set, or either
+ *  the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK
+ *  instruction as a NOP and will not enter the Stopped mode.  This instruction
+ *  is not available in all devices. Refer to the device specific instruction
+ *  set summary.
+ */
+static int translate_BREAK(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_BREAK) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    if (gdb_is_active()) {
+        /* Program counter is set to *current* instruction to mimic AVaRICE. */
+        tcg_gen_movi_tl(cpu_pc, ctx->inst[0].cpc);
+        gen_helper_debug(cpu_env);
+    }
+
+    return BS_NONE;
+}
+
+/*
+ *  Stores bit b from Rd to the T Flag in SREG (Status Register).
+ */
+static int translate_BST(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[BST_Rd(opcode)];
+
+    tcg_gen_andi_tl(cpu_Tf, Rd, 1 << BST_Bit(opcode));
+    tcg_gen_shri_tl(cpu_Tf, cpu_Tf, BST_Bit(opcode));
+
+    return BS_NONE;
+}
+
+/*
+ *  Calls to a subroutine within the entire Program memory. The return
+ *  address (to the instruction after the CALL) will be stored onto the Stack.
+ *  (See also RCALL). The Stack Pointer uses a post-decrement scheme during
+ *  CALL.  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+static int translate_CALL(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_JMP_CALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    int Imm = CALL_Imm(opcode);
+    int ret = ctx->inst[0].npc;
+
+    gen_push_ret(ctx, ret);
+    gen_goto_tb(ctx, 0, Imm);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Clears a specified bit in an I/O Register. This instruction operates on
+ *  the lower 32 I/O Registers -- addresses 0-31.
+ */
+static int translate_CBI(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv data = tcg_temp_new_i32();
+    TCGv port = tcg_const_i32(CBI_Imm(opcode));
+
+    gen_helper_inb(data, cpu_env, port);
+    tcg_gen_andi_tl(data, data, ~(1 << CBI_Bit(opcode)));
+    gen_helper_outb(cpu_env, port, data);
+
+    tcg_temp_free_i32(data);
+    tcg_temp_free_i32(port);
+
+    return BS_NONE;
+}
+
+/*
+ *  Clears the specified bits in register Rd. Performs the logical AND
+ *  between the contents of register Rd and the complement of the constant mask
+ *  K. The result will be placed in register Rd.
+ */
+static int translate_COM(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[COM_Rd(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_xori_tl(Rd, Rd, 0xff);
+
+    tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */
+    tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
+    gen_ZNSf(Rd);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs a compare between two registers Rd and Rr.
+ *  None of the registers are changed. All conditional branches can be used
+ *  after this instruction.
+ */
+static int translate_CP(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[CP_Rd(opcode)];
+    TCGv Rr = cpu_r[CP_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs a compare between two registers Rd and Rr and
+ *  also takes into account the previous carry. None of the registers are
+ *  changed. All conditional branches can be used after this instruction.
+ */
+static int translate_CPC(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[CPC_Rd(opcode)];
+    TCGv Rr = cpu_r[CPC_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+    tcg_gen_sub_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_NSf(R);
+
+    /*
+     * Previous value remains unchanged when the result is zero;
+     * cleared otherwise.
+     */
+    tcg_gen_or_tl(cpu_Zf, cpu_Zf, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs a compare between register Rd and a constant.
+ *  The register is not changed. All conditional branches can be used after this
+ *  instruction.
+ */
+static int translate_CPI(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + CPI_Rd(opcode)];
+    int Imm = CPI_Imm(opcode);
+    TCGv Rr = tcg_const_i32(Imm);
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    tcg_temp_free_i32(R);
+    tcg_temp_free_i32(Rr);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs a compare between two registers Rd and Rr, and
+ *  skips the next instruction if Rd = Rr.
+ */
+static int translate_CPSE(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[CPSE_Rd(opcode)];
+    TCGv Rr = cpu_r[CPSE_Rr(opcode)];
+    TCGLabel *skip = gen_new_label();
+
+        /* PC if next inst is skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_brcond_i32(TCG_COND_EQ, Rd, Rr, skip);
+        /* PC if next inst is not skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Subtracts one -1- from the contents of register Rd and places the result
+ *  in the destination register Rd.  The C Flag in SREG is not affected by the
+ *  operation, thus allowing the DEC instruction to be used on a loop counter in
+ *  multiple-precision computations.  When operating on unsigned values, only
+ *  BREQ and BRNE branches can be expected to perform consistently.  When
+ *  operating on two's complement values, all signed branches are available.
+ */
+static int translate_DEC(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[DEC_Rd(opcode)];
+
+    tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */
+    tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */
+
+        /* cpu_Vf = Rd == 0x7f */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f);
+    gen_ZNSf(Rd);
+
+    return BS_NONE;
+}
+
+/*
+ *  The module is an instruction set extension to the AVR CPU, performing
+ *  DES iterations. The 64-bit data block (plaintext or ciphertext) is placed in
+ *  the CPU register file, registers R0-R7, where LSB of data is placed in LSB
+ *  of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including
+ *  parity bits) is placed in registers R8- R15, organized in the register file
+ *  with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES
+ *  instruction performs one round in the DES algorithm. Sixteen rounds must be
+ *  executed in increasing order to form the correct DES ciphertext or
+ *  plaintext. Intermediate results are stored in the register file (R0-R15)
+ *  after each DES instruction. The instruction's operand (K) determines which
+ *  round is executed, and the half carry flag (H) determines whether encryption
+ *  or decryption is performed.  The DES algorithm is described in
+ *  "Specifications for the Data Encryption Standard" (Federal Information
+ *  Processing Standards Publication 46). Intermediate results in this
+ *  implementation differ from the standard because the initial permutation and
+ *  the inverse initial permutation are performed each iteration. This does not
+ *  affect the result in the final ciphertext or plaintext, but reduces
+ *  execution time.
+ */
+static int translate_DES(DisasContext *ctx, uint32_t opcode)
+{
+    /* TODO */
+    if (avr_feature(ctx->env, AVR_FEATURE_DES) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    return BS_NONE;
+}
+
+/*
+ *  Indirect call of a subroutine pointed to by the Z (16 bits) Pointer
+ *  Register in the Register File and the EIND Register in the I/O space. This
+ *  instruction allows for indirect calls to the entire 4M (words) Program
+ *  memory space. See also ICALL. The Stack Pointer uses a post-decrement scheme
+ *  during EICALL.  This instruction is not available in all devices. Refer to
+ *  the device specific instruction set summary.
+ */
+static int translate_EICALL(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_EIJMP_EICALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    int ret = ctx->inst[0].npc;
+
+    gen_push_ret(ctx, ret);
+
+    gen_jmp_ez();
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Indirect jump to the address pointed to by the Z (16 bits) Pointer
+ *  Register in the Register File and the EIND Register in the I/O space. This
+ *  instruction allows for indirect jumps to the entire 4M (words) Program
+ *  memory space. See also IJMP.  This instruction is not available in all
+ *  devices. Refer to the device specific instruction set summary.
+ */
+static int translate_EIJMP(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_EIJMP_EICALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    gen_jmp_ez();
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Loads one byte pointed to by the Z-register and the RAMPZ Register in
+ *  the I/O space, and places this byte in the destination register Rd. This
+ *  instruction features a 100% space effective constant initialization or
+ *  constant data fetch. The Program memory is organized in 16-bit words while
+ *  the Z-pointer is a byte address. Thus, the least significant bit of the
+ *  Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This
+ *  instruction can address the entire Program memory space. The Z-pointer
+ *  Register can either be left unchanged by the operation, or it can be
+ *  incremented. The incrementation applies to the entire 24-bit concatenation
+ *  of the RAMPZ and Z-pointer Registers.  Devices with Self-Programming
+ *  capability can use the ELPM instruction to read the Fuse and Lock bit value.
+ *  Refer to the device documentation for a detailed description.  This
+ *  instruction is not available in all devices. Refer to the device specific
+ *  instruction set summary.
+ */
+static int translate_ELPM1(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_ELPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[0];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_ELPM2(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_ELPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[ELPM2_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_ELPMX(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_ELPMX) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[ELPMX_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Performs the logical EOR between the contents of register Rd and
+ *  register Rr and places the result in the destination register Rd.
+ */
+static int translate_EOR(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[EOR_Rd(opcode)];
+    TCGv Rr = cpu_r[EOR_Rr(opcode)];
+
+    tcg_gen_xor_tl(Rd, Rd, Rr);
+
+    tcg_gen_movi_tl(cpu_Vf, 0);
+    gen_ZNSf(Rd);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit unsigned
+ *  multiplication and shifts the result one bit left.
+ */
+static int translate_FMUL(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + FMUL_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + FMUL_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd *Rr */
+    tcg_gen_shli_tl(R, R, 1);
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+    tcg_gen_andi_tl(R1, R1, 0xff);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
+ *  and shifts the result one bit left.
+ */
+static int translate_FMULS(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + FMULS_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + FMULS_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+    tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
+    tcg_gen_mul_tl(R, t0, t1); /* R = Rd *Rr */
+    tcg_gen_shli_tl(R, R, 1);
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+    tcg_gen_andi_tl(R1, R1, 0xff);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
+ *  and shifts the result one bit left.
+ */
+static int translate_FMULSU(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + FMULSU_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + FMULSU_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+    tcg_gen_mul_tl(R, t0, Rr); /* R = Rd *Rr */
+    tcg_gen_shli_tl(R, R, 1);
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+    tcg_gen_andi_tl(R1, R1, 0xff);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+    tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Calls to a subroutine within the entire 4M (words) Program memory. The
+ *  return address (to the instruction after the CALL) will be stored onto the
+ *  Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme during
+ *  CALL.  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+static int translate_ICALL(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_IJMP_ICALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    int ret = ctx->inst[0].npc;
+
+    gen_push_ret(ctx, ret);
+    gen_jmp_z();
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Indirect jump to the address pointed to by the Z (16 bits) Pointer
+ *  Register in the Register File. The Z-pointer Register is 16 bits wide and
+ *  allows jump within the lowest 64K words (128KB) section of Program memory.
+ *  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+static int translate_IJMP(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_IJMP_ICALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    gen_jmp_z();
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Loads data from the I/O Space (Ports, Timers, Configuration Registers,
+ *  etc.) into register Rd in the Register File.
+ */
+static int translate_IN(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[IN_Rd(opcode)];
+    int Imm = IN_Imm(opcode);
+    TCGv port = tcg_const_i32(Imm);
+
+    gen_helper_inb(Rd, cpu_env, port);
+
+    tcg_temp_free_i32(port);
+
+    return BS_NONE;
+}
+
+/*
+ *  Adds one -1- to the contents of register Rd and places the result in the
+ *  destination register Rd.  The C Flag in SREG is not affected by the
+ *  operation, thus allowing the INC instruction to be used on a loop counter in
+ *  multiple-precision computations.  When operating on unsigned numbers, only
+ *  BREQ and BRNE branches can be expected to perform consistently. When
+ *  operating on two's complement values, all signed branches are available.
+ */
+static int translate_INC(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[INC_Rd(opcode)];
+
+    tcg_gen_addi_tl(Rd, Rd, 1);
+    tcg_gen_andi_tl(Rd, Rd, 0xff);
+
+        /* cpu_Vf = Rd == 0x80 */
+    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80);
+    gen_ZNSf(Rd);
+    return BS_NONE;
+}
+
+/*
+ *  Jump to an address within the entire 4M (words) Program memory. See also
+ *  RJMP.  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.0
+ */
+static int translate_JMP(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_JMP_CALL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    gen_goto_tb(ctx, 0, JMP_Imm(opcode));
+    return BS_BRANCH;
+}
+
+/*
+ *  Load one byte indirect from data space to register and stores an clear
+ *  the bits in data space specified by the register. The instruction can only
+ *  be used towards internal SRAM.  The data location is pointed to by the Z (16
+ *  bits) Pointer Register in the Register File. Memory access is limited to the
+ *  current data segment of 64KB. To access another data segment in devices with
+ *  more than 64KB data space, the RAMPZ in register in the I/O area has to be
+ *  changed.  The Z-pointer Register is left unchanged by the operation. This
+ *  instruction is especially suited for clearing status bits stored in SRAM.
+ */
+static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr)
+{
+    if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
+        gen_helper_fullwr(cpu_env, data, addr);
+    } else {
+        tcg_gen_qemu_st8(data, addr, MMU_DATA_IDX); /* mem[addr] = data */
+    }
+}
+
+static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr)
+{
+    if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
+        gen_helper_fullrd(data, cpu_env, addr);
+    } else {
+        tcg_gen_qemu_ld8u(data, addr, MMU_DATA_IDX); /* data = mem[addr] */
+    }
+}
+
+static int translate_LAC(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rr = cpu_r[LAC_Rr(opcode)];
+    TCGv addr = gen_get_zaddr();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+        /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */
+    tcg_gen_andc_tl(t1, t0, Rr);
+
+    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
+    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Load one byte indirect from data space to register and set bits in data
+ *  space specified by the register. The instruction can only be used towards
+ *  internal SRAM.  The data location is pointed to by the Z (16 bits) Pointer
+ *  Register in the Register File. Memory access is limited to the current data
+ *  segment of 64KB. To access another data segment in devices with more than
+ *  64KB data space, the RAMPZ in register in the I/O area has to be changed.
+ *  The Z-pointer Register is left unchanged by the operation. This instruction
+ *  is especially suited for setting status bits stored in SRAM.
+ */
+static int translate_LAS(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rr = cpu_r[LAS_Rr(opcode)];
+    TCGv addr = gen_get_zaddr();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+    tcg_gen_or_tl(t1, t0, Rr);
+
+    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
+    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Load one byte indirect from data space to register and toggles bits in
+ *  the data space specified by the register.  The instruction can only be used
+ *  towards SRAM.  The data location is pointed to by the Z (16 bits) Pointer
+ *  Register in the Register File. Memory access is limited to the current data
+ *  segment of 64KB. To access another data segment in devices with more than
+ *  64KB data space, the RAMPZ in register in the I/O area has to be changed.
+ *  The Z-pointer Register is left unchanged by the operation. This instruction
+ *  is especially suited for changing status bits stored in SRAM.
+ */
+static int translate_LAT(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rr = cpu_r[LAT_Rr(opcode)];
+    TCGv addr = gen_get_zaddr();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+    tcg_gen_xor_tl(t1, t0, Rr);
+
+    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
+    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Loads one byte indirect from the data space to a register. For parts
+ *  with SRAM, the data space consists of the Register File, I/O memory and
+ *  internal SRAM (and external SRAM if applicable). For parts without SRAM, the
+ *  data space consists of the Register File only. In some parts the Flash
+ *  Memory has been mapped to the data space and can be read using this command.
+ *  The EEPROM has a separate address space.  The data location is pointed to by
+ *  the X (16 bits) Pointer Register in the Register File. Memory access is
+ *  limited to the current data segment of 64KB. To access another data segment
+ *  in devices with more than 64KB data space, the RAMPX in register in the I/O
+ *  area has to be changed.  The X-pointer Register can either be left unchanged
+ *  by the operation, or it can be post-incremented or predecremented.  These
+ *  features are especially suited for accessing arrays, tables, and Stack
+ *  Pointer usage of the X-pointer Register. Note that only the low byte of the
+ *  X-pointer is updated in devices with no more than 256 bytes data space. For
+ *  such devices, the high byte of the pointer is not used by this instruction
+ *  and can be used for other purposes. The RAMPX Register in the I/O area is
+ *  updated in parts with more than 64KB data space or more than 64KB Program
+ *  memory, and the increment/decrement is added to the entire 24-bit address on
+ *  such devices.  Not all variants of this instruction is available in all
+ *  devices. Refer to the device specific instruction set summary.  In the
+ *  Reduced Core tinyAVR the LD instruction can be used to achieve the same
+ *  operation as LPM since the program memory is mapped to the data memory
+ *  space.
+ */
+static int translate_LDX1(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDX1_Rd(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_load(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_LDX2(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDX2_Rd(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_load(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_LDX3(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDX3_Rd(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_load(ctx, Rd, addr);
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Loads one byte indirect with or without displacement from the data space
+ *  to a register. For parts with SRAM, the data space consists of the Register
+ *  File, I/O memory and internal SRAM (and external SRAM if applicable). For
+ *  parts without SRAM, the data space consists of the Register File only. In
+ *  some parts the Flash Memory has been mapped to the data space and can be
+ *  read using this command. The EEPROM has a separate address space.  The data
+ *  location is pointed to by the Y (16 bits) Pointer Register in the Register
+ *  File. Memory access is limited to the current data segment of 64KB. To
+ *  access another data segment in devices with more than 64KB data space, the
+ *  RAMPY in register in the I/O area has to be changed.  The Y-pointer Register
+ *  can either be left unchanged by the operation, or it can be post-incremented
+ *  or predecremented.  These features are especially suited for accessing
+ *  arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that
+ *  only the low byte of the Y-pointer is updated in devices with no more than
+ *  256 bytes data space. For such devices, the high byte of the pointer is not
+ *  used by this instruction and can be used for other purposes. The RAMPY
+ *  Register in the I/O area is updated in parts with more than 64KB data space
+ *  or more than 64KB Program memory, and the increment/decrement/displacement
+ *  is added to the entire 24-bit address on such devices.  Not all variants of
+ *  this instruction is available in all devices. Refer to the device specific
+ *  instruction set summary.  In the Reduced Core tinyAVR the LD instruction can
+ *  be used to achieve the same operation as LPM since the program memory is
+ *  mapped to the data memory space.
+ */
+static int translate_LDY2(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDY2_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    gen_data_load(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_LDY3(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDY3_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_load(ctx, Rd, addr);
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_LDDY(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDDY_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_addi_tl(addr, addr, LDDY_Imm(opcode)); /* addr = addr + q */
+    gen_data_load(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Loads one byte indirect with or without displacement from the data space
+ *  to a register. For parts with SRAM, the data space consists of the Register
+ *  File, I/O memory and internal SRAM (and external SRAM if applicable). For
+ *  parts without SRAM, the data space consists of the Register File only. In
+ *  some parts the Flash Memory has been mapped to the data space and can be
+ *  read using this command. The EEPROM has a separate address space.  The data
+ *  location is pointed to by the Z (16 bits) Pointer Register in the Register
+ *  File. Memory access is limited to the current data segment of 64KB. To
+ *  access another data segment in devices with more than 64KB data space, the
+ *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer Register
+ *  can either be left unchanged by the operation, or it can be post-incremented
+ *  or predecremented.  These features are especially suited for Stack Pointer
+ *  usage of the Z-pointer Register, however because the Z-pointer Register can
+ *  be used for indirect subroutine calls, indirect jumps and table lookup, it
+ *  is often more convenient to use the X or Y-pointer as a dedicated Stack
+ *  Pointer. Note that only the low byte of the Z-pointer is updated in devices
+ *  with no more than 256 bytes data space. For such devices, the high byte of
+ *  the pointer is not used by this instruction and can be used for other
+ *  purposes. The RAMPZ Register in the I/O area is updated in parts with more
+ *  than 64KB data space or more than 64KB Program memory, and the
+ *  increment/decrement/displacement is added to the entire 24-bit address on
+ *  such devices.  Not all variants of this instruction is available in all
+ *  devices. Refer to the device specific instruction set summary.  In the
+ *  Reduced Core tinyAVR the LD instruction can be used to achieve the same
+ *  operation as LPM since the program memory is mapped to the data memory
+ *  space.  For using the Z-pointer for table lookup in Program memory see the
+ *  LPM and ELPM instructions.
+ */
+static int translate_LDZ2(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDZ2_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    gen_data_load(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_LDZ3(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDZ3_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_load(ctx, Rd, addr);
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_LDDZ(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDDZ_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_addi_tl(addr, addr, LDDZ_Imm(opcode));
+                                                    /* addr = addr + q */
+    gen_data_load(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ * Loads an 8 bit constant directly to register 16 to 31.
+ */
+static int translate_LDI(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + LDI_Rd(opcode)];
+    int imm = LDI_Imm(opcode);
+
+    tcg_gen_movi_tl(Rd, imm);
+
+    return BS_NONE;
+}
+
+/*
+ *  Loads one byte from the data space to a register. For parts with SRAM,
+ *  the data space consists of the Register File, I/O memory and internal SRAM
+ *  (and external SRAM if applicable). For parts without SRAM, the data space
+ *  consists of the register file only. The EEPROM has a separate address space.
+ *  A 16-bit address must be supplied. Memory access is limited to the current
+ *  data segment of 64KB. The LDS instruction uses the RAMPD Register to access
+ *  memory above 64KB. To access another data segment in devices with more than
+ *  64KB data space, the RAMPD in register in the I/O area has to be changed.
+ *  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+static int translate_LDS(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LDS_Rd(opcode)];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_rampD;
+
+    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
+    tcg_gen_shli_tl(addr, addr, 16);
+    tcg_gen_ori_tl(addr, addr, LDS_Imm(opcode));
+
+    gen_data_load(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Loads one byte pointed to by the Z-register into the destination
+ *  register Rd. This instruction features a 100% space effective constant
+ *  initialization or constant data fetch. The Program memory is organized in
+ *  16-bit words while the Z-pointer is a byte address. Thus, the least
+ *  significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high
+ *  byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of
+ *  Program memory. The Zpointer Register can either be left unchanged by the
+ *  operation, or it can be incremented. The incrementation does not apply to
+ *  the RAMPZ Register.  Devices with Self-Programming capability can use the
+ *  LPM instruction to read the Fuse and Lock bit values.  Refer to the device
+ *  documentation for a detailed description.  The LPM instruction is not
+ *  available in all devices. Refer to the device specific instruction set
+ *  summary
+ */
+static int translate_LPM1(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_LPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[0];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_r[31];
+    TCGv L = cpu_r[30];
+
+    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+    tcg_gen_or_tl(addr, addr, L);
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_LPM2(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_LPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[LPM2_Rd(opcode)];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_r[31];
+    TCGv L = cpu_r[30];
+
+    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+    tcg_gen_or_tl(addr, addr, L);
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_LPMX(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_LPMX) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[LPMX_Rd(opcode)];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_r[31];
+    TCGv L = cpu_r[30];
+
+    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+    tcg_gen_or_tl(addr, addr, L);
+
+    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    tcg_gen_andi_tl(L, addr, 0xff);
+
+    tcg_gen_shri_tl(addr, addr, 8);
+    tcg_gen_andi_tl(H, addr, 0xff);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is
+ *  loaded into the C Flag of the SREG. This operation effectively divides an
+ *  unsigned value by two. The C Flag can be used to round the result.
+ */
+static int translate_LSR(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[LSR_Rd(opcode)];
+
+    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
+
+    tcg_gen_shri_tl(Rd, Rd, 1);
+
+    tcg_gen_mov_tl(cpu_Zf, Rd);
+    tcg_gen_movi_tl(cpu_Nf, 0);
+    tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
+    tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction makes a copy of one register into another. The source
+ *  register Rr is left unchanged, while the destination register Rd is loaded
+ *  with a copy of Rr.
+ */
+static int translate_MOV(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[MOV_Rd(opcode)];
+    TCGv Rr = cpu_r[MOV_Rr(opcode)];
+
+    tcg_gen_mov_tl(Rd, Rr);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction makes a copy of one register pair into another register
+ *  pair. The source register pair Rr+1:Rr is left unchanged, while the
+ *  destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr.  This
+ *  instruction is not available in all devices. Refer to the device specific
+ *  instruction set summary.
+ */
+static int translate_MOVW(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_MOVW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv RdL = cpu_r[MOVW_Rd(opcode) * 2 + 0];
+    TCGv RdH = cpu_r[MOVW_Rd(opcode) * 2 + 1];
+    TCGv RrL = cpu_r[MOVW_Rr(opcode) * 2 + 0];
+    TCGv RrH = cpu_r[MOVW_Rr(opcode) * 2 + 1];
+
+    tcg_gen_mov_tl(RdH, RrH);
+    tcg_gen_mov_tl(RdL, RrL);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication.
+ */
+static int translate_MUL(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[MUL_Rd(opcode)];
+    TCGv Rr = cpu_r[MUL_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd *Rr */
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(16) */
+    tcg_gen_mov_tl(cpu_Zf, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication.
+ */
+static int translate_MULS(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + MULS_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + MULS_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+    tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
+    tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(16) */
+    tcg_gen_mov_tl(cpu_Zf, R);
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a
+ *  signed and an unsigned number.
+ */
+static int translate_MULSU(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv R0 = cpu_r[0];
+    TCGv R1 = cpu_r[1];
+    TCGv Rd = cpu_r[16 + MULSU_Rd(opcode)];
+    TCGv Rr = cpu_r[16 + MULSU_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+    TCGv t0 = tcg_temp_new_i32();
+
+    tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+    tcg_gen_mul_tl(R, t0, Rr); /* R = Rd *Rr */
+
+    tcg_gen_andi_tl(R0, R, 0xff);
+    tcg_gen_shri_tl(R1, R, 8);
+
+    tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+    tcg_gen_mov_tl(cpu_Zf, R);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Replaces the contents of register Rd with its two's complement; the
+ *  value $80 is left unchanged.
+ */
+static int translate_NEG(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[SUB_Rd(opcode)];
+    TCGv t0 = tcg_const_i32(0);
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, t0, Rd);
+    gen_sub_Vf(R, t0, Rd);
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction performs a single cycle No Operation.
+ */
+static int translate_NOP(DisasContext *ctx, uint32_t opcode)
+{
+
+    /* NOP */
+
+    return BS_NONE;
+}
+
+/*
+ *  Performs the logical OR between the contents of register Rd and register
+ *  Rr and places the result in the destination register Rd.
+ */
+static int translate_OR(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[OR_Rd(opcode)];
+    TCGv Rr = cpu_r[OR_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    tcg_gen_or_tl(R, Rd, Rr);
+
+    tcg_gen_movi_tl(cpu_Vf, 0);
+    gen_ZNSf(R);
+
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Performs the logical OR between the contents of register Rd and a
+ *  constant and places the result in the destination register Rd.
+ */
+static int translate_ORI(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + ORI_Rd(opcode)];
+    int Imm = (ORI_Imm(opcode));
+
+    tcg_gen_ori_tl(Rd, Rd, Imm); /* Rd = Rd | Imm */
+
+    tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+    gen_ZNSf(Rd);
+
+    return BS_NONE;
+}
+
+/*
+ *  Stores data from register Rr in the Register File to I/O Space (Ports,
+ *  Timers, Configuration Registers, etc.).
+ */
+static int translate_OUT(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[OUT_Rd(opcode)];
+    int Imm = OUT_Imm(opcode);
+    TCGv port = tcg_const_i32(Imm);
+
+    gen_helper_outb(cpu_env, port, Rd);
+
+    tcg_temp_free_i32(port);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction loads register Rd with a byte from the STACK. The Stack
+ *  Pointer is pre-incremented by 1 before the POP.  This instruction is not
+ *  available in all devices. Refer to the device specific instruction set
+ *  summary.
+ */
+static int translate_POP(DisasContext *ctx, uint32_t opcode)
+{
+    /*
+     * Using a temp to work around some strange behaviour:
+     * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+     * gen_data_load(ctx, Rd, cpu_sp);
+     * seems to cause the add to happen twice.
+     * This doesn't happen if either the add or the load is removed.
+     */
+    TCGv t1 = tcg_temp_new_i32();
+    TCGv Rd = cpu_r[POP_Rd(opcode)];
+
+    tcg_gen_addi_tl(t1, cpu_sp, 1);
+    gen_data_load(ctx, Rd, t1);
+    tcg_gen_mov_tl(cpu_sp, t1);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction stores the contents of register Rr on the STACK. The
+ *  Stack Pointer is post-decremented by 1 after the PUSH.  This instruction is
+ *  not available in all devices. Refer to the device specific instruction set
+ *  summary.
+ */
+static int translate_PUSH(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[PUSH_Rd(opcode)];
+
+    gen_data_store(ctx, Rd, cpu_sp);
+    tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+    return BS_NONE;
+}
+
+/*
+ *  Relative call to an address within PC - 2K + 1 and PC + 2K (words). The
+ *  return address (the instruction after the RCALL) is stored onto the Stack.
+ *  See also CALL. For AVR microcontrollers with Program memory not exceeding 4K
+ *  words (8KB) this instruction can address the entire memory from every
+ *  address location. The Stack Pointer uses a post-decrement scheme during
+ *  RCALL.
+ */
+static int translate_RCALL(DisasContext *ctx, uint32_t opcode)
+{
+    int ret = ctx->inst[0].npc;
+    int dst = ctx->inst[0].npc + sextract32(RCALL_Imm(opcode), 0, 12);
+
+    gen_push_ret(ctx, ret);
+    gen_goto_tb(ctx, 0, dst);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Returns from subroutine. The return address is loaded from the STACK.
+ *  The Stack Pointer uses a preincrement scheme during RET.
+ */
+static int translate_RET(DisasContext *ctx, uint32_t opcode)
+{
+    gen_pop_ret(ctx, cpu_pc);
+
+    tcg_gen_exit_tb(NULL, 0);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Returns from interrupt. The return address is loaded from the STACK and
+ *  the Global Interrupt Flag is set.  Note that the Status Register is not
+ *  automatically stored when entering an interrupt routine, and it is not
+ *  restored when returning from an interrupt routine. This must be handled by
+ *  the application program. The Stack Pointer uses a pre-increment scheme
+ *  during RETI.
+ */
+static int translate_RETI(DisasContext *ctx, uint32_t opcode)
+{
+    gen_pop_ret(ctx, cpu_pc);
+
+    tcg_gen_movi_tl(cpu_If, 1);
+
+    tcg_gen_exit_tb(NULL, 0);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Relative jump to an address within PC - 2K +1 and PC + 2K (words). For
+ *  AVR microcontrollers with Program memory not exceeding 4K words (8KB) this
+ *  instruction can address the entire memory from every address location. See
+ *  also JMP.
+ */
+static int translate_RJMP(DisasContext *ctx, uint32_t opcode)
+{
+    int dst = ctx->inst[0].npc + sextract32(RJMP_Imm(opcode), 0, 12);
+
+    gen_goto_tb(ctx, 0, dst);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Shifts all bits in Rd one place to the right. The C Flag is shifted into
+ *  bit 7 of Rd. Bit 0 is shifted into the C Flag.  This operation, combined
+ *  with ASR, effectively divides multi-byte signed values by two. Combined with
+ *  LSR it effectively divides multi-byte unsigned values by two. The Carry Flag
+ *  can be used to round the result.
+ */
+static int translate_ROR(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[ROR_Rd(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+
+    tcg_gen_shli_tl(t0, cpu_Cf, 7);
+    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
+    tcg_gen_shri_tl(Rd, Rd, 1);
+    tcg_gen_or_tl(Rd, Rd, t0);
+
+    gen_rshift_ZNVSf(Rd);
+
+    tcg_temp_free_i32(t0);
+
+    return BS_NONE;
+}
+
+/*
+ *  Subtracts two registers and subtracts with the C Flag and places the
+ *  result in the destination register Rd.
+ */
+static int translate_SBC(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[SBC_Rd(opcode)];
+    TCGv Rr = cpu_r[SBC_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+    tcg_gen_sub_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_NSf(R);
+
+    /*
+     * Previous value remains unchanged when the result is zero;
+     * cleared otherwise.
+     */
+    tcg_gen_or_tl(cpu_Zf, cpu_Zf, R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  SBCI -- Subtract Immediate with Carry
+ */
+static int translate_SBCI(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + SBCI_Rd(opcode)];
+    TCGv Rr = tcg_const_i32(SBCI_Imm(opcode));
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+    tcg_gen_sub_tl(R, R, cpu_Cf);
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_NSf(R);
+
+    /*
+     * Previous value remains unchanged when the result is zero;
+     * cleared otherwise.
+     */
+    tcg_gen_or_tl(cpu_Zf, cpu_Zf, R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+    tcg_temp_free_i32(Rr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Sets a specified bit in an I/O Register. This instruction operates on
+ *  the lower 32 I/O Registers -- addresses 0-31.
+ */
+static int translate_SBI(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv data = tcg_temp_new_i32();
+    TCGv port = tcg_const_i32(SBI_Imm(opcode));
+
+    gen_helper_inb(data, cpu_env, port);
+    tcg_gen_ori_tl(data, data, 1 << SBI_Bit(opcode));
+    gen_helper_outb(cpu_env, port, data);
+
+    tcg_temp_free_i32(port);
+    tcg_temp_free_i32(data);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction tests a single bit in an I/O Register and skips the
+ *  next instruction if the bit is cleared. This instruction operates on the
+ *  lower 32 I/O Registers -- addresses 0-31.
+ */
+static int translate_SBIC(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv data = tcg_temp_new_i32();
+    TCGv port = tcg_const_i32(SBIC_Imm(opcode));
+    TCGLabel *skip = gen_new_label();
+
+    gen_helper_inb(data, cpu_env, port);
+
+        /* PC if next inst is skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_andi_tl(data, data, 1 << SBIC_Bit(opcode));
+    tcg_gen_brcondi_i32(TCG_COND_EQ, data, 0, skip);
+        /* PC if next inst is not skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    tcg_temp_free_i32(port);
+    tcg_temp_free_i32(data);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  This instruction tests a single bit in an I/O Register and skips the
+ *  next instruction if the bit is set. This instruction operates on the lower
+ *  32 I/O Registers -- addresses 0-31.
+ */
+static int translate_SBIS(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv data = tcg_temp_new_i32();
+    TCGv port = tcg_const_i32(SBIS_Imm(opcode));
+    TCGLabel *skip = gen_new_label();
+
+    gen_helper_inb(data, cpu_env, port);
+
+        /* PC if next inst is skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_andi_tl(data, data, 1 << SBIS_Bit(opcode));
+    tcg_gen_brcondi_i32(TCG_COND_NE, data, 0, skip);
+        /* PC if next inst is not skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    tcg_temp_free_i32(port);
+    tcg_temp_free_i32(data);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  Subtracts an immediate value (0-63) from a register pair and places the
+ *  result in the register pair. This instruction operates on the upper four
+ *  register pairs, and is well suited for operations on the Pointer Registers.
+ *  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+static int translate_SBIW(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_ADIW_SBIW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv RdL = cpu_r[24 + 2 * SBIW_Rd(opcode)];
+    TCGv RdH = cpu_r[25 + 2 * SBIW_Rd(opcode)];
+    int Imm = (SBIW_Imm(opcode));
+    TCGv R = tcg_temp_new_i32();
+    TCGv Rd = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
+    tcg_gen_subi_tl(R, Rd, Imm); /* R = Rd - Imm */
+    tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+
+    /* Cf */
+    tcg_gen_andc_tl(cpu_Cf, R, Rd);
+    tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); /* Cf = R & ~Rd */
+
+    /* Vf */
+    tcg_gen_andc_tl(cpu_Vf, Rd, R);
+    tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); /* Vf = Rd & ~R */
+
+    /* Zf */
+    tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+
+    /* Nf */
+    tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
+
+    /* Sf */
+    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+
+    /* R */
+    tcg_gen_andi_tl(RdL, R, 0xff);
+    tcg_gen_shri_tl(RdH, R, 8);
+
+    tcg_temp_free_i32(Rd);
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction tests a single bit in a register and skips the next
+ *  instruction if the bit is cleared.
+ */
+static int translate_SBRC(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rr = cpu_r[SBRC_Rr(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGLabel *skip = gen_new_label();
+
+        /* PC if next inst is skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_andi_tl(t0, Rr, 1 << SBRC_Bit(opcode));
+    tcg_gen_brcondi_i32(TCG_COND_EQ, t0, 0, skip);
+        /* PC if next inst is not skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    tcg_temp_free_i32(t0);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  This instruction tests a single bit in a register and skips the next
+ *  instruction if the bit is set.
+ */
+static int translate_SBRS(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rr = cpu_r[SBRS_Rr(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGLabel *skip = gen_new_label();
+
+        /* PC if next inst is skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[1].npc);
+    tcg_gen_andi_tl(t0, Rr, 1 << SBRS_Bit(opcode));
+    tcg_gen_brcondi_i32(TCG_COND_NE, t0, 0, skip);
+        /* PC if next inst is not skipped */
+    tcg_gen_movi_tl(cpu_pc, ctx->inst[0].npc);
+    gen_set_label(skip);
+
+    tcg_temp_free_i32(t0);
+
+    return BS_BRANCH;
+}
+
+/*
+ *  This instruction sets the circuit in sleep mode defined by the MCU
+ *  Control Register.
+ */
+static int translate_SLEEP(DisasContext *ctx, uint32_t opcode)
+{
+    gen_helper_sleep(cpu_env);
+
+    return BS_EXCP;
+}
+
+/*
+ *  SPM can be used to erase a page in the Program memory, to write a page
+ *  in the Program memory (that is already erased), and to set Boot Loader Lock
+ *  bits. In some devices, the Program memory can be written one word at a time,
+ *  in other devices an entire page can be programmed simultaneously after first
+ *  filling a temporary page buffer. In all cases, the Program memory must be
+ *  erased one page at a time. When erasing the Program memory, the RAMPZ and
+ *  Z-register are used as page address. When writing the Program memory, the
+ *  RAMPZ and Z-register are used as page or word address, and the R1:R0
+ *  register pair is used as data(1). When setting the Boot Loader Lock bits,
+ *  the R1:R0 register pair is used as data. Refer to the device documentation
+ *  for detailed description of SPM usage. This instruction can address the
+ *  entire Program memory.  The SPM instruction is not available in all devices.
+ *  Refer to the device specific instruction set summary.  Note: 1. R1
+ *  determines the instruction high byte, and R0 determines the instruction low
+ *  byte.
+ */
+static int translate_SPM(DisasContext *ctx, uint32_t opcode)
+{
+    /* TODO */
+    if (avr_feature(ctx->env, AVR_FEATURE_SPM) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    return BS_NONE;
+}
+
+static int translate_SPMX(DisasContext *ctx, uint32_t opcode)
+{
+    /* TODO */
+    if (avr_feature(ctx->env, AVR_FEATURE_SPMX) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    return BS_NONE;
+}
+
+static int translate_STX1(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STX1_Rr(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_store(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_STX2(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STX2_Rr(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    gen_data_store(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_STX3(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STX3_Rr(opcode)];
+    TCGv addr = gen_get_xaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_store(ctx, Rd, addr);
+    gen_set_xaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_STY2(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STY2_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    gen_data_store(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_STY3(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STY3_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_store(ctx, Rd, addr);
+    gen_set_yaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_STDY(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STDY_Rd(opcode)];
+    TCGv addr = gen_get_yaddr();
+
+    tcg_gen_addi_tl(addr, addr, STDY_Imm(opcode));
+                                                /* addr = addr + q */
+    gen_data_store(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_STZ2(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STZ2_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    gen_data_store(ctx, Rd, addr);
+    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_STZ3(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STZ3_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+    gen_data_store(ctx, Rd, addr);
+
+    gen_set_zaddr(addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+static int translate_STDZ(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STDZ_Rd(opcode)];
+    TCGv addr = gen_get_zaddr();
+
+    tcg_gen_addi_tl(addr, addr, STDZ_Imm(opcode));
+                                                    /* addr = addr + q */
+    gen_data_store(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Stores one byte from a Register to the data space. For parts with SRAM,
+ *  the data space consists of the Register File, I/O memory and internal SRAM
+ *  (and external SRAM if applicable). For parts without SRAM, the data space
+ *  consists of the Register File only. The EEPROM has a separate address space.
+ *  A 16-bit address must be supplied. Memory access is limited to the current
+ *  data segment of 64KB. The STS instruction uses the RAMPD Register to access
+ *  memory above 64KB. To access another data segment in devices with more than
+ *  64KB data space, the RAMPD in register in the I/O area has to be changed.
+ *  This instruction is not available in all devices. Refer to the device
+ *  specific instruction set summary.
+ */
+static int translate_STS(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[STS_Rd(opcode)];
+    TCGv addr = tcg_temp_new_i32();
+    TCGv H = cpu_rampD;
+
+    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
+    tcg_gen_shli_tl(addr, addr, 16);
+    tcg_gen_ori_tl(addr, addr, STS_Imm(opcode));
+
+    gen_data_store(ctx, Rd, addr);
+
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Subtracts two registers and places the result in the destination
+ *  register Rd.
+ */
+static int translate_SUB(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[SUB_Rd(opcode)];
+    TCGv Rr = cpu_r[SUB_Rr(opcode)];
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+
+    return BS_NONE;
+}
+
+/*
+ *  Subtracts a register and a constant and places the result in the
+ *  destination register Rd. This instruction is working on Register R16 to R31
+ *  and is very well suited for operations on the X, Y, and Z-pointers.
+ */
+static int translate_SUBI(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[16 + SUBI_Rd(opcode)];
+    TCGv Rr = tcg_const_i32(SUBI_Imm(opcode));
+    TCGv R = tcg_temp_new_i32();
+
+    /* op */
+    tcg_gen_sub_tl(R, Rd, Rr);
+                                                    /* R = Rd - Imm */
+    tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+    gen_sub_CHf(R, Rd, Rr);
+    gen_sub_Vf(R, Rd, Rr);
+    gen_ZNSf(R);
+
+    /* R */
+    tcg_gen_mov_tl(Rd, R);
+
+    tcg_temp_free_i32(R);
+    tcg_temp_free_i32(Rr);
+
+    return BS_NONE;
+}
+
+/*
+ *  Swaps high and low nibbles in a register.
+ */
+static int translate_SWAP(DisasContext *ctx, uint32_t opcode)
+{
+    TCGv Rd = cpu_r[SWAP_Rd(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv t1 = tcg_temp_new_i32();
+
+    tcg_gen_andi_tl(t0, Rd, 0x0f);
+    tcg_gen_shli_tl(t0, t0, 4);
+    tcg_gen_andi_tl(t1, Rd, 0xf0);
+    tcg_gen_shri_tl(t1, t1, 4);
+    tcg_gen_or_tl(Rd, t0, t1);
+
+    tcg_temp_free_i32(t1);
+    tcg_temp_free_i32(t0);
+
+    return BS_NONE;
+}
+
+/*
+ *  This instruction resets the Watchdog Timer. This instruction must be
+ *  executed within a limited time given by the WD prescaler. See the Watchdog
+ *  Timer hardware specification.
+ */
+static int translate_WDR(DisasContext *ctx, uint32_t opcode)
+{
+    gen_helper_wdr(cpu_env);
+
+    return BS_NONE;
+}
+
+/*
+ *  Exchanges one byte indirect between register and data space.  The data
+ *  location is pointed to by the Z (16 bits) Pointer Register in the Register
+ *  File. Memory access is limited to the current data segment of 64KB. To
+ *  access another data segment in devices with more than 64KB data space, the
+ *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer Register
+ *  is left unchanged by the operation. This instruction is especially suited
+ *  for writing/reading status bits stored in SRAM.
+ */
+static int translate_XCH(DisasContext *ctx, uint32_t opcode)
+{
+    if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) {
+        gen_helper_unsupported(cpu_env);
+
+        return BS_EXCP;
+    }
+
+    TCGv Rd = cpu_r[XCH_Rd(opcode)];
+    TCGv t0 = tcg_temp_new_i32();
+    TCGv addr = gen_get_zaddr();
+
+    gen_data_load(ctx, t0, addr);
+    gen_data_store(ctx, Rd, addr);
+    tcg_gen_mov_tl(Rd, t0);
+
+    tcg_temp_free_i32(t0);
+    tcg_temp_free_i32(addr);
+
+    return BS_NONE;
+}
+
+void avr_cpu_tcg_init(void)
+{
+    int i;
+
+    /* Table of instructions in human readable form */
+    const Instruction instructions[] = {
+        {"ADC", "0001_11**_****_****", translate_ADC},
+        {"ADD", "0000_11**_****_****", translate_ADD},
+        {"ADIW", "1001_0110_****_****", translate_ADIW},
+        {"AND", "0010_00**_****_****", translate_AND},
+        {"ANDI", "0111_****_****_****", translate_ANDI},
+        {"ASR", "1001_010*_****_0101", translate_ASR},
+        {"BCLR", "1001_0100_1***_1000", translate_BCLR},
+        {"BLD", "1111_100*_****_0***", translate_BLD},
+        {"BRBC", "1111_01**_****_****", translate_BRBC},
+        {"BRBS", "1111_00**_****_****", translate_BRBS},
+        {"BREAK", "1001_0101_1001_1000", translate_BREAK},
+        {"BSET", "1001_0100_0***_1000", translate_BSET},
+        {"BST", "1111_101*_****_0***", translate_BST},
+        {"CALL", "1001_010*_****_111*__****_****_****_****", translate_CALL},
+        {"CBI", "1001_1000_****_****", translate_CBI},
+        {"COM", "1001_010*_****_0000", translate_COM},
+        {"CP", "0001_01**_****_****", translate_CP},
+        {"CPC", "0000_01**_****_****", translate_CPC},
+        {"CPI", "0011_****_****_****", translate_CPI},
+        {"CPSE", "0001_00**_****_****", translate_CPSE},
+        {"DEC", "1001_010*_****_1010", translate_DEC},
+        {"DES", "1001_0100_****_1011", translate_DES},
+        {"EICALL", "1001_0101_0001_1001", translate_EICALL},
+        {"EIJMP", "1001_0100_0001_1001", translate_EIJMP},
+        {"ELPM1", "1001_0101_1101_1000", translate_ELPM1},
+        {"ELPM2", "1001_000*_****_0110", translate_ELPM2},
+        {"ELPMX", "1001_000*_****_0111", translate_ELPMX},
+        {"EOR", "0010_01**_****_****", translate_EOR},
+        {"FMUL", "0000_0011_0***_1***", translate_FMUL},
+        {"FMULS", "0000_0011_1***_0***", translate_FMULS},
+        {"FMULSU", "0000_0011_1***_1***", translate_FMULSU},
+        {"ICALL", "1001_0101_0000_1001", translate_ICALL},
+        {"IJMP", "1001_0100_0000_1001", translate_IJMP},
+        {"IN", "1011_0***_****_****", translate_IN},
+        {"INC", "1001_010*_****_0011", translate_INC},
+        {"JMP", "1001_010*_****_110*__****_****_****_****", translate_JMP},
+        {"LAC", "1001_001*_****_0110", translate_LAC},
+        {"LAS", "1001_001*_****_0101", translate_LAS},
+        {"LAT", "1001_001*_****_0111", translate_LAT},
+        {"LDX1", "1001_000*_****_1100", translate_LDX1},
+        {"LDX2", "1001_000*_****_1101", translate_LDX2},
+        {"LDX3", "1001_000*_****_1110", translate_LDX3},
+        {"LDY2", "1001_000*_****_1001", translate_LDY2},
+        {"LDY3", "1001_000*_****_1010", translate_LDY3},
+        {"LDDY", "10*0_**0*_****_1***", translate_LDDY},
+        {"LDZ2", "1001_000*_****_0001", translate_LDZ2},
+        {"LDZ3", "1001_000*_****_0010", translate_LDZ3},
+        {"LDDZ", "10*0_**0*_****_0***", translate_LDDZ},
+        {"LDI", "1110_****_****_****", translate_LDI},
+        {"LDS", "1001_000*_****_0000__****_****_****_****", translate_LDS},
+        {"LPM1", "1001_0101_1100_1000", translate_LPM1},
+        {"LPM2", "1001_000*_****_0100", translate_LPM2},
+        {"LPMX", "1001_000*_****_0101", translate_LPMX},
+        {"LSR", "1001_010*_****_0110", translate_LSR},
+        {"MOV", "0010_11**_****_****", translate_MOV},
+        {"MOVW", "0000_0001_****_****", translate_MOVW},
+        {"MUL", "1001_11**_****_****", translate_MUL},
+        {"MULS", "0000_0010_****_****", translate_MULS},
+        {"MULSU", "0000_0011_0***_0***", translate_MULSU},
+        {"NEG", "1001_010*_****_0001", translate_NEG},
+        {"NOP", "0000_0000_0000_0000", translate_NOP},
+        {"OR", "0010_10**_****_****", translate_OR},
+        {"ORI", "0110_****_****_****", translate_ORI},
+        {"OUT", "1011_1***_****_****", translate_OUT},
+        {"POP", "1001_000*_****_1111", translate_POP},
+        {"PUSH", "1001_001*_****_1111", translate_PUSH},
+        {"RCALL", "1101_****_****_****", translate_RCALL},
+        {"RET", "1001_0101_0000_1000", translate_RET},
+        {"RETI", "1001_0101_0001_1000", translate_RETI},
+        {"RJMP", "1100_****_****_****", translate_RJMP},
+        {"ROR", "1001_010*_****_0111", translate_ROR},
+        {"SBC", "0000_10**_****_****", translate_SBC},
+        {"SBCI", "0100_****_****_****", translate_SBCI},
+        {"SBI", "1001_1010_****_****", translate_SBI},
+        {"SBIC", "1001_1001_****_****", translate_SBIC},
+        {"SBIS", "1001_1011_****_****", translate_SBIS},
+        {"SBIW", "1001_0111_****_****", translate_SBIW},
+        {"SBRC", "1111_110*_****_0***", translate_SBRC},
+        {"SBRS", "1111_111*_****_0***", translate_SBRS},
+        {"SLEEP", "1001_0101_1000_1000", translate_SLEEP},
+        {"SPM", "1001_0101_1110_1000", translate_SPM},
+        {"SPMX", "1001_0101_1111_1000", translate_SPMX},
+        {"STX1", "1001_001*_****_1100", translate_STX1},
+        {"STX2", "1001_001*_****_1101", translate_STX2},
+        {"STX3", "1001_001*_****_1110", translate_STX3},
+        {"STY2", "1001_001*_****_1001", translate_STY2},
+        {"STY3", "1001_001*_****_1010", translate_STY3},
+        {"STDY", "10*0_**1*_****_1***", translate_STDY},
+        {"STZ2", "1001_001*_****_0001", translate_STZ2},
+        {"STZ3", "1001_001*_****_0010", translate_STZ3},
+        {"STDZ", "10*0_**1*_****_0***", translate_STDZ},
+        {"STS", "1001_001*_****_0000__****_****_****_****", translate_STS},
+        {"SUB", "0001_10**_****_****", translate_SUB},
+        {"SUBI", "0101_****_****_****", translate_SUBI},
+        {"SWAP", "1001_010*_****_0010", translate_SWAP},
+        {"WDR", "1001_0101_1010_1000", translate_WDR},
+        {"XCH", "1001_001*_****_0100", translate_XCH},
+    };
+    avr_decoder_init(instructions,
+        sizeof(instructions) / sizeof(instructions[0]));
+
+#define AVR_REG_OFFS(x) offsetof(CPUAVRState, x)
+    cpu_pc = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(pc_w), "pc");
+    cpu_Cf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregC), "Cf");
+    cpu_Zf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregZ), "Zf");
+    cpu_Nf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregN), "Nf");
+    cpu_Vf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregV), "Vf");
+    cpu_Sf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregS), "Sf");
+    cpu_Hf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregH), "Hf");
+    cpu_Tf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregT), "Tf");
+    cpu_If = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregI), "If");
+    cpu_rampD = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampD), "rampD");
+    cpu_rampX = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampX), "rampX");
+    cpu_rampY = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampY), "rampY");
+    cpu_rampZ = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampZ), "rampZ");
+    cpu_eind = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(eind), "eind");
+    cpu_sp = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sp), "sp");
+
+    for (i = 0; i < 32; i++) {
+        char name[16];
+
+        sprintf(name, "r[%d]", i);
+
+        cpu_r[i] = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(r[i]), name);
+    }
+}
+
+static void decode_opc(DisasContext *ctx, InstInfo *inst)
+{
+    /* PC points to words.  */
+    inst->opcode = cpu_ldl_code(ctx->env, inst->cpc * 2);
+    inst->length = 0;
+    inst->translate = avr_decode(inst->opcode, &inst->length);
+    assert(inst->length > 0); /* Check length was set */
+
+    if (inst->length == 16) {
+        inst->npc = inst->cpc + 1;
+        /* get opcode as 16bit value */
+        inst->opcode = inst->opcode & 0x0000ffff;
+    }
+    if (inst->length == 32) {
+        inst->npc = inst->cpc + 2;
+        /* get opcode as 32bit value */
+        inst->opcode = (inst->opcode << 16)
+                     | (inst->opcode >> 16);
+    }
+}
+
+void gen_intermediate_code(CPUState *cs, struct TranslationBlock *tb,
+    int max_insns)
+{
+    CPUAVRState *env = cs->env_ptr;
+    DisasContext ctx = {
+        .tb = tb,
+        .env = env,
+        .memidx = 0,
+        .bstate = BS_NONE,
+        .singlestep = cs->singlestep_enabled,
+    };
+    target_ulong pc_start = tb->pc / 2;
+    int num_insns = 0;
+    target_ulong cpc;
+    target_ulong npc;
+
+    if (tb->flags & TB_FLAGS_FULL_ACCESS) {
+        /*
+         * This flag is set by ST/LD instruction we will regenerate it ONLY
+         * with mem/cpu memory access instead of mem access
+         */
+        max_insns = 1;
+    }
+
+    gen_tb_start(tb);
+
+    /* decode first instruction */
+    ctx.inst[0].cpc = pc_start;
+    decode_opc(&ctx, &ctx.inst[0]);
+    do {
+        /* set curr/next PCs */
+        cpc = ctx.inst[0].cpc;
+        npc = ctx.inst[0].npc;
+
+        /* decode next instruction */
+        ctx.inst[1].cpc = ctx.inst[0].npc;
+        decode_opc(&ctx, &ctx.inst[1]);
+
+        /* translate current instruction */
+        tcg_gen_insn_start(cpc);
+        num_insns++;
+
+        /*
+         * this is due to some strange GDB behavior
+         * let's assume main has address 0x100
+         * b main   - sets breakpoint at address 0x00000100 (code)
+         * b *0x100 - sets breakpoint at address 0x00800100 (data)
+         */
+        if (unlikely(cpu_breakpoint_test(cs, OFFSET_CODE + cpc * 2, BP_ANY))
+                 || cpu_breakpoint_test(cs, OFFSET_DATA + cpc * 2, BP_ANY)) {
+            tcg_gen_movi_i32(cpu_pc, cpc);
+            gen_helper_debug(cpu_env);
+            ctx.bstate = BS_EXCP;
+            goto done_generating;
+        }
+
+        if (ctx.inst[0].translate) {
+            ctx.bstate = ctx.inst[0].translate(&ctx, ctx.inst[0].opcode);
+        }
+
+        if (num_insns >= max_insns) {
+            break; /* max translated instructions limit reached */
+        }
+        if (ctx.singlestep) {
+            break; /* single step */
+        }
+        if ((cpc & (TARGET_PAGE_SIZE - 1)) == 0) {
+            break; /* page boundary */
+        }
+
+        ctx.inst[0] = ctx.inst[1]; /* make next inst curr */
+    } while (ctx.bstate == BS_NONE && !tcg_op_buf_full());
+
+    if (tb->cflags & CF_LAST_IO) {
+        gen_io_end();
+    }
+
+    if (ctx.singlestep) {
+        if (ctx.bstate == BS_STOP || ctx.bstate == BS_NONE) {
+            tcg_gen_movi_tl(cpu_pc, npc);
+        }
+        gen_helper_debug(cpu_env);
+        tcg_gen_exit_tb(NULL, 0);
+    } else {
+        switch (ctx.bstate) {
+        case BS_STOP:
+        case BS_NONE:
+            gen_goto_tb(&ctx, 0, npc);
+            break;
+        case BS_EXCP:
+        case BS_BRANCH:
+            tcg_gen_exit_tb(NULL, 0);
+            break;
+        default:
+            break;
+        }
+    }
+
+done_generating:
+    gen_tb_end(tb, num_insns);
+
+    tb->size = (npc - pc_start) * 2;
+    tb->icount = num_insns;
+}
+
+void restore_state_to_opc(CPUAVRState *env, TranslationBlock *tb,
+                            target_ulong *data)
+{
+    env->pc_w = data[0];
+}
+
+void avr_cpu_dump_state(CPUState *cs, FILE *f, int flags)
+{
+    AVRCPU *cpu = AVR_CPU(cs);
+    CPUAVRState *env = &cpu->env;
+    int i;
+
+    qemu_fprintf(f, "\n");
+    qemu_fprintf(f, "PC:    %06x\n", env->pc_w);
+    qemu_fprintf(f, "SP:      %04x\n", env->sp);
+    qemu_fprintf(f, "rampD:     %02x\n", env->rampD >> 16);
+    qemu_fprintf(f, "rampX:     %02x\n", env->rampX >> 16);
+    qemu_fprintf(f, "rampY:     %02x\n", env->rampY >> 16);
+    qemu_fprintf(f, "rampZ:     %02x\n", env->rampZ >> 16);
+    qemu_fprintf(f, "EIND:      %02x\n", env->eind);
+    qemu_fprintf(f, "X:       %02x%02x\n", env->r[27], env->r[26]);
+    qemu_fprintf(f, "Y:       %02x%02x\n", env->r[29], env->r[28]);
+    qemu_fprintf(f, "Z:       %02x%02x\n", env->r[31], env->r[30]);
+    qemu_fprintf(f, "SREG:    [ %c %c %c %c %c %c %c %c ]\n",
+                        env->sregI ? 'I' : '-',
+                        env->sregT ? 'T' : '-',
+                        env->sregH ? 'H' : '-',
+                        env->sregS ? 'S' : '-',
+                        env->sregV ? 'V' : '-',
+                        env->sregN ? '-' : 'N', /* Zf has negative logic */
+                        env->sregZ ? 'Z' : '-',
+                        env->sregC ? 'I' : '-');
+
+    qemu_fprintf(f, "\n");
+    for (i = 0; i < ARRAY_SIZE(env->r); i++) {
+        qemu_fprintf(f, "R[%02d]:  %02x   ", i, env->r[i]);
+
+        if ((i % 8) == 7) {
+            qemu_fprintf(f, "\n");
+        }
+    }
+    qemu_fprintf(f, "\n");
+}
-- 
2.21.0



^ permalink raw reply related	[flat|nested] 31+ messages in thread

* [Qemu-devel] [PATCH v1 6/8] target/avr: Add limited support for USART and 16 bit timer peripherals
@ 2019-05-04  8:36   ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, A.M.King, E.J.C.Robbins, mrolnik

These were designed to facilitate testing but should provide enough function to be useful in other contexts.
Only a subset of the functions of each peripheral is implemented, mainly due to the lack of a standard way to handle electrical connections (like GPIO pins).

Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
---
 hw/char/Kconfig                |   3 +
 hw/char/Makefile.objs          |   1 +
 hw/char/avr_usart.c            | 316 ++++++++++++++++++
 hw/timer/Kconfig               |   3 +
 hw/timer/Makefile.objs         |   1 +
 hw/timer/avr_timer16.c         | 587 +++++++++++++++++++++++++++++++++
 include/hw/char/avr_usart.h    |  99 ++++++
 include/hw/timer/avr_timer16.h |  99 ++++++
 8 files changed, 1109 insertions(+)
 create mode 100644 hw/char/avr_usart.c
 create mode 100644 hw/timer/avr_timer16.c
 create mode 100644 include/hw/char/avr_usart.h
 create mode 100644 include/hw/timer/avr_timer16.h

diff --git a/hw/char/Kconfig b/hw/char/Kconfig
index 6360c9fffa..7af2c6dd21 100644
--- a/hw/char/Kconfig
+++ b/hw/char/Kconfig
@@ -40,3 +40,6 @@ config SCLPCONSOLE
 
 config TERMINAL3270
     bool
+
+config AVR_USART
+    bool
diff --git a/hw/char/Makefile.objs b/hw/char/Makefile.objs
index cf086e7114..962556d00d 100644
--- a/hw/char/Makefile.objs
+++ b/hw/char/Makefile.objs
@@ -20,6 +20,7 @@ obj-$(CONFIG_PSERIES) += spapr_vty.o
 obj-$(CONFIG_DIGIC) += digic-uart.o
 obj-$(CONFIG_STM32F2XX_USART) += stm32f2xx_usart.o
 obj-$(CONFIG_RASPI) += bcm2835_aux.o
+obj-$(CONFIG_AVR_USART) += avr_usart.o
 
 common-obj-$(CONFIG_CMSDK_APB_UART) += cmsdk-apb-uart.o
 common-obj-$(CONFIG_ETRAXFS) += etraxfs_ser.o
diff --git a/hw/char/avr_usart.c b/hw/char/avr_usart.c
new file mode 100644
index 0000000000..26c711336b
--- /dev/null
+++ b/hw/char/avr_usart.c
@@ -0,0 +1,316 @@
+/*
+ * AVR USART
+ *
+ * Copyright (c) 2018 University of Kent
+ * Author: Sarah Harris
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "qemu/osdep.h"
+#include "hw/char/avr_usart.h"
+#include "qemu/log.h"
+
+static int avr_usart_can_receive(void *opaque)
+{
+    AVRUsartState *usart = opaque;
+
+    if (usart->data_valid || !(usart->csrb & USART_CSRB_RXEN)) {
+        return 0;
+    }
+    return 1;
+}
+
+static void avr_usart_receive(void *opaque, const uint8_t *buffer, int size)
+{
+    AVRUsartState *usart = opaque;
+    assert(size == 1);
+    assert(!usart->data_valid);
+    usart->data = buffer[0];
+    usart->data_valid = true;
+    usart->csra |= USART_CSRA_RXC;
+    if (usart->csrb & USART_CSRB_RXCIE) {
+        qemu_set_irq(usart->rxc_irq, 1);
+    }
+}
+
+static void update_char_mask(AVRUsartState *usart)
+{
+    uint8_t mode = ((usart->csrc & USART_CSRC_CSZ0) ? 1 : 0) |
+        ((usart->csrc & USART_CSRC_CSZ1) ? 2 : 0) |
+        ((usart->csrb & USART_CSRB_CSZ2) ? 4 : 0);
+    switch (mode) {
+    case 0:
+        usart->char_mask = 0b11111;
+        break;
+    case 1:
+        usart->char_mask = 0b111111;
+        break;
+    case 2:
+        usart->char_mask = 0b1111111;
+        break;
+    case 3:
+        usart->char_mask = 0b11111111;
+        break;
+    case 4:
+        /* Fallthrough. */
+    case 5:
+        /* Fallthrough. */
+    case 6:
+        qemu_log_mask(
+            LOG_GUEST_ERROR,
+            "%s: Reserved character size 0x%x\n",
+            __func__,
+            mode);
+        break;
+    case 7:
+        qemu_log_mask(
+            LOG_GUEST_ERROR,
+            "%s: Nine bit character size not supported (forcing eight)\n",
+            __func__);
+        usart->char_mask = 0b11111111;
+        break;
+    default:
+        assert(0);
+    }
+}
+
+static void avr_usart_reset(DeviceState *dev)
+{
+    AVRUsartState *usart = AVR_USART(dev);
+    usart->data_valid = false;
+    usart->csra = 0b00100000;
+    usart->csrb = 0b00000000;
+    usart->csrc = 0b00000110;
+    usart->brrl = 0;
+    usart->brrh = 0;
+    update_char_mask(usart);
+    qemu_set_irq(usart->rxc_irq, 0);
+    qemu_set_irq(usart->txc_irq, 0);
+    qemu_set_irq(usart->dre_irq, 0);
+}
+
+static uint64_t avr_usart_read(void *opaque, hwaddr addr, unsigned int size)
+{
+    AVRUsartState *usart = opaque;
+    uint8_t prr;
+    uint8_t data;
+    assert(size == 1);
+
+    cpu_physical_memory_read(usart->prr_address, &prr, 1);
+    if (prr & usart->prr_mask) {
+        /* USART disabled, ignore. */
+        avr_usart_reset(DEVICE(usart));
+        return 0;
+    }
+
+    switch (addr) {
+    case USART_DR:
+        if (!(usart->csrb & USART_CSRB_RXEN)) {
+            /* Receiver disabled, ignore. */
+            return 0;
+        }
+        if (usart->data_valid) {
+            data = usart->data & usart->char_mask;
+            usart->data_valid = false;
+        } else {
+            data = 0;
+        }
+        usart->csra &= 0xff ^ USART_CSRA_RXC;
+        qemu_set_irq(usart->rxc_irq, 0);
+        qemu_chr_fe_accept_input(&usart->chr);
+        return data;
+    case USART_CSRA:
+        return usart->csra;
+    case USART_CSRB:
+        return usart->csrb;
+    case USART_CSRC:
+        return usart->csrc;
+    case USART_BRRL:
+        return usart->brrl;
+    case USART_BRRH:
+        return usart->brrh;
+    default:
+        qemu_log_mask(
+            LOG_GUEST_ERROR,
+            "%s: Bad offset 0x%"HWADDR_PRIx"\n",
+            __func__,
+            addr);
+    }
+    return 0;
+}
+
+static void avr_usart_write(void *opaque, hwaddr addr, uint64_t value,
+                                unsigned int size)
+{
+    AVRUsartState *usart = opaque;
+    uint8_t mask;
+    uint8_t data;
+    assert((value & 0xff) == value);
+    assert(size == 1);
+
+    uint8_t prr;
+    cpu_physical_memory_read(usart->prr_address, &prr, 1);
+    if (prr & usart->prr_mask) {
+        /* USART disabled, ignore. */
+        avr_usart_reset(DEVICE(usart));
+        return;
+    }
+
+    switch (addr) {
+    case USART_DR:
+        if (!(usart->csrb & USART_CSRB_TXEN)) {
+            /* Transmitter disabled, ignore. */
+            return;
+        }
+        usart->csra |= USART_CSRA_TXC;
+        usart->csra |= USART_CSRA_DRE;
+        if (usart->csrb & USART_CSRB_TXCIE) {
+            qemu_set_irq(usart->txc_irq, 1);
+            usart->csra &= 0xff ^ USART_CSRA_TXC;
+        }
+        if (usart->csrb & USART_CSRB_DREIE) {
+            qemu_set_irq(usart->dre_irq, 1);
+        }
+        data = value;
+        qemu_chr_fe_write_all(&usart->chr, &data, 1);
+        break;
+    case USART_CSRA:
+        mask = 0b01000011;
+        /* Mask read-only bits. */
+        value = (value & mask) | (usart->csra & (0xff ^ mask));
+        usart->csra = value;
+        if (value & USART_CSRA_TXC) {
+            usart->csra ^= USART_CSRA_TXC;
+            qemu_set_irq(usart->txc_irq, 0);
+        }
+        if (value & USART_CSRA_MPCM) {
+            qemu_log_mask(
+                LOG_GUEST_ERROR,
+                "%s: MPCM not supported by USART\n",
+                __func__);
+        }
+        break;
+    case USART_CSRB:
+        mask = 0b11111101;
+        /* Mask read-only bits. */
+        value = (value & mask) | (usart->csrb & (0xff ^ mask));
+        usart->csrb = value;
+        if (!(value & USART_CSRB_RXEN)) {
+            /* Receiver disabled, flush input buffer. */
+            usart->data_valid = false;
+        }
+        qemu_set_irq(usart->rxc_irq,
+            ((value & USART_CSRB_RXCIE) &&
+            (usart->csra & USART_CSRA_RXC)) ? 1 : 0);
+        qemu_set_irq(usart->txc_irq,
+            ((value & USART_CSRB_TXCIE) &&
+            (usart->csra & USART_CSRA_TXC)) ? 1 : 0);
+        qemu_set_irq(usart->dre_irq,
+            ((value & USART_CSRB_DREIE) &&
+            (usart->csra & USART_CSRA_DRE)) ? 1 : 0);
+        update_char_mask(usart);
+        break;
+    case USART_CSRC:
+        usart->csrc = value;
+        if ((value & USART_CSRC_MSEL1) && (value & USART_CSRC_MSEL0)) {
+            qemu_log_mask(
+                LOG_GUEST_ERROR,
+                "%s: SPI mode not supported by USART\n",
+                __func__);
+        }
+        if ((value & USART_CSRC_MSEL1) && !(value & USART_CSRC_MSEL0)) {
+            qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad USART mode\n", __func__);
+        }
+        if (!(value & USART_CSRC_PM1) && (value & USART_CSRC_PM0)) {
+            qemu_log_mask(
+                LOG_GUEST_ERROR,
+                "%s: Bad USART parity mode\n",
+                __func__);
+        }
+        update_char_mask(usart);
+        break;
+    case USART_BRRL:
+        usart->brrl = value;
+        break;
+    case USART_BRRH:
+        usart->brrh = value & 0b00001111;
+        break;
+    default:
+        qemu_log_mask(
+            LOG_GUEST_ERROR,
+            "%s: Bad offset 0x%"HWADDR_PRIx"\n",
+            __func__,
+            addr);
+    }
+}
+
+static const MemoryRegionOps avr_usart_ops = {
+    .read = avr_usart_read,
+    .write = avr_usart_write,
+    .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+static Property avr_usart_properties[] = {
+    DEFINE_PROP_CHR("chardev", AVRUsartState, chr),
+    DEFINE_PROP_END_OF_LIST(),
+};
+
+static void avr_usart_init(Object *obj)
+{
+    AVRUsartState *s = AVR_USART(obj);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rxc_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->dre_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->txc_irq);
+    memory_region_init_io(&s->mmio, obj, &avr_usart_ops, s, TYPE_AVR_USART, 7);
+    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
+}
+
+static void avr_usart_realize(DeviceState *dev, Error **errp)
+{
+    AVRUsartState *s = AVR_USART(dev);
+    qemu_chr_fe_set_handlers(&s->chr, avr_usart_can_receive,
+                             avr_usart_receive, NULL, NULL,
+                             s, NULL, true);
+    avr_usart_reset(dev);
+}
+
+static void avr_usart_class_init(ObjectClass *klass, void *data)
+{
+    DeviceClass *dc = DEVICE_CLASS(klass);
+
+    dc->reset = avr_usart_reset;
+    dc->props = avr_usart_properties;
+    dc->realize = avr_usart_realize;
+}
+
+static const TypeInfo avr_usart_info = {
+    .name          = TYPE_AVR_USART,
+    .parent        = TYPE_SYS_BUS_DEVICE,
+    .instance_size = sizeof(AVRUsartState),
+    .instance_init = avr_usart_init,
+    .class_init    = avr_usart_class_init,
+};
+
+static void avr_usart_register_types(void)
+{
+    type_register_static(&avr_usart_info);
+}
+
+type_init(avr_usart_register_types)
diff --git a/hw/timer/Kconfig b/hw/timer/Kconfig
index 51921eb63f..ad754df750 100644
--- a/hw/timer/Kconfig
+++ b/hw/timer/Kconfig
@@ -61,3 +61,6 @@ config CMSDK_APB_TIMER
 config CMSDK_APB_DUALTIMER
     bool
     select PTIMER
+
+config AVR_TIMER16
+    bool
diff --git a/hw/timer/Makefile.objs b/hw/timer/Makefile.objs
index 0e9a4530f8..bf1ffcc52d 100644
--- a/hw/timer/Makefile.objs
+++ b/hw/timer/Makefile.objs
@@ -35,6 +35,7 @@ obj-$(CONFIG_PXA2XX) += pxa2xx_timer.o
 obj-$(CONFIG_SH4) += sh_timer.o
 obj-$(CONFIG_DIGIC) += digic-timer.o
 obj-$(CONFIG_MIPS_CPS) += mips_gictimer.o
+obj-$(CONFIG_AVR_TIMER16) += avr_timer16.o
 
 obj-$(CONFIG_MC146818RTC) += mc146818rtc.o
 
diff --git a/hw/timer/avr_timer16.c b/hw/timer/avr_timer16.c
new file mode 100644
index 0000000000..89f8f55eaa
--- /dev/null
+++ b/hw/timer/avr_timer16.c
@@ -0,0 +1,587 @@
+/*
+ * AVR 16 bit timer
+ *
+ * Copyright (c) 2018 University of Kent
+ * Author: Ed Robbins
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+/*
+ * Driver for 16 bit timers on 8 bit AVR devices.
+ * Note:
+ * ATmega640/V-1280/V-1281/V-2560/V-2561/V timers 1, 3, 4 and 5 are 16 bit
+ */
+
+/*
+ * XXX TODO: Power Reduction Register support
+ *           prescaler pause support
+ *           PWM modes, GPIO, output capture pins, input compare pin
+ */
+
+#include "qemu/osdep.h"
+#include "hw/timer/avr_timer16.h"
+#include "qemu/log.h"
+
+/* Register offsets */
+#define T16_CRA     0x0
+#define T16_CRB     0x1
+#define T16_CRC     0x2
+#define T16_CNTL    0x4
+#define T16_CNTH    0x5
+#define T16_ICRL    0x6
+#define T16_ICRH    0x7
+#define T16_OCRAL   0x8
+#define T16_OCRAH   0x9
+#define T16_OCRBL   0xa
+#define T16_OCRBH   0xb
+#define T16_OCRCL   0xc
+#define T16_OCRCH   0xd
+
+/* Field masks */
+#define T16_CRA_WGM01   0x3
+#define T16_CRA_COMC    0xc
+#define T16_CRA_COMB    0x30
+#define T16_CRA_COMA    0xc0
+#define T16_CRA_OC_CONF \
+    (T16_CRA_COMA | T16_CRA_COMB | T16_CRA_COMC)
+
+#define T16_CRB_CS      0x7
+#define T16_CRB_WGM23   0x18
+#define T16_CRB_ICES    0x40
+#define T16_CRB_ICNC    0x80
+
+#define T16_CRC_FOCC    0x20
+#define T16_CRC_FOCB    0x40
+#define T16_CRC_FOCA    0x80
+
+/* Fields masks both TIMSK and TIFR (interrupt mask/flag registers) */
+#define T16_INT_TOV    0x1 /* Timer overflow */
+#define T16_INT_OCA    0x2 /* Output compare A */
+#define T16_INT_OCB    0x4 /* Output compare B */
+#define T16_INT_OCC    0x8 /* Output compare C */
+#define T16_INT_IC     0x20 /* Input capture */
+
+/* Clock source values */
+#define T16_CLKSRC_STOPPED     0
+#define T16_CLKSRC_DIV1        1
+#define T16_CLKSRC_DIV8        2
+#define T16_CLKSRC_DIV64       3
+#define T16_CLKSRC_DIV256      4
+#define T16_CLKSRC_DIV1024     5
+#define T16_CLKSRC_EXT_FALLING 6
+#define T16_CLKSRC_EXT_RISING  7
+
+/* Timer mode values (not including PWM modes) */
+#define T16_MODE_NORMAL     0
+#define T16_MODE_CTC_OCRA   4
+#define T16_MODE_CTC_ICR    12
+
+/* Accessors */
+#define CLKSRC(t16) (t16->crb & T16_CRB_CS)
+#define MODE(t16)   (((t16->crb & T16_CRB_WGM23) >> 1) | \
+                     (t16->cra & T16_CRA_WGM01))
+#define CNT(t16)    VAL16(t16->cntl, t16->cnth)
+#define OCRA(t16)   VAL16(t16->ocral, t16->ocrah)
+#define OCRB(t16)   VAL16(t16->ocrbl, t16->ocrbh)
+#define OCRC(t16)   VAL16(t16->ocrcl, t16->ocrch)
+#define ICR(t16)    VAL16(t16->icrl, t16->icrh)
+
+/* Helper macros */
+#define VAL16(l, h) ((h << 8) | l)
+#define ERROR(fmt, args...) \
+    qemu_log_mask(LOG_GUEST_ERROR, "%s: " fmt "\n", __func__, ## args)
+#define DB_PRINT(fmt, args...) /* Nothing */
+/*#define DB_PRINT(fmt, args...) printf("%s: " fmt "\n", __func__, ## args)*/
+
+static inline int64_t avr_timer16_ns_to_ticks(AVRTimer16State *t16, int64_t t)
+{
+    if (t16->period_ns == 0) {
+        return 0;
+    }
+    return t / t16->period_ns;
+}
+
+static void avr_timer16_update_cnt(AVRTimer16State *t16)
+{
+    uint16_t cnt;
+    cnt = avr_timer16_ns_to_ticks(t16, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
+                                       t16->reset_time_ns);
+    t16->cntl = (uint8_t)(cnt & 0xff);
+    t16->cnth = (uint8_t)((cnt & 0xff00) >> 8);
+}
+
+static inline void avr_timer16_recalc_reset_time(AVRTimer16State *t16)
+{
+    t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
+                         CNT(t16) * t16->period_ns;
+}
+
+static void avr_timer16_clock_reset(AVRTimer16State *t16)
+{
+    t16->cntl = 0;
+    t16->cnth = 0;
+    t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+}
+
+static void avr_timer16_clksrc_update(AVRTimer16State *t16)
+{
+    uint16_t divider = 0;
+    switch (CLKSRC(t16)) {
+    case T16_CLKSRC_EXT_FALLING:
+    case T16_CLKSRC_EXT_RISING:
+        ERROR("external clock source unsupported");
+        goto end;
+    case T16_CLKSRC_STOPPED:
+        goto end;
+    case T16_CLKSRC_DIV1:
+        divider = 1;
+        break;
+    case T16_CLKSRC_DIV8:
+        divider = 8;
+        break;
+    case T16_CLKSRC_DIV64:
+        divider = 64;
+        break;
+    case T16_CLKSRC_DIV256:
+        divider = 256;
+        break;
+    case T16_CLKSRC_DIV1024:
+        divider = 1024;
+        break;
+    default:
+        goto end;
+    }
+    t16->freq_hz = t16->cpu_freq_hz / divider;
+    t16->period_ns = 1000000000ULL / t16->freq_hz;
+    DB_PRINT("Timer frequency %" PRIu64 " hz, period %" PRIu64 " ns (%f s)",
+             t16->freq_hz, t16->period_ns, 1 / (double)t16->freq_hz);
+end:
+    return;
+}
+
+static void avr_timer16_set_alarm(AVRTimer16State *t16)
+{
+    if (CLKSRC(t16) == T16_CLKSRC_EXT_FALLING ||
+        CLKSRC(t16) == T16_CLKSRC_EXT_RISING ||
+        CLKSRC(t16) == T16_CLKSRC_STOPPED) {
+        /* Timer is disabled or set to external clock source (unsupported) */
+        goto end;
+    }
+
+    uint64_t alarm_offset = 0xffff;
+    enum NextInterrupt next_interrupt = OVERFLOW;
+
+    switch (MODE(t16)) {
+    case T16_MODE_NORMAL:
+        /* Normal mode */
+        if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16) &&
+            (t16->imsk & T16_INT_OCA)) {
+            alarm_offset = OCRA(t16);
+            next_interrupt = COMPA;
+        }
+        break;
+    case T16_MODE_CTC_OCRA:
+        /* CTC mode, top = ocra */
+        if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16)) {
+            alarm_offset = OCRA(t16);
+            next_interrupt = COMPA;
+        }
+       break;
+    case T16_MODE_CTC_ICR:
+        /* CTC mode, top = icr */
+        if (ICR(t16) < alarm_offset && ICR(t16) > CNT(t16)) {
+            alarm_offset = ICR(t16);
+            next_interrupt = CAPT;
+        }
+        if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16) &&
+            (t16->imsk & T16_INT_OCA)) {
+            alarm_offset = OCRA(t16);
+            next_interrupt = COMPA;
+        }
+        break;
+    default:
+        ERROR("pwm modes are unsupported");
+        goto end;
+    }
+    if (OCRB(t16) < alarm_offset && OCRB(t16) > CNT(t16) &&
+        (t16->imsk & T16_INT_OCB)) {
+        alarm_offset = OCRB(t16);
+        next_interrupt = COMPB;
+    }
+    if (OCRC(t16) < alarm_offset && OCRB(t16) > CNT(t16) &&
+        (t16->imsk & T16_INT_OCC)) {
+        alarm_offset = OCRB(t16);
+        next_interrupt = COMPC;
+    }
+    alarm_offset -= CNT(t16);
+
+    t16->next_interrupt = next_interrupt;
+    uint64_t alarm_ns =
+        t16->reset_time_ns + ((CNT(t16) + alarm_offset) * t16->period_ns);
+    timer_mod(t16->timer, alarm_ns);
+
+    DB_PRINT("next alarm %" PRIu64 " ns from now",
+        alarm_offset * t16->period_ns);
+
+end:
+    return;
+}
+
+static void avr_timer16_interrupt(void *opaque)
+{
+    AVRTimer16State *t16 = opaque;
+    uint8_t mode = MODE(t16);
+
+    avr_timer16_update_cnt(t16);
+
+    if (CLKSRC(t16) == T16_CLKSRC_EXT_FALLING ||
+        CLKSRC(t16) == T16_CLKSRC_EXT_RISING ||
+        CLKSRC(t16) == T16_CLKSRC_STOPPED) {
+        /* Timer is disabled or set to external clock source (unsupported) */
+        return;
+    }
+
+    DB_PRINT("interrupt, cnt = %d", CNT(t16));
+
+    /* Counter overflow */
+    if (t16->next_interrupt == OVERFLOW) {
+        DB_PRINT("0xffff overflow");
+        avr_timer16_clock_reset(t16);
+        if (t16->imsk & T16_INT_TOV) {
+            t16->ifr |= T16_INT_TOV;
+            qemu_set_irq(t16->ovf_irq, 1);
+        }
+    }
+    /* Check for ocra overflow in CTC mode */
+    if (mode == T16_MODE_CTC_OCRA && t16->next_interrupt == COMPA) {
+        DB_PRINT("CTC OCRA overflow");
+        avr_timer16_clock_reset(t16);
+    }
+    /* Check for icr overflow in CTC mode */
+    if (mode == T16_MODE_CTC_ICR && t16->next_interrupt == CAPT) {
+        DB_PRINT("CTC ICR overflow");
+        avr_timer16_clock_reset(t16);
+        if (t16->imsk & T16_INT_IC) {
+            t16->ifr |= T16_INT_IC;
+            qemu_set_irq(t16->capt_irq, 1);
+        }
+    }
+    /* Check for output compare interrupts */
+    if (t16->imsk & T16_INT_OCA && t16->next_interrupt == COMPA) {
+        t16->ifr |= T16_INT_OCA;
+        qemu_set_irq(t16->compa_irq, 1);
+    }
+    if (t16->imsk & T16_INT_OCB && t16->next_interrupt == COMPB) {
+        t16->ifr |= T16_INT_OCB;
+        qemu_set_irq(t16->compb_irq, 1);
+    }
+    if (t16->imsk & T16_INT_OCC && t16->next_interrupt == COMPC) {
+        t16->ifr |= T16_INT_OCC;
+        qemu_set_irq(t16->compc_irq, 1);
+    }
+    avr_timer16_set_alarm(t16);
+}
+
+static void avr_timer16_reset(DeviceState *dev)
+{
+    AVRTimer16State *t16 = AVR_TIMER16(dev);
+
+    avr_timer16_clock_reset(t16);
+    avr_timer16_clksrc_update(t16);
+    avr_timer16_set_alarm(t16);
+
+    qemu_set_irq(t16->capt_irq, 0);
+    qemu_set_irq(t16->compa_irq, 0);
+    qemu_set_irq(t16->compb_irq, 0);
+    qemu_set_irq(t16->compc_irq, 0);
+    qemu_set_irq(t16->ovf_irq, 0);
+}
+
+static uint64_t avr_timer16_read(void *opaque, hwaddr offset, unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    uint8_t retval = 0;
+
+    switch (offset) {
+    case T16_CRA:
+        retval = t16->cra;
+        break;
+    case T16_CRB:
+        retval = t16->crb;
+        break;
+    case T16_CRC:
+        retval = t16->crc;
+        break;
+    case T16_CNTL:
+        avr_timer16_update_cnt(t16);
+        t16->rtmp = t16->cnth;
+        retval = t16->cntl;
+        break;
+    case T16_CNTH:
+        retval = t16->rtmp;
+        break;
+    case T16_ICRL:
+        /*
+         * The timer copies cnt to icr when the input capture pin changes
+         * state or when the analog comparator has a match. We don't
+         * emulate this behaviour. We do support it's use for defining a
+         * TOP value in T16_MODE_CTC_ICR
+         */
+        t16->rtmp = t16->icrh;
+        retval = t16->icrl;
+        break;
+    case T16_ICRH:
+        retval = t16->rtmp;
+        break;
+    case T16_OCRAL:
+        retval = t16->ocral;
+        break;
+    case T16_OCRAH:
+        retval = t16->ocrah;
+        break;
+    case T16_OCRBL:
+        retval = t16->ocrbl;
+        break;
+    case T16_OCRBH:
+        retval = t16->ocrbh;
+        break;
+    case T16_OCRCL:
+        retval = t16->ocrcl;
+        break;
+    case T16_OCRCH:
+        retval = t16->ocrch;
+        break;
+    default:
+        break;
+    }
+    return (uint64_t)retval;
+}
+
+static void avr_timer16_write(void *opaque, hwaddr offset,
+                              uint64_t val64, unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    uint8_t val8 = (uint8_t)val64;
+    uint8_t prev_clk_src = CLKSRC(t16);
+
+    DB_PRINT("write %d to offset %d", val8, (uint8_t)offset);
+
+    switch (offset) {
+    case T16_CRA:
+        t16->cra = val8;
+        if (t16->cra & T16_CRA_OC_CONF) {
+            ERROR("output compare pins unsupported");
+        }
+        break;
+    case T16_CRB:
+        t16->crb = val8;
+        if (t16->crb & T16_CRB_ICNC) {
+            ERROR("input capture noise canceller unsupported");
+        }
+        if (t16->crb & T16_CRB_ICES) {
+            ERROR("input capture unsupported");
+        }
+        if (CLKSRC(t16) != prev_clk_src) {
+            avr_timer16_clksrc_update(t16);
+            if (prev_clk_src == T16_CLKSRC_STOPPED) {
+                t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+            }
+        }
+        break;
+    case T16_CRC:
+        t16->crc = val8;
+        ERROR("output compare pins unsupported");
+        break;
+    case T16_CNTL:
+        /*
+         * CNT is the 16-bit counter value, it must be read/written via
+         * a temporary register (rtmp) to make the read/write atomic.
+         */
+        /* ICR also has this behaviour, and shares rtmp */
+        /*
+         * Writing CNT blocks compare matches for one clock cycle.
+         * Writing CNT to TOP or to an OCR value (if in use) will
+         * skip the relevant interrupt
+         */
+        t16->cntl = val8;
+        t16->cnth = t16->rtmp;
+        avr_timer16_recalc_reset_time(t16);
+        break;
+    case T16_CNTH:
+        t16->rtmp = val8;
+        break;
+    case T16_ICRL:
+        /* ICR can only be written in mode T16_MODE_CTC_ICR */
+        if (MODE(t16) == T16_MODE_CTC_ICR) {
+            t16->icrl = val8;
+            t16->icrh = t16->rtmp;
+        }
+        break;
+    case T16_ICRH:
+        if (MODE(t16) == T16_MODE_CTC_ICR) {
+            t16->rtmp = val8;
+        }
+        break;
+    case T16_OCRAL:
+        /*
+         * OCRn cause the relevant output compare flag to be raised, and
+         * trigger an interrupt, when CNT is equal to the value here
+         */
+        t16->ocral = val8;
+        break;
+    case T16_OCRAH:
+        t16->ocrah = val8;
+        break;
+    case T16_OCRBL:
+        t16->ocrbl = val8;
+        break;
+    case T16_OCRBH:
+        t16->ocrbh = val8;
+        break;
+    case T16_OCRCL:
+        t16->ocrcl = val8;
+        break;
+    case T16_OCRCH:
+        t16->ocrch = val8;
+        break;
+    default:
+        break;
+    }
+    avr_timer16_set_alarm(t16);
+}
+
+static uint64_t avr_timer16_imsk_read(void *opaque,
+                                      hwaddr offset,
+                                      unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    if (offset != 0) {
+        return 0;
+    }
+    return t16->imsk;
+}
+
+static void avr_timer16_imsk_write(void *opaque, hwaddr offset,
+                                   uint64_t val64, unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    if (offset != 0) {
+        return;
+    }
+    t16->imsk = (uint8_t)val64;
+}
+
+static uint64_t avr_timer16_ifr_read(void *opaque,
+                                     hwaddr offset,
+                                     unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    if (offset != 0) {
+        return 0;
+    }
+    return t16->ifr;
+}
+
+static void avr_timer16_ifr_write(void *opaque, hwaddr offset,
+                                  uint64_t val64, unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    if (offset != 0) {
+        return;
+    }
+    t16->ifr = (uint8_t)val64;
+}
+
+static const MemoryRegionOps avr_timer16_ops = {
+    .read = avr_timer16_read,
+    .write = avr_timer16_write,
+    .endianness = DEVICE_NATIVE_ENDIAN
+};
+
+static const MemoryRegionOps avr_timer16_imsk_ops = {
+    .read = avr_timer16_imsk_read,
+    .write = avr_timer16_imsk_write,
+    .endianness = DEVICE_NATIVE_ENDIAN
+};
+
+static const MemoryRegionOps avr_timer16_ifr_ops = {
+    .read = avr_timer16_ifr_read,
+    .write = avr_timer16_ifr_write,
+    .endianness = DEVICE_NATIVE_ENDIAN
+};
+
+static Property avr_timer16_properties[] = {
+    DEFINE_PROP_UINT64("cpu-frequency-hz", struct AVRTimer16State,
+                       cpu_freq_hz, 20000000),
+    DEFINE_PROP_END_OF_LIST(),
+};
+
+static void avr_timer16_init(Object *obj)
+{
+    AVRTimer16State *s = AVR_TIMER16(obj);
+
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->capt_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compa_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compb_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compc_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->ovf_irq);
+
+    memory_region_init_io(&s->iomem, obj, &avr_timer16_ops,
+                          s, TYPE_AVR_TIMER16, 0xe);
+    memory_region_init_io(&s->imsk_iomem, obj, &avr_timer16_imsk_ops,
+                          s, TYPE_AVR_TIMER16, 0x1);
+    memory_region_init_io(&s->ifr_iomem, obj, &avr_timer16_ifr_ops,
+                          s, TYPE_AVR_TIMER16, 0x1);
+
+    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
+    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->imsk_iomem);
+    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->ifr_iomem);
+
+    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, avr_timer16_interrupt, s);
+}
+
+static void avr_timer16_class_init(ObjectClass *klass, void *data)
+{
+    DeviceClass *dc = DEVICE_CLASS(klass);
+
+    dc->reset = avr_timer16_reset;
+    dc->props = avr_timer16_properties;
+}
+
+static const TypeInfo avr_timer16_info = {
+    .name          = TYPE_AVR_TIMER16,
+    .parent        = TYPE_SYS_BUS_DEVICE,
+    .instance_size = sizeof(AVRTimer16State),
+    .instance_init = avr_timer16_init,
+    .class_init    = avr_timer16_class_init,
+};
+
+static void avr_timer16_register_types(void)
+{
+    type_register_static(&avr_timer16_info);
+}
+
+type_init(avr_timer16_register_types)
diff --git a/include/hw/char/avr_usart.h b/include/hw/char/avr_usart.h
new file mode 100644
index 0000000000..ba28fbe5d1
--- /dev/null
+++ b/include/hw/char/avr_usart.h
@@ -0,0 +1,99 @@
+/*
+ * AVR USART
+ *
+ * Copyright (c) 2018 University of Kent
+ * Author: Sarah Harris
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#ifndef HW_AVR_USART_H
+#define HW_AVR_USART_H
+
+#include "hw/sysbus.h"
+#include "chardev/char-fe.h"
+#include "hw/hw.h"
+
+/* Offsets of registers. */
+#define USART_DR   0x06
+#define USART_CSRA  0x00
+#define USART_CSRB  0x01
+#define USART_CSRC  0x02
+#define USART_BRRH 0x05
+#define USART_BRRL 0x04
+
+/* Relevant bits in regiters. */
+#define USART_CSRA_RXC    (1 << 7)
+#define USART_CSRA_TXC    (1 << 6)
+#define USART_CSRA_DRE    (1 << 5)
+#define USART_CSRA_MPCM   (1 << 0)
+
+#define USART_CSRB_RXCIE  (1 << 7)
+#define USART_CSRB_TXCIE  (1 << 6)
+#define USART_CSRB_DREIE  (1 << 5)
+#define USART_CSRB_RXEN   (1 << 4)
+#define USART_CSRB_TXEN   (1 << 3)
+#define USART_CSRB_CSZ2   (1 << 2)
+#define USART_CSRB_RXB8   (1 << 1)
+#define USART_CSRB_TXB8   (1 << 0)
+
+#define USART_CSRC_MSEL1  (1 << 7)
+#define USART_CSRC_MSEL0  (1 << 6)
+#define USART_CSRC_PM1    (1 << 5)
+#define USART_CSRC_PM0    (1 << 4)
+#define USART_CSRC_CSZ1   (1 << 2)
+#define USART_CSRC_CSZ0   (1 << 1)
+
+#define TYPE_AVR_USART "avr-usart"
+#define AVR_USART(obj) \
+    OBJECT_CHECK(AVRUsartState, (obj), TYPE_AVR_USART)
+
+typedef struct {
+    /* <private> */
+    SysBusDevice parent_obj;
+
+    /* <public> */
+    MemoryRegion mmio;
+
+    CharBackend chr;
+
+    /* Address of Power Reduction Register and bit that controls this UART */
+    hwaddr prr_address;
+    uint8_t prr_mask;
+
+    uint8_t data;
+    bool data_valid;
+    uint8_t char_mask;
+    /* Control and Status Registers */
+    uint8_t csra;
+    uint8_t csrb;
+    uint8_t csrc;
+    /* Baud Rate Registers (low/high byte) */
+    uint8_t brrh;
+    uint8_t brrl;
+
+    /* Receive Complete */
+    qemu_irq rxc_irq;
+    /* Transmit Complete */
+    qemu_irq txc_irq;
+    /* Data Register Empty */
+    qemu_irq dre_irq;
+} AVRUsartState;
+
+#endif /* HW_AVR_USART_H */
diff --git a/include/hw/timer/avr_timer16.h b/include/hw/timer/avr_timer16.h
new file mode 100644
index 0000000000..301e36a154
--- /dev/null
+++ b/include/hw/timer/avr_timer16.h
@@ -0,0 +1,99 @@
+/*
+ * AVR 16 bit timer
+ *
+ * Copyright (c) 2018 University of Kent
+ * Author: Ed Robbins
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+/*
+ * Driver for 16 bit timers on 8 bit AVR devices.
+ * Note:
+ * On ATmega640/V-1280/V-1281/V-2560/V-2561/V timers 1, 3, 4 and 5 are 16 bit
+ */
+
+#ifndef AVR_TIMER16_H
+#define AVR_TIMER16_H
+
+#include "hw/sysbus.h"
+#include "qemu/timer.h"
+#include "hw/hw.h"
+
+enum NextInterrupt {
+    OVERFLOW,
+    COMPA,
+    COMPB,
+    COMPC,
+    CAPT
+};
+
+#define TYPE_AVR_TIMER16 "avr-timer16"
+#define AVR_TIMER16(obj) \
+    OBJECT_CHECK(AVRTimer16State, (obj), TYPE_AVR_TIMER16)
+
+typedef struct AVRTimer16State {
+    /* <private> */
+    SysBusDevice parent_obj;
+
+    /* <public> */
+    MemoryRegion iomem;
+    MemoryRegion imsk_iomem;
+    MemoryRegion ifr_iomem;
+    QEMUTimer *timer;
+    qemu_irq capt_irq;
+    qemu_irq compa_irq;
+    qemu_irq compb_irq;
+    qemu_irq compc_irq;
+    qemu_irq ovf_irq;
+
+    /* Address of Power Reduction Register and bit that controls this timer */
+    hwaddr prr_address;
+    uint8_t prr_mask;
+
+    /* registers */
+    uint8_t cra;
+    uint8_t crb;
+    uint8_t crc;
+    uint8_t cntl;
+    uint8_t cnth;
+    uint8_t icrl;
+    uint8_t icrh;
+    uint8_t ocral;
+    uint8_t ocrah;
+    uint8_t ocrbl;
+    uint8_t ocrbh;
+    uint8_t ocrcl;
+    uint8_t ocrch;
+    /*
+     * Reads and writes to CNT and ICR utilise a bizarre temporary
+     * register, which we emulate
+     */
+    uint8_t rtmp;
+    uint8_t imsk;
+    uint8_t ifr;
+
+    uint64_t cpu_freq_hz;
+    uint64_t freq_hz;
+    uint64_t period_ns;
+    uint64_t reset_time_ns;
+    enum NextInterrupt next_interrupt;
+} AVRTimer16State;
+
+#endif /* AVR_TIMER16_H */
-- 
2.21.0

^ permalink raw reply related	[flat|nested] 31+ messages in thread

* [Qemu-devel] [PATCH v1 6/8] target/avr: Add limited support for USART and 16 bit timer peripherals
@ 2019-05-04  8:36   ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, mrolnik, A.M.King, E.J.C.Robbins

These were designed to facilitate testing but should provide enough function to be useful in other contexts.
Only a subset of the functions of each peripheral is implemented, mainly due to the lack of a standard way to handle electrical connections (like GPIO pins).

Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
---
 hw/char/Kconfig                |   3 +
 hw/char/Makefile.objs          |   1 +
 hw/char/avr_usart.c            | 316 ++++++++++++++++++
 hw/timer/Kconfig               |   3 +
 hw/timer/Makefile.objs         |   1 +
 hw/timer/avr_timer16.c         | 587 +++++++++++++++++++++++++++++++++
 include/hw/char/avr_usart.h    |  99 ++++++
 include/hw/timer/avr_timer16.h |  99 ++++++
 8 files changed, 1109 insertions(+)
 create mode 100644 hw/char/avr_usart.c
 create mode 100644 hw/timer/avr_timer16.c
 create mode 100644 include/hw/char/avr_usart.h
 create mode 100644 include/hw/timer/avr_timer16.h

diff --git a/hw/char/Kconfig b/hw/char/Kconfig
index 6360c9fffa..7af2c6dd21 100644
--- a/hw/char/Kconfig
+++ b/hw/char/Kconfig
@@ -40,3 +40,6 @@ config SCLPCONSOLE
 
 config TERMINAL3270
     bool
+
+config AVR_USART
+    bool
diff --git a/hw/char/Makefile.objs b/hw/char/Makefile.objs
index cf086e7114..962556d00d 100644
--- a/hw/char/Makefile.objs
+++ b/hw/char/Makefile.objs
@@ -20,6 +20,7 @@ obj-$(CONFIG_PSERIES) += spapr_vty.o
 obj-$(CONFIG_DIGIC) += digic-uart.o
 obj-$(CONFIG_STM32F2XX_USART) += stm32f2xx_usart.o
 obj-$(CONFIG_RASPI) += bcm2835_aux.o
+obj-$(CONFIG_AVR_USART) += avr_usart.o
 
 common-obj-$(CONFIG_CMSDK_APB_UART) += cmsdk-apb-uart.o
 common-obj-$(CONFIG_ETRAXFS) += etraxfs_ser.o
diff --git a/hw/char/avr_usart.c b/hw/char/avr_usart.c
new file mode 100644
index 0000000000..26c711336b
--- /dev/null
+++ b/hw/char/avr_usart.c
@@ -0,0 +1,316 @@
+/*
+ * AVR USART
+ *
+ * Copyright (c) 2018 University of Kent
+ * Author: Sarah Harris
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "qemu/osdep.h"
+#include "hw/char/avr_usart.h"
+#include "qemu/log.h"
+
+static int avr_usart_can_receive(void *opaque)
+{
+    AVRUsartState *usart = opaque;
+
+    if (usart->data_valid || !(usart->csrb & USART_CSRB_RXEN)) {
+        return 0;
+    }
+    return 1;
+}
+
+static void avr_usart_receive(void *opaque, const uint8_t *buffer, int size)
+{
+    AVRUsartState *usart = opaque;
+    assert(size == 1);
+    assert(!usart->data_valid);
+    usart->data = buffer[0];
+    usart->data_valid = true;
+    usart->csra |= USART_CSRA_RXC;
+    if (usart->csrb & USART_CSRB_RXCIE) {
+        qemu_set_irq(usart->rxc_irq, 1);
+    }
+}
+
+static void update_char_mask(AVRUsartState *usart)
+{
+    uint8_t mode = ((usart->csrc & USART_CSRC_CSZ0) ? 1 : 0) |
+        ((usart->csrc & USART_CSRC_CSZ1) ? 2 : 0) |
+        ((usart->csrb & USART_CSRB_CSZ2) ? 4 : 0);
+    switch (mode) {
+    case 0:
+        usart->char_mask = 0b11111;
+        break;
+    case 1:
+        usart->char_mask = 0b111111;
+        break;
+    case 2:
+        usart->char_mask = 0b1111111;
+        break;
+    case 3:
+        usart->char_mask = 0b11111111;
+        break;
+    case 4:
+        /* Fallthrough. */
+    case 5:
+        /* Fallthrough. */
+    case 6:
+        qemu_log_mask(
+            LOG_GUEST_ERROR,
+            "%s: Reserved character size 0x%x\n",
+            __func__,
+            mode);
+        break;
+    case 7:
+        qemu_log_mask(
+            LOG_GUEST_ERROR,
+            "%s: Nine bit character size not supported (forcing eight)\n",
+            __func__);
+        usart->char_mask = 0b11111111;
+        break;
+    default:
+        assert(0);
+    }
+}
+
+static void avr_usart_reset(DeviceState *dev)
+{
+    AVRUsartState *usart = AVR_USART(dev);
+    usart->data_valid = false;
+    usart->csra = 0b00100000;
+    usart->csrb = 0b00000000;
+    usart->csrc = 0b00000110;
+    usart->brrl = 0;
+    usart->brrh = 0;
+    update_char_mask(usart);
+    qemu_set_irq(usart->rxc_irq, 0);
+    qemu_set_irq(usart->txc_irq, 0);
+    qemu_set_irq(usart->dre_irq, 0);
+}
+
+static uint64_t avr_usart_read(void *opaque, hwaddr addr, unsigned int size)
+{
+    AVRUsartState *usart = opaque;
+    uint8_t prr;
+    uint8_t data;
+    assert(size == 1);
+
+    cpu_physical_memory_read(usart->prr_address, &prr, 1);
+    if (prr & usart->prr_mask) {
+        /* USART disabled, ignore. */
+        avr_usart_reset(DEVICE(usart));
+        return 0;
+    }
+
+    switch (addr) {
+    case USART_DR:
+        if (!(usart->csrb & USART_CSRB_RXEN)) {
+            /* Receiver disabled, ignore. */
+            return 0;
+        }
+        if (usart->data_valid) {
+            data = usart->data & usart->char_mask;
+            usart->data_valid = false;
+        } else {
+            data = 0;
+        }
+        usart->csra &= 0xff ^ USART_CSRA_RXC;
+        qemu_set_irq(usart->rxc_irq, 0);
+        qemu_chr_fe_accept_input(&usart->chr);
+        return data;
+    case USART_CSRA:
+        return usart->csra;
+    case USART_CSRB:
+        return usart->csrb;
+    case USART_CSRC:
+        return usart->csrc;
+    case USART_BRRL:
+        return usart->brrl;
+    case USART_BRRH:
+        return usart->brrh;
+    default:
+        qemu_log_mask(
+            LOG_GUEST_ERROR,
+            "%s: Bad offset 0x%"HWADDR_PRIx"\n",
+            __func__,
+            addr);
+    }
+    return 0;
+}
+
+static void avr_usart_write(void *opaque, hwaddr addr, uint64_t value,
+                                unsigned int size)
+{
+    AVRUsartState *usart = opaque;
+    uint8_t mask;
+    uint8_t data;
+    assert((value & 0xff) == value);
+    assert(size == 1);
+
+    uint8_t prr;
+    cpu_physical_memory_read(usart->prr_address, &prr, 1);
+    if (prr & usart->prr_mask) {
+        /* USART disabled, ignore. */
+        avr_usart_reset(DEVICE(usart));
+        return;
+    }
+
+    switch (addr) {
+    case USART_DR:
+        if (!(usart->csrb & USART_CSRB_TXEN)) {
+            /* Transmitter disabled, ignore. */
+            return;
+        }
+        usart->csra |= USART_CSRA_TXC;
+        usart->csra |= USART_CSRA_DRE;
+        if (usart->csrb & USART_CSRB_TXCIE) {
+            qemu_set_irq(usart->txc_irq, 1);
+            usart->csra &= 0xff ^ USART_CSRA_TXC;
+        }
+        if (usart->csrb & USART_CSRB_DREIE) {
+            qemu_set_irq(usart->dre_irq, 1);
+        }
+        data = value;
+        qemu_chr_fe_write_all(&usart->chr, &data, 1);
+        break;
+    case USART_CSRA:
+        mask = 0b01000011;
+        /* Mask read-only bits. */
+        value = (value & mask) | (usart->csra & (0xff ^ mask));
+        usart->csra = value;
+        if (value & USART_CSRA_TXC) {
+            usart->csra ^= USART_CSRA_TXC;
+            qemu_set_irq(usart->txc_irq, 0);
+        }
+        if (value & USART_CSRA_MPCM) {
+            qemu_log_mask(
+                LOG_GUEST_ERROR,
+                "%s: MPCM not supported by USART\n",
+                __func__);
+        }
+        break;
+    case USART_CSRB:
+        mask = 0b11111101;
+        /* Mask read-only bits. */
+        value = (value & mask) | (usart->csrb & (0xff ^ mask));
+        usart->csrb = value;
+        if (!(value & USART_CSRB_RXEN)) {
+            /* Receiver disabled, flush input buffer. */
+            usart->data_valid = false;
+        }
+        qemu_set_irq(usart->rxc_irq,
+            ((value & USART_CSRB_RXCIE) &&
+            (usart->csra & USART_CSRA_RXC)) ? 1 : 0);
+        qemu_set_irq(usart->txc_irq,
+            ((value & USART_CSRB_TXCIE) &&
+            (usart->csra & USART_CSRA_TXC)) ? 1 : 0);
+        qemu_set_irq(usart->dre_irq,
+            ((value & USART_CSRB_DREIE) &&
+            (usart->csra & USART_CSRA_DRE)) ? 1 : 0);
+        update_char_mask(usart);
+        break;
+    case USART_CSRC:
+        usart->csrc = value;
+        if ((value & USART_CSRC_MSEL1) && (value & USART_CSRC_MSEL0)) {
+            qemu_log_mask(
+                LOG_GUEST_ERROR,
+                "%s: SPI mode not supported by USART\n",
+                __func__);
+        }
+        if ((value & USART_CSRC_MSEL1) && !(value & USART_CSRC_MSEL0)) {
+            qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad USART mode\n", __func__);
+        }
+        if (!(value & USART_CSRC_PM1) && (value & USART_CSRC_PM0)) {
+            qemu_log_mask(
+                LOG_GUEST_ERROR,
+                "%s: Bad USART parity mode\n",
+                __func__);
+        }
+        update_char_mask(usart);
+        break;
+    case USART_BRRL:
+        usart->brrl = value;
+        break;
+    case USART_BRRH:
+        usart->brrh = value & 0b00001111;
+        break;
+    default:
+        qemu_log_mask(
+            LOG_GUEST_ERROR,
+            "%s: Bad offset 0x%"HWADDR_PRIx"\n",
+            __func__,
+            addr);
+    }
+}
+
+static const MemoryRegionOps avr_usart_ops = {
+    .read = avr_usart_read,
+    .write = avr_usart_write,
+    .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+static Property avr_usart_properties[] = {
+    DEFINE_PROP_CHR("chardev", AVRUsartState, chr),
+    DEFINE_PROP_END_OF_LIST(),
+};
+
+static void avr_usart_init(Object *obj)
+{
+    AVRUsartState *s = AVR_USART(obj);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rxc_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->dre_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->txc_irq);
+    memory_region_init_io(&s->mmio, obj, &avr_usart_ops, s, TYPE_AVR_USART, 7);
+    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
+}
+
+static void avr_usart_realize(DeviceState *dev, Error **errp)
+{
+    AVRUsartState *s = AVR_USART(dev);
+    qemu_chr_fe_set_handlers(&s->chr, avr_usart_can_receive,
+                             avr_usart_receive, NULL, NULL,
+                             s, NULL, true);
+    avr_usart_reset(dev);
+}
+
+static void avr_usart_class_init(ObjectClass *klass, void *data)
+{
+    DeviceClass *dc = DEVICE_CLASS(klass);
+
+    dc->reset = avr_usart_reset;
+    dc->props = avr_usart_properties;
+    dc->realize = avr_usart_realize;
+}
+
+static const TypeInfo avr_usart_info = {
+    .name          = TYPE_AVR_USART,
+    .parent        = TYPE_SYS_BUS_DEVICE,
+    .instance_size = sizeof(AVRUsartState),
+    .instance_init = avr_usart_init,
+    .class_init    = avr_usart_class_init,
+};
+
+static void avr_usart_register_types(void)
+{
+    type_register_static(&avr_usart_info);
+}
+
+type_init(avr_usart_register_types)
diff --git a/hw/timer/Kconfig b/hw/timer/Kconfig
index 51921eb63f..ad754df750 100644
--- a/hw/timer/Kconfig
+++ b/hw/timer/Kconfig
@@ -61,3 +61,6 @@ config CMSDK_APB_TIMER
 config CMSDK_APB_DUALTIMER
     bool
     select PTIMER
+
+config AVR_TIMER16
+    bool
diff --git a/hw/timer/Makefile.objs b/hw/timer/Makefile.objs
index 0e9a4530f8..bf1ffcc52d 100644
--- a/hw/timer/Makefile.objs
+++ b/hw/timer/Makefile.objs
@@ -35,6 +35,7 @@ obj-$(CONFIG_PXA2XX) += pxa2xx_timer.o
 obj-$(CONFIG_SH4) += sh_timer.o
 obj-$(CONFIG_DIGIC) += digic-timer.o
 obj-$(CONFIG_MIPS_CPS) += mips_gictimer.o
+obj-$(CONFIG_AVR_TIMER16) += avr_timer16.o
 
 obj-$(CONFIG_MC146818RTC) += mc146818rtc.o
 
diff --git a/hw/timer/avr_timer16.c b/hw/timer/avr_timer16.c
new file mode 100644
index 0000000000..89f8f55eaa
--- /dev/null
+++ b/hw/timer/avr_timer16.c
@@ -0,0 +1,587 @@
+/*
+ * AVR 16 bit timer
+ *
+ * Copyright (c) 2018 University of Kent
+ * Author: Ed Robbins
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+/*
+ * Driver for 16 bit timers on 8 bit AVR devices.
+ * Note:
+ * ATmega640/V-1280/V-1281/V-2560/V-2561/V timers 1, 3, 4 and 5 are 16 bit
+ */
+
+/*
+ * XXX TODO: Power Reduction Register support
+ *           prescaler pause support
+ *           PWM modes, GPIO, output capture pins, input compare pin
+ */
+
+#include "qemu/osdep.h"
+#include "hw/timer/avr_timer16.h"
+#include "qemu/log.h"
+
+/* Register offsets */
+#define T16_CRA     0x0
+#define T16_CRB     0x1
+#define T16_CRC     0x2
+#define T16_CNTL    0x4
+#define T16_CNTH    0x5
+#define T16_ICRL    0x6
+#define T16_ICRH    0x7
+#define T16_OCRAL   0x8
+#define T16_OCRAH   0x9
+#define T16_OCRBL   0xa
+#define T16_OCRBH   0xb
+#define T16_OCRCL   0xc
+#define T16_OCRCH   0xd
+
+/* Field masks */
+#define T16_CRA_WGM01   0x3
+#define T16_CRA_COMC    0xc
+#define T16_CRA_COMB    0x30
+#define T16_CRA_COMA    0xc0
+#define T16_CRA_OC_CONF \
+    (T16_CRA_COMA | T16_CRA_COMB | T16_CRA_COMC)
+
+#define T16_CRB_CS      0x7
+#define T16_CRB_WGM23   0x18
+#define T16_CRB_ICES    0x40
+#define T16_CRB_ICNC    0x80
+
+#define T16_CRC_FOCC    0x20
+#define T16_CRC_FOCB    0x40
+#define T16_CRC_FOCA    0x80
+
+/* Fields masks both TIMSK and TIFR (interrupt mask/flag registers) */
+#define T16_INT_TOV    0x1 /* Timer overflow */
+#define T16_INT_OCA    0x2 /* Output compare A */
+#define T16_INT_OCB    0x4 /* Output compare B */
+#define T16_INT_OCC    0x8 /* Output compare C */
+#define T16_INT_IC     0x20 /* Input capture */
+
+/* Clock source values */
+#define T16_CLKSRC_STOPPED     0
+#define T16_CLKSRC_DIV1        1
+#define T16_CLKSRC_DIV8        2
+#define T16_CLKSRC_DIV64       3
+#define T16_CLKSRC_DIV256      4
+#define T16_CLKSRC_DIV1024     5
+#define T16_CLKSRC_EXT_FALLING 6
+#define T16_CLKSRC_EXT_RISING  7
+
+/* Timer mode values (not including PWM modes) */
+#define T16_MODE_NORMAL     0
+#define T16_MODE_CTC_OCRA   4
+#define T16_MODE_CTC_ICR    12
+
+/* Accessors */
+#define CLKSRC(t16) (t16->crb & T16_CRB_CS)
+#define MODE(t16)   (((t16->crb & T16_CRB_WGM23) >> 1) | \
+                     (t16->cra & T16_CRA_WGM01))
+#define CNT(t16)    VAL16(t16->cntl, t16->cnth)
+#define OCRA(t16)   VAL16(t16->ocral, t16->ocrah)
+#define OCRB(t16)   VAL16(t16->ocrbl, t16->ocrbh)
+#define OCRC(t16)   VAL16(t16->ocrcl, t16->ocrch)
+#define ICR(t16)    VAL16(t16->icrl, t16->icrh)
+
+/* Helper macros */
+#define VAL16(l, h) ((h << 8) | l)
+#define ERROR(fmt, args...) \
+    qemu_log_mask(LOG_GUEST_ERROR, "%s: " fmt "\n", __func__, ## args)
+#define DB_PRINT(fmt, args...) /* Nothing */
+/*#define DB_PRINT(fmt, args...) printf("%s: " fmt "\n", __func__, ## args)*/
+
+static inline int64_t avr_timer16_ns_to_ticks(AVRTimer16State *t16, int64_t t)
+{
+    if (t16->period_ns == 0) {
+        return 0;
+    }
+    return t / t16->period_ns;
+}
+
+static void avr_timer16_update_cnt(AVRTimer16State *t16)
+{
+    uint16_t cnt;
+    cnt = avr_timer16_ns_to_ticks(t16, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
+                                       t16->reset_time_ns);
+    t16->cntl = (uint8_t)(cnt & 0xff);
+    t16->cnth = (uint8_t)((cnt & 0xff00) >> 8);
+}
+
+static inline void avr_timer16_recalc_reset_time(AVRTimer16State *t16)
+{
+    t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
+                         CNT(t16) * t16->period_ns;
+}
+
+static void avr_timer16_clock_reset(AVRTimer16State *t16)
+{
+    t16->cntl = 0;
+    t16->cnth = 0;
+    t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+}
+
+static void avr_timer16_clksrc_update(AVRTimer16State *t16)
+{
+    uint16_t divider = 0;
+    switch (CLKSRC(t16)) {
+    case T16_CLKSRC_EXT_FALLING:
+    case T16_CLKSRC_EXT_RISING:
+        ERROR("external clock source unsupported");
+        goto end;
+    case T16_CLKSRC_STOPPED:
+        goto end;
+    case T16_CLKSRC_DIV1:
+        divider = 1;
+        break;
+    case T16_CLKSRC_DIV8:
+        divider = 8;
+        break;
+    case T16_CLKSRC_DIV64:
+        divider = 64;
+        break;
+    case T16_CLKSRC_DIV256:
+        divider = 256;
+        break;
+    case T16_CLKSRC_DIV1024:
+        divider = 1024;
+        break;
+    default:
+        goto end;
+    }
+    t16->freq_hz = t16->cpu_freq_hz / divider;
+    t16->period_ns = 1000000000ULL / t16->freq_hz;
+    DB_PRINT("Timer frequency %" PRIu64 " hz, period %" PRIu64 " ns (%f s)",
+             t16->freq_hz, t16->period_ns, 1 / (double)t16->freq_hz);
+end:
+    return;
+}
+
+static void avr_timer16_set_alarm(AVRTimer16State *t16)
+{
+    if (CLKSRC(t16) == T16_CLKSRC_EXT_FALLING ||
+        CLKSRC(t16) == T16_CLKSRC_EXT_RISING ||
+        CLKSRC(t16) == T16_CLKSRC_STOPPED) {
+        /* Timer is disabled or set to external clock source (unsupported) */
+        goto end;
+    }
+
+    uint64_t alarm_offset = 0xffff;
+    enum NextInterrupt next_interrupt = OVERFLOW;
+
+    switch (MODE(t16)) {
+    case T16_MODE_NORMAL:
+        /* Normal mode */
+        if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16) &&
+            (t16->imsk & T16_INT_OCA)) {
+            alarm_offset = OCRA(t16);
+            next_interrupt = COMPA;
+        }
+        break;
+    case T16_MODE_CTC_OCRA:
+        /* CTC mode, top = ocra */
+        if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16)) {
+            alarm_offset = OCRA(t16);
+            next_interrupt = COMPA;
+        }
+       break;
+    case T16_MODE_CTC_ICR:
+        /* CTC mode, top = icr */
+        if (ICR(t16) < alarm_offset && ICR(t16) > CNT(t16)) {
+            alarm_offset = ICR(t16);
+            next_interrupt = CAPT;
+        }
+        if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16) &&
+            (t16->imsk & T16_INT_OCA)) {
+            alarm_offset = OCRA(t16);
+            next_interrupt = COMPA;
+        }
+        break;
+    default:
+        ERROR("pwm modes are unsupported");
+        goto end;
+    }
+    if (OCRB(t16) < alarm_offset && OCRB(t16) > CNT(t16) &&
+        (t16->imsk & T16_INT_OCB)) {
+        alarm_offset = OCRB(t16);
+        next_interrupt = COMPB;
+    }
+    if (OCRC(t16) < alarm_offset && OCRB(t16) > CNT(t16) &&
+        (t16->imsk & T16_INT_OCC)) {
+        alarm_offset = OCRB(t16);
+        next_interrupt = COMPC;
+    }
+    alarm_offset -= CNT(t16);
+
+    t16->next_interrupt = next_interrupt;
+    uint64_t alarm_ns =
+        t16->reset_time_ns + ((CNT(t16) + alarm_offset) * t16->period_ns);
+    timer_mod(t16->timer, alarm_ns);
+
+    DB_PRINT("next alarm %" PRIu64 " ns from now",
+        alarm_offset * t16->period_ns);
+
+end:
+    return;
+}
+
+static void avr_timer16_interrupt(void *opaque)
+{
+    AVRTimer16State *t16 = opaque;
+    uint8_t mode = MODE(t16);
+
+    avr_timer16_update_cnt(t16);
+
+    if (CLKSRC(t16) == T16_CLKSRC_EXT_FALLING ||
+        CLKSRC(t16) == T16_CLKSRC_EXT_RISING ||
+        CLKSRC(t16) == T16_CLKSRC_STOPPED) {
+        /* Timer is disabled or set to external clock source (unsupported) */
+        return;
+    }
+
+    DB_PRINT("interrupt, cnt = %d", CNT(t16));
+
+    /* Counter overflow */
+    if (t16->next_interrupt == OVERFLOW) {
+        DB_PRINT("0xffff overflow");
+        avr_timer16_clock_reset(t16);
+        if (t16->imsk & T16_INT_TOV) {
+            t16->ifr |= T16_INT_TOV;
+            qemu_set_irq(t16->ovf_irq, 1);
+        }
+    }
+    /* Check for ocra overflow in CTC mode */
+    if (mode == T16_MODE_CTC_OCRA && t16->next_interrupt == COMPA) {
+        DB_PRINT("CTC OCRA overflow");
+        avr_timer16_clock_reset(t16);
+    }
+    /* Check for icr overflow in CTC mode */
+    if (mode == T16_MODE_CTC_ICR && t16->next_interrupt == CAPT) {
+        DB_PRINT("CTC ICR overflow");
+        avr_timer16_clock_reset(t16);
+        if (t16->imsk & T16_INT_IC) {
+            t16->ifr |= T16_INT_IC;
+            qemu_set_irq(t16->capt_irq, 1);
+        }
+    }
+    /* Check for output compare interrupts */
+    if (t16->imsk & T16_INT_OCA && t16->next_interrupt == COMPA) {
+        t16->ifr |= T16_INT_OCA;
+        qemu_set_irq(t16->compa_irq, 1);
+    }
+    if (t16->imsk & T16_INT_OCB && t16->next_interrupt == COMPB) {
+        t16->ifr |= T16_INT_OCB;
+        qemu_set_irq(t16->compb_irq, 1);
+    }
+    if (t16->imsk & T16_INT_OCC && t16->next_interrupt == COMPC) {
+        t16->ifr |= T16_INT_OCC;
+        qemu_set_irq(t16->compc_irq, 1);
+    }
+    avr_timer16_set_alarm(t16);
+}
+
+static void avr_timer16_reset(DeviceState *dev)
+{
+    AVRTimer16State *t16 = AVR_TIMER16(dev);
+
+    avr_timer16_clock_reset(t16);
+    avr_timer16_clksrc_update(t16);
+    avr_timer16_set_alarm(t16);
+
+    qemu_set_irq(t16->capt_irq, 0);
+    qemu_set_irq(t16->compa_irq, 0);
+    qemu_set_irq(t16->compb_irq, 0);
+    qemu_set_irq(t16->compc_irq, 0);
+    qemu_set_irq(t16->ovf_irq, 0);
+}
+
+static uint64_t avr_timer16_read(void *opaque, hwaddr offset, unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    uint8_t retval = 0;
+
+    switch (offset) {
+    case T16_CRA:
+        retval = t16->cra;
+        break;
+    case T16_CRB:
+        retval = t16->crb;
+        break;
+    case T16_CRC:
+        retval = t16->crc;
+        break;
+    case T16_CNTL:
+        avr_timer16_update_cnt(t16);
+        t16->rtmp = t16->cnth;
+        retval = t16->cntl;
+        break;
+    case T16_CNTH:
+        retval = t16->rtmp;
+        break;
+    case T16_ICRL:
+        /*
+         * The timer copies cnt to icr when the input capture pin changes
+         * state or when the analog comparator has a match. We don't
+         * emulate this behaviour. We do support it's use for defining a
+         * TOP value in T16_MODE_CTC_ICR
+         */
+        t16->rtmp = t16->icrh;
+        retval = t16->icrl;
+        break;
+    case T16_ICRH:
+        retval = t16->rtmp;
+        break;
+    case T16_OCRAL:
+        retval = t16->ocral;
+        break;
+    case T16_OCRAH:
+        retval = t16->ocrah;
+        break;
+    case T16_OCRBL:
+        retval = t16->ocrbl;
+        break;
+    case T16_OCRBH:
+        retval = t16->ocrbh;
+        break;
+    case T16_OCRCL:
+        retval = t16->ocrcl;
+        break;
+    case T16_OCRCH:
+        retval = t16->ocrch;
+        break;
+    default:
+        break;
+    }
+    return (uint64_t)retval;
+}
+
+static void avr_timer16_write(void *opaque, hwaddr offset,
+                              uint64_t val64, unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    uint8_t val8 = (uint8_t)val64;
+    uint8_t prev_clk_src = CLKSRC(t16);
+
+    DB_PRINT("write %d to offset %d", val8, (uint8_t)offset);
+
+    switch (offset) {
+    case T16_CRA:
+        t16->cra = val8;
+        if (t16->cra & T16_CRA_OC_CONF) {
+            ERROR("output compare pins unsupported");
+        }
+        break;
+    case T16_CRB:
+        t16->crb = val8;
+        if (t16->crb & T16_CRB_ICNC) {
+            ERROR("input capture noise canceller unsupported");
+        }
+        if (t16->crb & T16_CRB_ICES) {
+            ERROR("input capture unsupported");
+        }
+        if (CLKSRC(t16) != prev_clk_src) {
+            avr_timer16_clksrc_update(t16);
+            if (prev_clk_src == T16_CLKSRC_STOPPED) {
+                t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+            }
+        }
+        break;
+    case T16_CRC:
+        t16->crc = val8;
+        ERROR("output compare pins unsupported");
+        break;
+    case T16_CNTL:
+        /*
+         * CNT is the 16-bit counter value, it must be read/written via
+         * a temporary register (rtmp) to make the read/write atomic.
+         */
+        /* ICR also has this behaviour, and shares rtmp */
+        /*
+         * Writing CNT blocks compare matches for one clock cycle.
+         * Writing CNT to TOP or to an OCR value (if in use) will
+         * skip the relevant interrupt
+         */
+        t16->cntl = val8;
+        t16->cnth = t16->rtmp;
+        avr_timer16_recalc_reset_time(t16);
+        break;
+    case T16_CNTH:
+        t16->rtmp = val8;
+        break;
+    case T16_ICRL:
+        /* ICR can only be written in mode T16_MODE_CTC_ICR */
+        if (MODE(t16) == T16_MODE_CTC_ICR) {
+            t16->icrl = val8;
+            t16->icrh = t16->rtmp;
+        }
+        break;
+    case T16_ICRH:
+        if (MODE(t16) == T16_MODE_CTC_ICR) {
+            t16->rtmp = val8;
+        }
+        break;
+    case T16_OCRAL:
+        /*
+         * OCRn cause the relevant output compare flag to be raised, and
+         * trigger an interrupt, when CNT is equal to the value here
+         */
+        t16->ocral = val8;
+        break;
+    case T16_OCRAH:
+        t16->ocrah = val8;
+        break;
+    case T16_OCRBL:
+        t16->ocrbl = val8;
+        break;
+    case T16_OCRBH:
+        t16->ocrbh = val8;
+        break;
+    case T16_OCRCL:
+        t16->ocrcl = val8;
+        break;
+    case T16_OCRCH:
+        t16->ocrch = val8;
+        break;
+    default:
+        break;
+    }
+    avr_timer16_set_alarm(t16);
+}
+
+static uint64_t avr_timer16_imsk_read(void *opaque,
+                                      hwaddr offset,
+                                      unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    if (offset != 0) {
+        return 0;
+    }
+    return t16->imsk;
+}
+
+static void avr_timer16_imsk_write(void *opaque, hwaddr offset,
+                                   uint64_t val64, unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    if (offset != 0) {
+        return;
+    }
+    t16->imsk = (uint8_t)val64;
+}
+
+static uint64_t avr_timer16_ifr_read(void *opaque,
+                                     hwaddr offset,
+                                     unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    if (offset != 0) {
+        return 0;
+    }
+    return t16->ifr;
+}
+
+static void avr_timer16_ifr_write(void *opaque, hwaddr offset,
+                                  uint64_t val64, unsigned size)
+{
+    assert(size == 1);
+    AVRTimer16State *t16 = opaque;
+    if (offset != 0) {
+        return;
+    }
+    t16->ifr = (uint8_t)val64;
+}
+
+static const MemoryRegionOps avr_timer16_ops = {
+    .read = avr_timer16_read,
+    .write = avr_timer16_write,
+    .endianness = DEVICE_NATIVE_ENDIAN
+};
+
+static const MemoryRegionOps avr_timer16_imsk_ops = {
+    .read = avr_timer16_imsk_read,
+    .write = avr_timer16_imsk_write,
+    .endianness = DEVICE_NATIVE_ENDIAN
+};
+
+static const MemoryRegionOps avr_timer16_ifr_ops = {
+    .read = avr_timer16_ifr_read,
+    .write = avr_timer16_ifr_write,
+    .endianness = DEVICE_NATIVE_ENDIAN
+};
+
+static Property avr_timer16_properties[] = {
+    DEFINE_PROP_UINT64("cpu-frequency-hz", struct AVRTimer16State,
+                       cpu_freq_hz, 20000000),
+    DEFINE_PROP_END_OF_LIST(),
+};
+
+static void avr_timer16_init(Object *obj)
+{
+    AVRTimer16State *s = AVR_TIMER16(obj);
+
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->capt_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compa_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compb_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compc_irq);
+    sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->ovf_irq);
+
+    memory_region_init_io(&s->iomem, obj, &avr_timer16_ops,
+                          s, TYPE_AVR_TIMER16, 0xe);
+    memory_region_init_io(&s->imsk_iomem, obj, &avr_timer16_imsk_ops,
+                          s, TYPE_AVR_TIMER16, 0x1);
+    memory_region_init_io(&s->ifr_iomem, obj, &avr_timer16_ifr_ops,
+                          s, TYPE_AVR_TIMER16, 0x1);
+
+    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
+    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->imsk_iomem);
+    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->ifr_iomem);
+
+    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, avr_timer16_interrupt, s);
+}
+
+static void avr_timer16_class_init(ObjectClass *klass, void *data)
+{
+    DeviceClass *dc = DEVICE_CLASS(klass);
+
+    dc->reset = avr_timer16_reset;
+    dc->props = avr_timer16_properties;
+}
+
+static const TypeInfo avr_timer16_info = {
+    .name          = TYPE_AVR_TIMER16,
+    .parent        = TYPE_SYS_BUS_DEVICE,
+    .instance_size = sizeof(AVRTimer16State),
+    .instance_init = avr_timer16_init,
+    .class_init    = avr_timer16_class_init,
+};
+
+static void avr_timer16_register_types(void)
+{
+    type_register_static(&avr_timer16_info);
+}
+
+type_init(avr_timer16_register_types)
diff --git a/include/hw/char/avr_usart.h b/include/hw/char/avr_usart.h
new file mode 100644
index 0000000000..ba28fbe5d1
--- /dev/null
+++ b/include/hw/char/avr_usart.h
@@ -0,0 +1,99 @@
+/*
+ * AVR USART
+ *
+ * Copyright (c) 2018 University of Kent
+ * Author: Sarah Harris
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#ifndef HW_AVR_USART_H
+#define HW_AVR_USART_H
+
+#include "hw/sysbus.h"
+#include "chardev/char-fe.h"
+#include "hw/hw.h"
+
+/* Offsets of registers. */
+#define USART_DR   0x06
+#define USART_CSRA  0x00
+#define USART_CSRB  0x01
+#define USART_CSRC  0x02
+#define USART_BRRH 0x05
+#define USART_BRRL 0x04
+
+/* Relevant bits in regiters. */
+#define USART_CSRA_RXC    (1 << 7)
+#define USART_CSRA_TXC    (1 << 6)
+#define USART_CSRA_DRE    (1 << 5)
+#define USART_CSRA_MPCM   (1 << 0)
+
+#define USART_CSRB_RXCIE  (1 << 7)
+#define USART_CSRB_TXCIE  (1 << 6)
+#define USART_CSRB_DREIE  (1 << 5)
+#define USART_CSRB_RXEN   (1 << 4)
+#define USART_CSRB_TXEN   (1 << 3)
+#define USART_CSRB_CSZ2   (1 << 2)
+#define USART_CSRB_RXB8   (1 << 1)
+#define USART_CSRB_TXB8   (1 << 0)
+
+#define USART_CSRC_MSEL1  (1 << 7)
+#define USART_CSRC_MSEL0  (1 << 6)
+#define USART_CSRC_PM1    (1 << 5)
+#define USART_CSRC_PM0    (1 << 4)
+#define USART_CSRC_CSZ1   (1 << 2)
+#define USART_CSRC_CSZ0   (1 << 1)
+
+#define TYPE_AVR_USART "avr-usart"
+#define AVR_USART(obj) \
+    OBJECT_CHECK(AVRUsartState, (obj), TYPE_AVR_USART)
+
+typedef struct {
+    /* <private> */
+    SysBusDevice parent_obj;
+
+    /* <public> */
+    MemoryRegion mmio;
+
+    CharBackend chr;
+
+    /* Address of Power Reduction Register and bit that controls this UART */
+    hwaddr prr_address;
+    uint8_t prr_mask;
+
+    uint8_t data;
+    bool data_valid;
+    uint8_t char_mask;
+    /* Control and Status Registers */
+    uint8_t csra;
+    uint8_t csrb;
+    uint8_t csrc;
+    /* Baud Rate Registers (low/high byte) */
+    uint8_t brrh;
+    uint8_t brrl;
+
+    /* Receive Complete */
+    qemu_irq rxc_irq;
+    /* Transmit Complete */
+    qemu_irq txc_irq;
+    /* Data Register Empty */
+    qemu_irq dre_irq;
+} AVRUsartState;
+
+#endif /* HW_AVR_USART_H */
diff --git a/include/hw/timer/avr_timer16.h b/include/hw/timer/avr_timer16.h
new file mode 100644
index 0000000000..301e36a154
--- /dev/null
+++ b/include/hw/timer/avr_timer16.h
@@ -0,0 +1,99 @@
+/*
+ * AVR 16 bit timer
+ *
+ * Copyright (c) 2018 University of Kent
+ * Author: Ed Robbins
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+/*
+ * Driver for 16 bit timers on 8 bit AVR devices.
+ * Note:
+ * On ATmega640/V-1280/V-1281/V-2560/V-2561/V timers 1, 3, 4 and 5 are 16 bit
+ */
+
+#ifndef AVR_TIMER16_H
+#define AVR_TIMER16_H
+
+#include "hw/sysbus.h"
+#include "qemu/timer.h"
+#include "hw/hw.h"
+
+enum NextInterrupt {
+    OVERFLOW,
+    COMPA,
+    COMPB,
+    COMPC,
+    CAPT
+};
+
+#define TYPE_AVR_TIMER16 "avr-timer16"
+#define AVR_TIMER16(obj) \
+    OBJECT_CHECK(AVRTimer16State, (obj), TYPE_AVR_TIMER16)
+
+typedef struct AVRTimer16State {
+    /* <private> */
+    SysBusDevice parent_obj;
+
+    /* <public> */
+    MemoryRegion iomem;
+    MemoryRegion imsk_iomem;
+    MemoryRegion ifr_iomem;
+    QEMUTimer *timer;
+    qemu_irq capt_irq;
+    qemu_irq compa_irq;
+    qemu_irq compb_irq;
+    qemu_irq compc_irq;
+    qemu_irq ovf_irq;
+
+    /* Address of Power Reduction Register and bit that controls this timer */
+    hwaddr prr_address;
+    uint8_t prr_mask;
+
+    /* registers */
+    uint8_t cra;
+    uint8_t crb;
+    uint8_t crc;
+    uint8_t cntl;
+    uint8_t cnth;
+    uint8_t icrl;
+    uint8_t icrh;
+    uint8_t ocral;
+    uint8_t ocrah;
+    uint8_t ocrbl;
+    uint8_t ocrbh;
+    uint8_t ocrcl;
+    uint8_t ocrch;
+    /*
+     * Reads and writes to CNT and ICR utilise a bizarre temporary
+     * register, which we emulate
+     */
+    uint8_t rtmp;
+    uint8_t imsk;
+    uint8_t ifr;
+
+    uint64_t cpu_freq_hz;
+    uint64_t freq_hz;
+    uint64_t period_ns;
+    uint64_t reset_time_ns;
+    enum NextInterrupt next_interrupt;
+} AVRTimer16State;
+
+#endif /* AVR_TIMER16_H */
-- 
2.21.0



^ permalink raw reply related	[flat|nested] 31+ messages in thread

* [Qemu-devel] [PATCH v1 7/8] target/avr: Add example board configuration
@ 2019-05-04  8:36   ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, A.M.King, E.J.C.Robbins, mrolnik

A simple board setup that configures an AVR CPU to run a given firmware image.
This is all that's useful to implement without peripheral emulation as AVR CPUs include a lot of on-board peripherals.

Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
---
 hw/Kconfig           |   1 +
 hw/avr/Kconfig       |   4 +
 hw/avr/Makefile.objs |   1 +
 hw/avr/sample.c      | 177 +++++++++++++++++++++++++++++++++++++++++++
 4 files changed, 183 insertions(+)
 create mode 100644 hw/avr/Kconfig
 create mode 100644 hw/avr/Makefile.objs
 create mode 100644 hw/avr/sample.c

diff --git a/hw/Kconfig b/hw/Kconfig
index 88b9f15007..dc5eb7a038 100644
--- a/hw/Kconfig
+++ b/hw/Kconfig
@@ -41,6 +41,7 @@ source watchdog/Kconfig
 # arch Kconfig
 source arm/Kconfig
 source alpha/Kconfig
+source avr/Kconfig
 source cris/Kconfig
 source hppa/Kconfig
 source i386/Kconfig
diff --git a/hw/avr/Kconfig b/hw/avr/Kconfig
new file mode 100644
index 0000000000..c6ca8fe775
--- /dev/null
+++ b/hw/avr/Kconfig
@@ -0,0 +1,4 @@
+config AVR_SAMPLE
+    bool
+    select AVR_TIMER16
+    select AVR_USART
diff --git a/hw/avr/Makefile.objs b/hw/avr/Makefile.objs
new file mode 100644
index 0000000000..626b7064b3
--- /dev/null
+++ b/hw/avr/Makefile.objs
@@ -0,0 +1 @@
+obj-y += sample.o
diff --git a/hw/avr/sample.c b/hw/avr/sample.c
new file mode 100644
index 0000000000..21b384b3b3
--- /dev/null
+++ b/hw/avr/sample.c
@@ -0,0 +1,177 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+/*
+ *  NOTE:
+ *      This is not a real AVR board, this is an example!
+ *      The CPU is an approximation of an ATmega2560, but is missing various
+ *      built-in peripherals.
+ *
+ *      This example board loads provided binary file into flash memory and
+ *      executes it from 0x00000000 address in the code memory space.
+ *
+ *      Currently used for AVR CPU validation
+ *
+ */
+
+#include "qemu/osdep.h"
+#include "qapi/error.h"
+#include "qemu-common.h"
+#include "cpu.h"
+#include "hw/hw.h"
+#include "sysemu/sysemu.h"
+#include "sysemu/qtest.h"
+#include "ui/console.h"
+#include "hw/boards.h"
+#include "hw/loader.h"
+#include "qemu/error-report.h"
+#include "exec/address-spaces.h"
+#include "include/hw/sysbus.h"
+#include "include/hw/char/avr_usart.h"
+#include "include/hw/timer/avr_timer16.h"
+#include "elf.h"
+
+#define SIZE_FLASH 0x00040000
+#define SIZE_SRAM 0x00002200
+/*
+ * Size of additional "external" memory, as if the AVR were configured to use
+ * an external RAM chip.
+ * Note that the configuration registers that normally enable this feature are
+ * unimplemented.
+ */
+#define SIZE_EXMEM 0x00000000
+
+/* Offsets of periphals in emulated memory space (i.e. not host addresses)  */
+#define PRR0 0x64
+#define PRR1 0x65
+#define USART_BASE 0xc0
+#define USART_PRR PRR0
+#define USART_PRR_MASK 0b00000010
+#define TIMER1_BASE 0x80
+#define TIMER1_IMSK_BASE 0x6f
+#define TIMER1_IFR_BASE 0x36
+#define TIMER1_PRR PRR0
+#define TIMER1_PRR_MASK 0b01000000
+
+/* Interrupt numbers used by peripherals */
+#define TIMER1_CAPT_IRQ 15
+#define TIMER1_COMPA_IRQ 16
+#define TIMER1_COMPB_IRQ 17
+#define TIMER1_COMPC_IRQ 18
+#define TIMER1_OVF_IRQ 19
+
+static void sample_init(MachineState *machine)
+{
+    MemoryRegion *address_space_mem;
+    MemoryRegion *ram;
+    MemoryRegion *flash;
+    AVRCPU *cpu_avr;
+    const char *firmware = NULL;
+    const char *filename;
+    int bytes_loaded;
+    AVRUsartState *usart0;
+    AVRTimer16State *timer1;
+    SysBusDevice *busdev;
+
+    address_space_mem = get_system_memory();
+    ram = g_new(MemoryRegion, 1);
+    flash = g_new(MemoryRegion, 1);
+
+    /* ATmega2560. */
+    cpu_avr = AVR_CPU(cpu_create("avr6-avr"));
+
+    memory_region_allocate_system_memory(
+        ram, NULL, "avr.ram", SIZE_SRAM + SIZE_EXMEM);
+    memory_region_add_subregion(address_space_mem, OFFSET_DATA, ram);
+
+    memory_region_init_rom(flash, NULL, "avr.flash", SIZE_FLASH, &error_fatal);
+    memory_region_add_subregion(address_space_mem, OFFSET_CODE, flash);
+
+    /* USART 0 built-in peripheral */
+    usart0 = AVR_USART(object_new(TYPE_AVR_USART));
+    busdev = SYS_BUS_DEVICE(usart0);
+    sysbus_mmio_map(busdev, 0, OFFSET_DATA + USART_BASE);
+    /*
+     * These IRQ numbers don't match the datasheet because we're counting from
+     * zero and not including reset.
+     */
+    sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(DEVICE(cpu_avr), 24));
+    sysbus_connect_irq(busdev, 1, qdev_get_gpio_in(DEVICE(cpu_avr), 25));
+    sysbus_connect_irq(busdev, 2, qdev_get_gpio_in(DEVICE(cpu_avr), 26));
+    usart0->prr_address = OFFSET_DATA + PRR0;
+    usart0->prr_mask = USART_PRR_MASK;
+    qdev_prop_set_chr(DEVICE(usart0), "chardev", serial_hd(0));
+    object_property_set_bool(OBJECT(usart0), true, "realized", &error_fatal);
+
+    /* Timer 1 built-in periphal */
+    timer1 = AVR_TIMER16(object_new(TYPE_AVR_TIMER16));
+    busdev = SYS_BUS_DEVICE(timer1);
+    sysbus_mmio_map(busdev, 0, OFFSET_DATA + TIMER1_BASE);
+    sysbus_mmio_map(busdev, 1, OFFSET_DATA + TIMER1_IMSK_BASE);
+    sysbus_mmio_map(busdev, 2, OFFSET_DATA + TIMER1_IFR_BASE);
+    sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(
+        DEVICE(cpu_avr), TIMER1_CAPT_IRQ));
+    sysbus_connect_irq(busdev, 1, qdev_get_gpio_in(
+        DEVICE(cpu_avr), TIMER1_COMPA_IRQ));
+    sysbus_connect_irq(busdev, 2, qdev_get_gpio_in(
+        DEVICE(cpu_avr), TIMER1_COMPB_IRQ));
+    sysbus_connect_irq(busdev, 3, qdev_get_gpio_in(
+        DEVICE(cpu_avr), TIMER1_COMPC_IRQ));
+    sysbus_connect_irq(busdev, 4, qdev_get_gpio_in(
+        DEVICE(cpu_avr), TIMER1_OVF_IRQ));
+    timer1->prr_address = OFFSET_DATA + TIMER1_PRR;
+    timer1->prr_mask = TIMER1_PRR_MASK;
+    object_property_set_bool(OBJECT(timer1), true, "realized", &error_fatal);
+
+    /* Load firmware (contents of flash) trying to auto-detect format */
+    firmware = machine->firmware;
+    if (firmware != NULL) {
+        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, firmware);
+        if (filename == NULL) {
+            error_report("Unable to find %s", firmware);
+            exit(1);
+        }
+
+        bytes_loaded = load_elf(
+            filename, NULL, NULL, NULL, NULL, NULL, NULL, 0, EM_NONE, 0, 0);
+        if (bytes_loaded < 0) {
+            error_report(
+                "Unable to load %s as ELF, trying again as raw binary",
+                firmware);
+            bytes_loaded = load_image_targphys(
+                filename, OFFSET_CODE, SIZE_FLASH);
+        }
+        if (bytes_loaded < 0) {
+            error_report(
+                "Unable to load firmware image %s as ELF or raw binary",
+                firmware);
+            exit(1);
+        }
+    }
+}
+
+static void sample_machine_init(MachineClass *mc)
+{
+    mc->desc = "AVR sample/example board";
+    mc->init = sample_init;
+    mc->is_default = 1;
+}
+
+DEFINE_MACHINE("sample", sample_machine_init)
-- 
2.21.0

^ permalink raw reply related	[flat|nested] 31+ messages in thread

* [Qemu-devel] [PATCH v1 7/8] target/avr: Add example board configuration
@ 2019-05-04  8:36   ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, mrolnik, A.M.King, E.J.C.Robbins

A simple board setup that configures an AVR CPU to run a given firmware image.
This is all that's useful to implement without peripheral emulation as AVR CPUs include a lot of on-board peripherals.

Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
---
 hw/Kconfig           |   1 +
 hw/avr/Kconfig       |   4 +
 hw/avr/Makefile.objs |   1 +
 hw/avr/sample.c      | 177 +++++++++++++++++++++++++++++++++++++++++++
 4 files changed, 183 insertions(+)
 create mode 100644 hw/avr/Kconfig
 create mode 100644 hw/avr/Makefile.objs
 create mode 100644 hw/avr/sample.c

diff --git a/hw/Kconfig b/hw/Kconfig
index 88b9f15007..dc5eb7a038 100644
--- a/hw/Kconfig
+++ b/hw/Kconfig
@@ -41,6 +41,7 @@ source watchdog/Kconfig
 # arch Kconfig
 source arm/Kconfig
 source alpha/Kconfig
+source avr/Kconfig
 source cris/Kconfig
 source hppa/Kconfig
 source i386/Kconfig
diff --git a/hw/avr/Kconfig b/hw/avr/Kconfig
new file mode 100644
index 0000000000..c6ca8fe775
--- /dev/null
+++ b/hw/avr/Kconfig
@@ -0,0 +1,4 @@
+config AVR_SAMPLE
+    bool
+    select AVR_TIMER16
+    select AVR_USART
diff --git a/hw/avr/Makefile.objs b/hw/avr/Makefile.objs
new file mode 100644
index 0000000000..626b7064b3
--- /dev/null
+++ b/hw/avr/Makefile.objs
@@ -0,0 +1 @@
+obj-y += sample.o
diff --git a/hw/avr/sample.c b/hw/avr/sample.c
new file mode 100644
index 0000000000..21b384b3b3
--- /dev/null
+++ b/hw/avr/sample.c
@@ -0,0 +1,177 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+/*
+ *  NOTE:
+ *      This is not a real AVR board, this is an example!
+ *      The CPU is an approximation of an ATmega2560, but is missing various
+ *      built-in peripherals.
+ *
+ *      This example board loads provided binary file into flash memory and
+ *      executes it from 0x00000000 address in the code memory space.
+ *
+ *      Currently used for AVR CPU validation
+ *
+ */
+
+#include "qemu/osdep.h"
+#include "qapi/error.h"
+#include "qemu-common.h"
+#include "cpu.h"
+#include "hw/hw.h"
+#include "sysemu/sysemu.h"
+#include "sysemu/qtest.h"
+#include "ui/console.h"
+#include "hw/boards.h"
+#include "hw/loader.h"
+#include "qemu/error-report.h"
+#include "exec/address-spaces.h"
+#include "include/hw/sysbus.h"
+#include "include/hw/char/avr_usart.h"
+#include "include/hw/timer/avr_timer16.h"
+#include "elf.h"
+
+#define SIZE_FLASH 0x00040000
+#define SIZE_SRAM 0x00002200
+/*
+ * Size of additional "external" memory, as if the AVR were configured to use
+ * an external RAM chip.
+ * Note that the configuration registers that normally enable this feature are
+ * unimplemented.
+ */
+#define SIZE_EXMEM 0x00000000
+
+/* Offsets of periphals in emulated memory space (i.e. not host addresses)  */
+#define PRR0 0x64
+#define PRR1 0x65
+#define USART_BASE 0xc0
+#define USART_PRR PRR0
+#define USART_PRR_MASK 0b00000010
+#define TIMER1_BASE 0x80
+#define TIMER1_IMSK_BASE 0x6f
+#define TIMER1_IFR_BASE 0x36
+#define TIMER1_PRR PRR0
+#define TIMER1_PRR_MASK 0b01000000
+
+/* Interrupt numbers used by peripherals */
+#define TIMER1_CAPT_IRQ 15
+#define TIMER1_COMPA_IRQ 16
+#define TIMER1_COMPB_IRQ 17
+#define TIMER1_COMPC_IRQ 18
+#define TIMER1_OVF_IRQ 19
+
+static void sample_init(MachineState *machine)
+{
+    MemoryRegion *address_space_mem;
+    MemoryRegion *ram;
+    MemoryRegion *flash;
+    AVRCPU *cpu_avr;
+    const char *firmware = NULL;
+    const char *filename;
+    int bytes_loaded;
+    AVRUsartState *usart0;
+    AVRTimer16State *timer1;
+    SysBusDevice *busdev;
+
+    address_space_mem = get_system_memory();
+    ram = g_new(MemoryRegion, 1);
+    flash = g_new(MemoryRegion, 1);
+
+    /* ATmega2560. */
+    cpu_avr = AVR_CPU(cpu_create("avr6-avr"));
+
+    memory_region_allocate_system_memory(
+        ram, NULL, "avr.ram", SIZE_SRAM + SIZE_EXMEM);
+    memory_region_add_subregion(address_space_mem, OFFSET_DATA, ram);
+
+    memory_region_init_rom(flash, NULL, "avr.flash", SIZE_FLASH, &error_fatal);
+    memory_region_add_subregion(address_space_mem, OFFSET_CODE, flash);
+
+    /* USART 0 built-in peripheral */
+    usart0 = AVR_USART(object_new(TYPE_AVR_USART));
+    busdev = SYS_BUS_DEVICE(usart0);
+    sysbus_mmio_map(busdev, 0, OFFSET_DATA + USART_BASE);
+    /*
+     * These IRQ numbers don't match the datasheet because we're counting from
+     * zero and not including reset.
+     */
+    sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(DEVICE(cpu_avr), 24));
+    sysbus_connect_irq(busdev, 1, qdev_get_gpio_in(DEVICE(cpu_avr), 25));
+    sysbus_connect_irq(busdev, 2, qdev_get_gpio_in(DEVICE(cpu_avr), 26));
+    usart0->prr_address = OFFSET_DATA + PRR0;
+    usart0->prr_mask = USART_PRR_MASK;
+    qdev_prop_set_chr(DEVICE(usart0), "chardev", serial_hd(0));
+    object_property_set_bool(OBJECT(usart0), true, "realized", &error_fatal);
+
+    /* Timer 1 built-in periphal */
+    timer1 = AVR_TIMER16(object_new(TYPE_AVR_TIMER16));
+    busdev = SYS_BUS_DEVICE(timer1);
+    sysbus_mmio_map(busdev, 0, OFFSET_DATA + TIMER1_BASE);
+    sysbus_mmio_map(busdev, 1, OFFSET_DATA + TIMER1_IMSK_BASE);
+    sysbus_mmio_map(busdev, 2, OFFSET_DATA + TIMER1_IFR_BASE);
+    sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(
+        DEVICE(cpu_avr), TIMER1_CAPT_IRQ));
+    sysbus_connect_irq(busdev, 1, qdev_get_gpio_in(
+        DEVICE(cpu_avr), TIMER1_COMPA_IRQ));
+    sysbus_connect_irq(busdev, 2, qdev_get_gpio_in(
+        DEVICE(cpu_avr), TIMER1_COMPB_IRQ));
+    sysbus_connect_irq(busdev, 3, qdev_get_gpio_in(
+        DEVICE(cpu_avr), TIMER1_COMPC_IRQ));
+    sysbus_connect_irq(busdev, 4, qdev_get_gpio_in(
+        DEVICE(cpu_avr), TIMER1_OVF_IRQ));
+    timer1->prr_address = OFFSET_DATA + TIMER1_PRR;
+    timer1->prr_mask = TIMER1_PRR_MASK;
+    object_property_set_bool(OBJECT(timer1), true, "realized", &error_fatal);
+
+    /* Load firmware (contents of flash) trying to auto-detect format */
+    firmware = machine->firmware;
+    if (firmware != NULL) {
+        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, firmware);
+        if (filename == NULL) {
+            error_report("Unable to find %s", firmware);
+            exit(1);
+        }
+
+        bytes_loaded = load_elf(
+            filename, NULL, NULL, NULL, NULL, NULL, NULL, 0, EM_NONE, 0, 0);
+        if (bytes_loaded < 0) {
+            error_report(
+                "Unable to load %s as ELF, trying again as raw binary",
+                firmware);
+            bytes_loaded = load_image_targphys(
+                filename, OFFSET_CODE, SIZE_FLASH);
+        }
+        if (bytes_loaded < 0) {
+            error_report(
+                "Unable to load firmware image %s as ELF or raw binary",
+                firmware);
+            exit(1);
+        }
+    }
+}
+
+static void sample_machine_init(MachineClass *mc)
+{
+    mc->desc = "AVR sample/example board";
+    mc->init = sample_init;
+    mc->is_default = 1;
+}
+
+DEFINE_MACHINE("sample", sample_machine_init)
-- 
2.21.0



^ permalink raw reply related	[flat|nested] 31+ messages in thread

* [Qemu-devel] [PATCH v1 8/8] target/avr: Register AVR support with the rest of QEMU, the build system, and the MAINTAINERS file
@ 2019-05-04  8:36   ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, A.M.King, E.J.C.Robbins, mrolnik

Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
---
 MAINTAINERS                     |  6 ++++++
 arch_init.c                     |  2 ++
 configure                       |  6 ++++++
 default-configs/avr-softmmu.mak |  5 +++++
 include/disas/dis-asm.h         |  6 ++++++
 include/sysemu/arch_init.h      |  1 +
 qapi/common.json                |  2 +-
 target/avr/Makefile.objs        | 23 +++++++++++++++++++++++
 tests/machine-none-test.c       |  1 +
 9 files changed, 51 insertions(+), 1 deletion(-)
 create mode 100644 default-configs/avr-softmmu.mak
 create mode 100644 target/avr/Makefile.objs

diff --git a/MAINTAINERS b/MAINTAINERS
index 7dd71e0a2d..859ceb2d08 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -162,6 +162,12 @@ S: Maintained
 F: hw/arm/smmu*
 F: include/hw/arm/smmu*
 
+AVR
+M: Michael Rolnik <mrolnik@gmail.com>
+S: Odd Fixes
+F: target-avr/
+F: hw/avr/
+
 CRIS
 M: Edgar E. Iglesias <edgar.iglesias@gmail.com>
 S: Maintained
diff --git a/arch_init.c b/arch_init.c
index f4f3f610c8..184cdca6dd 100644
--- a/arch_init.c
+++ b/arch_init.c
@@ -86,6 +86,8 @@ int graphic_depth = 32;
 #define QEMU_ARCH QEMU_ARCH_UNICORE32
 #elif defined(TARGET_XTENSA)
 #define QEMU_ARCH QEMU_ARCH_XTENSA
+#elif defined(TARGET_AVR)
+#define QEMU_ARCH QEMU_ARCH_AVR
 #endif
 
 const uint32_t arch_type = QEMU_ARCH;
diff --git a/configure b/configure
index 60719ddcc5..b8843059b5 100755
--- a/configure
+++ b/configure
@@ -7451,6 +7451,9 @@ case "$target_name" in
     target_compiler=$cross_cc_aarch64
     eval "target_compiler_cflags=\$cross_cc_cflags_${target_name}"
   ;;
+  avr)
+    target_compiler=$cross_cc_avr
+  ;;
   cris)
     target_compiler=$cross_cc_cris
   ;;
@@ -7726,6 +7729,9 @@ for i in $ARCH $TARGET_BASE_ARCH ; do
       disas_config "ARM_A64"
     fi
   ;;
+  avr)
+    disas_config "AVR"
+  ;;
   cris)
     disas_config "CRIS"
   ;;
diff --git a/default-configs/avr-softmmu.mak b/default-configs/avr-softmmu.mak
new file mode 100644
index 0000000000..d1e1c28118
--- /dev/null
+++ b/default-configs/avr-softmmu.mak
@@ -0,0 +1,5 @@
+# Default configuration for avr-softmmu
+
+# Boards:
+#
+CONFIG_AVR_SAMPLE=y
diff --git a/include/disas/dis-asm.h b/include/disas/dis-asm.h
index 9240ec32c2..a7d230ba66 100644
--- a/include/disas/dis-asm.h
+++ b/include/disas/dis-asm.h
@@ -211,6 +211,12 @@ enum bfd_architecture
 #define bfd_mach_m32r          0  /* backwards compatibility */
   bfd_arch_mn10200,    /* Matsushita MN10200 */
   bfd_arch_mn10300,    /* Matsushita MN10300 */
+  bfd_arch_avr,       /* Atmel AVR microcontrollers.  */
+#define bfd_mach_avr1          1
+#define bfd_mach_avr2          2
+#define bfd_mach_avr3          3
+#define bfd_mach_avr4          4
+#define bfd_mach_avr5          5
   bfd_arch_cris,       /* Axis CRIS */
 #define bfd_mach_cris_v0_v10   255
 #define bfd_mach_cris_v32      32
diff --git a/include/sysemu/arch_init.h b/include/sysemu/arch_init.h
index 10cbafe970..aff57bfe61 100644
--- a/include/sysemu/arch_init.h
+++ b/include/sysemu/arch_init.h
@@ -25,6 +25,7 @@ enum {
     QEMU_ARCH_NIOS2 = (1 << 17),
     QEMU_ARCH_HPPA = (1 << 18),
     QEMU_ARCH_RISCV = (1 << 19),
+    QEMU_ARCH_AVR = (1 << 20),
 };
 
 extern const uint32_t arch_type;
diff --git a/qapi/common.json b/qapi/common.json
index 99d313ef3b..eeacd0e3c2 100644
--- a/qapi/common.json
+++ b/qapi/common.json
@@ -187,7 +187,7 @@
 # Since: 3.0
 ##
 { 'enum' : 'SysEmuTarget',
-  'data' : [ 'aarch64', 'alpha', 'arm', 'cris', 'hppa', 'i386', 'lm32',
+  'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386', 'lm32',
              'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
              'mips64el', 'mipsel', 'moxie', 'nios2', 'or1k', 'ppc',
              'ppc64', 'riscv32', 'riscv64', 's390x', 'sh4',
diff --git a/target/avr/Makefile.objs b/target/avr/Makefile.objs
new file mode 100644
index 0000000000..41355dea1e
--- /dev/null
+++ b/target/avr/Makefile.objs
@@ -0,0 +1,23 @@
+#
+#  QEMU AVR CPU
+#
+#  Copyright (c) 2016 Michael Rolnik
+#
+#  This library is free software; you can redistribute it and/or
+#  modify it under the terms of the GNU Lesser General Public
+#  License as published by the Free Software Foundation; either
+#  version 2.1 of the License, or (at your option) any later version.
+#
+#  This library is distributed in the hope that it will be useful,
+#  but WITHOUT ANY WARRANTY; without even the implied warranty of
+#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+#  Lesser General Public License for more details.
+#
+#  You should have received a copy of the GNU Lesser General Public
+#  License along with this library; if not, see
+#  <http://www.gnu.org/licenses/lgpl-2.1.html>
+#
+
+obj-y += translate.o cpu.o helper.o decode.o
+obj-y += gdbstub.o
+obj-$(CONFIG_SOFTMMU) += machine.o
diff --git a/tests/machine-none-test.c b/tests/machine-none-test.c
index 4c6d470798..361927bb76 100644
--- a/tests/machine-none-test.c
+++ b/tests/machine-none-test.c
@@ -27,6 +27,7 @@ static struct arch2cpu cpus_map[] = {
     /* tested targets list */
     { "arm", "cortex-a15" },
     { "aarch64", "cortex-a57" },
+    { "avr", "avr6" },
     { "x86_64", "qemu64,apic-id=0" },
     { "i386", "qemu32,apic-id=0" },
     { "alpha", "ev67" },
-- 
2.21.0

^ permalink raw reply related	[flat|nested] 31+ messages in thread

* [Qemu-devel] [PATCH v1 8/8] target/avr: Register AVR support with the rest of QEMU, the build system, and the MAINTAINERS file
@ 2019-05-04  8:36   ` Sarah Harris
  0 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-04  8:36 UTC (permalink / raw)
  To: qemu-devel; +Cc: S.E.Harris, mrolnik, A.M.King, E.J.C.Robbins

Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
---
 MAINTAINERS                     |  6 ++++++
 arch_init.c                     |  2 ++
 configure                       |  6 ++++++
 default-configs/avr-softmmu.mak |  5 +++++
 include/disas/dis-asm.h         |  6 ++++++
 include/sysemu/arch_init.h      |  1 +
 qapi/common.json                |  2 +-
 target/avr/Makefile.objs        | 23 +++++++++++++++++++++++
 tests/machine-none-test.c       |  1 +
 9 files changed, 51 insertions(+), 1 deletion(-)
 create mode 100644 default-configs/avr-softmmu.mak
 create mode 100644 target/avr/Makefile.objs

diff --git a/MAINTAINERS b/MAINTAINERS
index 7dd71e0a2d..859ceb2d08 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -162,6 +162,12 @@ S: Maintained
 F: hw/arm/smmu*
 F: include/hw/arm/smmu*
 
+AVR
+M: Michael Rolnik <mrolnik@gmail.com>
+S: Odd Fixes
+F: target-avr/
+F: hw/avr/
+
 CRIS
 M: Edgar E. Iglesias <edgar.iglesias@gmail.com>
 S: Maintained
diff --git a/arch_init.c b/arch_init.c
index f4f3f610c8..184cdca6dd 100644
--- a/arch_init.c
+++ b/arch_init.c
@@ -86,6 +86,8 @@ int graphic_depth = 32;
 #define QEMU_ARCH QEMU_ARCH_UNICORE32
 #elif defined(TARGET_XTENSA)
 #define QEMU_ARCH QEMU_ARCH_XTENSA
+#elif defined(TARGET_AVR)
+#define QEMU_ARCH QEMU_ARCH_AVR
 #endif
 
 const uint32_t arch_type = QEMU_ARCH;
diff --git a/configure b/configure
index 60719ddcc5..b8843059b5 100755
--- a/configure
+++ b/configure
@@ -7451,6 +7451,9 @@ case "$target_name" in
     target_compiler=$cross_cc_aarch64
     eval "target_compiler_cflags=\$cross_cc_cflags_${target_name}"
   ;;
+  avr)
+    target_compiler=$cross_cc_avr
+  ;;
   cris)
     target_compiler=$cross_cc_cris
   ;;
@@ -7726,6 +7729,9 @@ for i in $ARCH $TARGET_BASE_ARCH ; do
       disas_config "ARM_A64"
     fi
   ;;
+  avr)
+    disas_config "AVR"
+  ;;
   cris)
     disas_config "CRIS"
   ;;
diff --git a/default-configs/avr-softmmu.mak b/default-configs/avr-softmmu.mak
new file mode 100644
index 0000000000..d1e1c28118
--- /dev/null
+++ b/default-configs/avr-softmmu.mak
@@ -0,0 +1,5 @@
+# Default configuration for avr-softmmu
+
+# Boards:
+#
+CONFIG_AVR_SAMPLE=y
diff --git a/include/disas/dis-asm.h b/include/disas/dis-asm.h
index 9240ec32c2..a7d230ba66 100644
--- a/include/disas/dis-asm.h
+++ b/include/disas/dis-asm.h
@@ -211,6 +211,12 @@ enum bfd_architecture
 #define bfd_mach_m32r          0  /* backwards compatibility */
   bfd_arch_mn10200,    /* Matsushita MN10200 */
   bfd_arch_mn10300,    /* Matsushita MN10300 */
+  bfd_arch_avr,       /* Atmel AVR microcontrollers.  */
+#define bfd_mach_avr1          1
+#define bfd_mach_avr2          2
+#define bfd_mach_avr3          3
+#define bfd_mach_avr4          4
+#define bfd_mach_avr5          5
   bfd_arch_cris,       /* Axis CRIS */
 #define bfd_mach_cris_v0_v10   255
 #define bfd_mach_cris_v32      32
diff --git a/include/sysemu/arch_init.h b/include/sysemu/arch_init.h
index 10cbafe970..aff57bfe61 100644
--- a/include/sysemu/arch_init.h
+++ b/include/sysemu/arch_init.h
@@ -25,6 +25,7 @@ enum {
     QEMU_ARCH_NIOS2 = (1 << 17),
     QEMU_ARCH_HPPA = (1 << 18),
     QEMU_ARCH_RISCV = (1 << 19),
+    QEMU_ARCH_AVR = (1 << 20),
 };
 
 extern const uint32_t arch_type;
diff --git a/qapi/common.json b/qapi/common.json
index 99d313ef3b..eeacd0e3c2 100644
--- a/qapi/common.json
+++ b/qapi/common.json
@@ -187,7 +187,7 @@
 # Since: 3.0
 ##
 { 'enum' : 'SysEmuTarget',
-  'data' : [ 'aarch64', 'alpha', 'arm', 'cris', 'hppa', 'i386', 'lm32',
+  'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386', 'lm32',
              'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
              'mips64el', 'mipsel', 'moxie', 'nios2', 'or1k', 'ppc',
              'ppc64', 'riscv32', 'riscv64', 's390x', 'sh4',
diff --git a/target/avr/Makefile.objs b/target/avr/Makefile.objs
new file mode 100644
index 0000000000..41355dea1e
--- /dev/null
+++ b/target/avr/Makefile.objs
@@ -0,0 +1,23 @@
+#
+#  QEMU AVR CPU
+#
+#  Copyright (c) 2016 Michael Rolnik
+#
+#  This library is free software; you can redistribute it and/or
+#  modify it under the terms of the GNU Lesser General Public
+#  License as published by the Free Software Foundation; either
+#  version 2.1 of the License, or (at your option) any later version.
+#
+#  This library is distributed in the hope that it will be useful,
+#  but WITHOUT ANY WARRANTY; without even the implied warranty of
+#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+#  Lesser General Public License for more details.
+#
+#  You should have received a copy of the GNU Lesser General Public
+#  License along with this library; if not, see
+#  <http://www.gnu.org/licenses/lgpl-2.1.html>
+#
+
+obj-y += translate.o cpu.o helper.o decode.o
+obj-y += gdbstub.o
+obj-$(CONFIG_SOFTMMU) += machine.o
diff --git a/tests/machine-none-test.c b/tests/machine-none-test.c
index 4c6d470798..361927bb76 100644
--- a/tests/machine-none-test.c
+++ b/tests/machine-none-test.c
@@ -27,6 +27,7 @@ static struct arch2cpu cpus_map[] = {
     /* tested targets list */
     { "arm", "cortex-a15" },
     { "aarch64", "cortex-a57" },
+    { "avr", "avr6" },
     { "x86_64", "qemu64,apic-id=0" },
     { "i386", "qemu32,apic-id=0" },
     { "alpha", "ev67" },
-- 
2.21.0



^ permalink raw reply related	[flat|nested] 31+ messages in thread

* Re: [Qemu-devel] [PATCH v1 1/8] target/avr: Add instruction decoder
@ 2019-05-05 15:49     ` Richard Henderson
  0 siblings, 0 replies; 31+ messages in thread
From: Richard Henderson @ 2019-05-05 15:49 UTC (permalink / raw)
  To: Sarah Harris, qemu-devel; +Cc: mrolnik, A.M.King, E.J.C.Robbins

On 5/4/19 1:36 AM, Sarah Harris wrote:
> This utility module builds a decision tree to decode instructions, starting from a human readable list of instruction bit patterns.
> Automatic tree generation will hopefully be more efficient and more maintainable than a hand-designed opcode parser.
> 
> Tree generation happens at startup because this seemed simpler to implement than adding a new build step.

We have such a thing in qemu already, as a separate build step.

See ./scripts/decodetree.py, and some of the uses in

  target/{arm,hppa,riscv}/*.decode

In addition to being able to select the instruction, it also
extracts arguments from the instruction, so there's less
repetition that you have for e.g.

 > +static inline uint32_t MOVW_Rr(uint32_t opcode)
> +{
> +    return extract32(opcode, 0, 4);
> +}
...
> +static inline uint32_t MULS_Rr(uint32_t opcode)
> +{
> +    return extract32(opcode, 0, 4);
> +}


r~

^ permalink raw reply	[flat|nested] 31+ messages in thread

* Re: [Qemu-devel] [PATCH v1 1/8] target/avr: Add instruction decoder
@ 2019-05-05 15:49     ` Richard Henderson
  0 siblings, 0 replies; 31+ messages in thread
From: Richard Henderson @ 2019-05-05 15:49 UTC (permalink / raw)
  To: Sarah Harris, qemu-devel; +Cc: A.M.King, mrolnik, E.J.C.Robbins

On 5/4/19 1:36 AM, Sarah Harris wrote:
> This utility module builds a decision tree to decode instructions, starting from a human readable list of instruction bit patterns.
> Automatic tree generation will hopefully be more efficient and more maintainable than a hand-designed opcode parser.
> 
> Tree generation happens at startup because this seemed simpler to implement than adding a new build step.

We have such a thing in qemu already, as a separate build step.

See ./scripts/decodetree.py, and some of the uses in

  target/{arm,hppa,riscv}/*.decode

In addition to being able to select the instruction, it also
extracts arguments from the instruction, so there's less
repetition that you have for e.g.

 > +static inline uint32_t MOVW_Rr(uint32_t opcode)
> +{
> +    return extract32(opcode, 0, 4);
> +}
...
> +static inline uint32_t MULS_Rr(uint32_t opcode)
> +{
> +    return extract32(opcode, 0, 4);
> +}


r~


^ permalink raw reply	[flat|nested] 31+ messages in thread

* Re: [Qemu-devel] [PATCH v1 8/8] target/avr: Register AVR support with the rest of QEMU, the build system, and the MAINTAINERS file
@ 2019-05-05 15:57     ` Richard Henderson
  0 siblings, 0 replies; 31+ messages in thread
From: Richard Henderson @ 2019-05-05 15:57 UTC (permalink / raw)
  To: Sarah Harris, qemu-devel; +Cc: mrolnik, A.M.King, E.J.C.Robbins

On 5/4/19 1:36 AM, Sarah Harris wrote:
> Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
...
>  
> +AVR
> +M: Michael Rolnik <mrolnik@gmail.com>
> +S: Odd Fixes
> +F: target-avr/
> +F: hw/avr/
> +

This is not how things work.  Michael wasn't up to maintaining the code 2 years
ago; that's why it was never committed.

You would need to maintain this yourself, and for more than "Odd Fixes".


r~

^ permalink raw reply	[flat|nested] 31+ messages in thread

* Re: [Qemu-devel] [PATCH v1 8/8] target/avr: Register AVR support with the rest of QEMU, the build system, and the MAINTAINERS file
@ 2019-05-05 15:57     ` Richard Henderson
  0 siblings, 0 replies; 31+ messages in thread
From: Richard Henderson @ 2019-05-05 15:57 UTC (permalink / raw)
  To: Sarah Harris, qemu-devel; +Cc: A.M.King, mrolnik, E.J.C.Robbins

On 5/4/19 1:36 AM, Sarah Harris wrote:
> Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
...
>  
> +AVR
> +M: Michael Rolnik <mrolnik@gmail.com>
> +S: Odd Fixes
> +F: target-avr/
> +F: hw/avr/
> +

This is not how things work.  Michael wasn't up to maintaining the code 2 years
ago; that's why it was never committed.

You would need to maintain this yourself, and for more than "Odd Fixes".


r~


^ permalink raw reply	[flat|nested] 31+ messages in thread

* Re: [Qemu-devel] [PATCH v1 8/8] target/avr: Register AVR support with the rest of QEMU, the build system, and the MAINTAINERS file
@ 2019-05-05 16:10       ` Michael Rolnik
  0 siblings, 0 replies; 31+ messages in thread
From: Michael Rolnik @ 2019-05-05 16:10 UTC (permalink / raw)
  To: Richard Henderson; +Cc: Sarah Harris, QEMU Developers, A.M.King, E.J.C.Robbins

Hi Richard.

I can maintain it

Sent from my cell phone, please ignore typos

On Sun, May 5, 2019, 8:57 AM Richard Henderson <richard.henderson@linaro.org>
wrote:

> On 5/4/19 1:36 AM, Sarah Harris wrote:
> > Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
> ...
> >
> > +AVR
> > +M: Michael Rolnik <mrolnik@gmail.com>
> > +S: Odd Fixes
> > +F: target-avr/
> > +F: hw/avr/
> > +
>
> This is not how things work.  Michael wasn't up to maintaining the code 2
> years
> ago; that's why it was never committed.
>
> You would need to maintain this yourself, and for more than "Odd Fixes".
>
>
> r~
>

^ permalink raw reply	[flat|nested] 31+ messages in thread

* Re: [Qemu-devel] [PATCH v1 8/8] target/avr: Register AVR support with the rest of QEMU, the build system, and the MAINTAINERS file
@ 2019-05-05 16:10       ` Michael Rolnik
  0 siblings, 0 replies; 31+ messages in thread
From: Michael Rolnik @ 2019-05-05 16:10 UTC (permalink / raw)
  To: Richard Henderson; +Cc: E.J.C.Robbins, Sarah Harris, QEMU Developers, A.M.King

Hi Richard.

I can maintain it

Sent from my cell phone, please ignore typos

On Sun, May 5, 2019, 8:57 AM Richard Henderson <richard.henderson@linaro.org>
wrote:

> On 5/4/19 1:36 AM, Sarah Harris wrote:
> > Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
> ...
> >
> > +AVR
> > +M: Michael Rolnik <mrolnik@gmail.com>
> > +S: Odd Fixes
> > +F: target-avr/
> > +F: hw/avr/
> > +
>
> This is not how things work.  Michael wasn't up to maintaining the code 2
> years
> ago; that's why it was never committed.
>
> You would need to maintain this yourself, and for more than "Odd Fixes".
>
>
> r~
>

^ permalink raw reply	[flat|nested] 31+ messages in thread

* Re: [Qemu-devel] [PATCH v1 8/8] target/avr: Register AVR support with the rest of QEMU, the build system, and the MAINTAINERS file
  2019-05-04  8:36   ` Sarah Harris
  (?)
  (?)
@ 2019-05-06 15:11   ` Eric Blake
  2019-05-06 20:07     ` Michael Rolnik
  -1 siblings, 1 reply; 31+ messages in thread
From: Eric Blake @ 2019-05-06 15:11 UTC (permalink / raw)
  To: Sarah Harris, qemu-devel; +Cc: A.M.King, mrolnik, E.J.C.Robbins

[-- Attachment #1: Type: text/plain, Size: 1101 bytes --]

On 5/4/19 3:36 AM, Sarah Harris wrote:
> Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
> ---

> +++ b/qapi/common.json
> @@ -187,7 +187,7 @@
>  # Since: 3.0
>  ##
>  { 'enum' : 'SysEmuTarget',
> -  'data' : [ 'aarch64', 'alpha', 'arm', 'cris', 'hppa', 'i386', 'lm32',
> +  'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386', 'lm32',
>               'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
>               'mips64el', 'mipsel', 'moxie', 'nios2', 'or1k', 'ppc',
>               'ppc64', 'riscv32', 'riscv64', 's390x', 'sh4',

Missing documentation that the new 'avr' member is available only since 4.1.

> diff --git a/target/avr/Makefile.objs b/target/avr/Makefile.objs
> new file mode 100644
> index 0000000000..41355dea1e
> --- /dev/null
> +++ b/target/avr/Makefile.objs
> @@ -0,0 +1,23 @@
> +#
> +#  QEMU AVR CPU
> +#
> +#  Copyright (c) 2016 Michael Rolnik

Do you want to also claim through 2019?

-- 
Eric Blake, Principal Software Engineer
Red Hat, Inc.           +1-919-301-3226
Virtualization:  qemu.org | libvirt.org


[-- Attachment #2: OpenPGP digital signature --]
[-- Type: application/pgp-signature, Size: 488 bytes --]

^ permalink raw reply	[flat|nested] 31+ messages in thread

* Re: [Qemu-devel] [PATCH v1 8/8] target/avr: Register AVR support with the rest of QEMU, the build system, and the MAINTAINERS file
  2019-05-06 15:11   ` Eric Blake
@ 2019-05-06 20:07     ` Michael Rolnik
  0 siblings, 0 replies; 31+ messages in thread
From: Michael Rolnik @ 2019-05-06 20:07 UTC (permalink / raw)
  To: Eric Blake; +Cc: E.J.C.Robbins, Sarah Harris, QEMU Developers, A.M.King

Yes

Sent from my cell phone, please ignore typos

On Mon, May 6, 2019, 6:11 PM Eric Blake <eblake@redhat.com> wrote:

> On 5/4/19 3:36 AM, Sarah Harris wrote:
> > Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
> > ---
>
> > +++ b/qapi/common.json
> > @@ -187,7 +187,7 @@
> >  # Since: 3.0
> >  ##
> >  { 'enum' : 'SysEmuTarget',
> > -  'data' : [ 'aarch64', 'alpha', 'arm', 'cris', 'hppa', 'i386', 'lm32',
> > +  'data' : [ 'aarch64', 'alpha', 'arm', 'avr', 'cris', 'hppa', 'i386',
> 'lm32',
> >               'm68k', 'microblaze', 'microblazeel', 'mips', 'mips64',
> >               'mips64el', 'mipsel', 'moxie', 'nios2', 'or1k', 'ppc',
> >               'ppc64', 'riscv32', 'riscv64', 's390x', 'sh4',
>
> Missing documentation that the new 'avr' member is available only since
> 4.1.
>
> > diff --git a/target/avr/Makefile.objs b/target/avr/Makefile.objs
> > new file mode 100644
> > index 0000000000..41355dea1e
> > --- /dev/null
> > +++ b/target/avr/Makefile.objs
> > @@ -0,0 +1,23 @@
> > +#
> > +#  QEMU AVR CPU
> > +#
> > +#  Copyright (c) 2016 Michael Rolnik
>
> Do you want to also claim through 2019?
>
> --
> Eric Blake, Principal Software Engineer
> Red Hat, Inc.           +1-919-301-3226
> Virtualization:  qemu.org | libvirt.org
>
>

^ permalink raw reply	[flat|nested] 31+ messages in thread

* Re: [Qemu-devel] [PATCH v1 8/8] target/avr: Register AVR support with the rest of QEMU, the build system, and the MAINTAINERS file
  2019-05-05 16:10       ` Michael Rolnik
  (?)
@ 2019-05-07 12:10       ` Sarah Harris
  -1 siblings, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-05-07 12:10 UTC (permalink / raw)
  To: Richard Henderson
  Cc: E.J.C.Robbins, Sarah Harris, Michael Rolnik, QEMU Developers, A.M.King

Hi Richard,

I've raised this with my colleagues, we'll discuss tomorrow whether we have the funding and person resources to provide maintenance and get back to you.

I've noted the issues you and Eric raised, I'll wait until I know where things are going before I look at fixing them.

Kind regards,
Sarah Harris

On Sun, 5 May 2019 09:10:00 -0700
Michael Rolnik <mrolnik@gmail.com> wrote:

> Hi Richard.
> 
> I can maintain it
> 
> Sent from my cell phone, please ignore typos
> 
> On Sun, May 5, 2019, 8:57 AM Richard Henderson <richard.henderson@linaro.org>
> wrote:
> 
> > On 5/4/19 1:36 AM, Sarah Harris wrote:
> > > Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
> > ...
> > >
> > > +AVR
> > > +M: Michael Rolnik <mrolnik@gmail.com>
> > > +S: Odd Fixes
> > > +F: target-avr/
> > > +F: hw/avr/
> > > +
> >
> > This is not how things work.  Michael wasn't up to maintaining the code 2
> > years
> > ago; that's why it was never committed.
> >
> > You would need to maintain this yourself, and for more than "Odd Fixes".
> >
> >
> > r~
> >


^ permalink raw reply	[flat|nested] 31+ messages in thread

* Re: [Qemu-devel] [PATCH v1 8/8] target/avr: Register AVR support with the rest of QEMU, the build system, and the MAINTAINERS file
  2019-05-05 16:10       ` Michael Rolnik
  (?)
  (?)
@ 2019-05-10 11:17       ` Sarah Harris
  2019-10-12  7:31         ` Philippe Mathieu-Daudé
  -1 siblings, 1 reply; 31+ messages in thread
From: Sarah Harris @ 2019-05-10 11:17 UTC (permalink / raw)
  To: Richard Henderson
  Cc: E.J.C.Robbins, Sarah Harris, Michael Rolnik, QEMU Developers, A.M.King

Hi Richard,

Having discussed with my colleagues, we don't have the resources to maintain this.
If you wanted to take up Michael's offer then I'm happy to respond to queries and provide minor fixes.
Otherwise, we will make our repository publicly available in the near future for anyone who wants to use it.

Kind regards,
Sarah Harris

On Sun, 5 May 2019 09:10:00 -0700
Michael Rolnik <mrolnik@gmail.com> wrote:

> Hi Richard.
> 
> I can maintain it
> 
> Sent from my cell phone, please ignore typos
> 
> On Sun, May 5, 2019, 8:57 AM Richard Henderson <richard.henderson@linaro.org>
> wrote:
> 
> > On 5/4/19 1:36 AM, Sarah Harris wrote:
> > > Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
> > ...
> > >
> > > +AVR
> > > +M: Michael Rolnik <mrolnik@gmail.com>
> > > +S: Odd Fixes
> > > +F: target-avr/
> > > +F: hw/avr/
> > > +
> >
> > This is not how things work.  Michael wasn't up to maintaining the code 2
> > years
> > ago; that's why it was never committed.
> >
> > You would need to maintain this yourself, and for more than "Odd Fixes".
> >
> >
> > r~
> >


^ permalink raw reply	[flat|nested] 31+ messages in thread

* Re: [Qemu-devel] [PATCH v1 8/8] target/avr: Register AVR support with the rest of QEMU, the build system, and the MAINTAINERS file
  2019-05-10 11:17       ` Sarah Harris
@ 2019-10-12  7:31         ` Philippe Mathieu-Daudé
  2019-10-12 12:24           ` Aleksandar Markovic
  2019-10-17 13:11           ` Sarah Harris
  0 siblings, 2 replies; 31+ messages in thread
From: Philippe Mathieu-Daudé @ 2019-10-12  7:31 UTC (permalink / raw)
  To: Sarah Harris, Richard Henderson
  Cc: A.M.King, Michael Rolnik, E.J.C.Robbins, QEMU Developers

Hi Sarah,

On 5/10/19 1:17 PM, Sarah Harris wrote:
> Hi Richard,
> 
> Having discussed with my colleagues, we don't have the resources to maintain this.
> If you wanted to take up Michael's offer then I'm happy to respond to queries and provide minor fixes.
> Otherwise, we will make our repository publicly available in the near future for anyone who wants to use it.

Would you agree to be listed as reviewer for AVR (Michael being the 
maintainer)?

   M: Mail patches to: FullName <address@domain>
      Maintainers are looking after a certain area and must be CCed on
      patches. They are considered the main contact point.
   R: Designated reviewer: FullName <address@domain>
      These reviewers should be CCed on patches.
      Reviewers are familiar with the subject matter and provide feedback
      even though they are not maintainers.

> Kind regards,
> Sarah Harris
> 
> On Sun, 5 May 2019 09:10:00 -0700
> Michael Rolnik <mrolnik@gmail.com> wrote:
> 
>> Hi Richard.
>>
>> I can maintain it
>>
>> Sent from my cell phone, please ignore typos
>>
>> On Sun, May 5, 2019, 8:57 AM Richard Henderson <richard.henderson@linaro.org>
>> wrote:
>>
>>> On 5/4/19 1:36 AM, Sarah Harris wrote:
>>>> Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
>>> ...
>>>>
>>>> +AVR
>>>> +M: Michael Rolnik <mrolnik@gmail.com>
>>>> +S: Odd Fixes
>>>> +F: target-avr/
>>>> +F: hw/avr/
>>>> +
>>>
>>> This is not how things work.  Michael wasn't up to maintaining the code 2
>>> years
>>> ago; that's why it was never committed.
>>>
>>> You would need to maintain this yourself, and for more than "Odd Fixes".
>>>
>>>
>>> r~
>>>
> 



^ permalink raw reply	[flat|nested] 31+ messages in thread

* Re: [Qemu-devel] [PATCH v1 8/8] target/avr: Register AVR support with the rest of QEMU, the build system, and the MAINTAINERS file
  2019-10-12  7:31         ` Philippe Mathieu-Daudé
@ 2019-10-12 12:24           ` Aleksandar Markovic
  2019-10-17 13:11           ` Sarah Harris
  1 sibling, 0 replies; 31+ messages in thread
From: Aleksandar Markovic @ 2019-10-12 12:24 UTC (permalink / raw)
  To: Philippe Mathieu-Daudé
  Cc: Sarah Harris, Richard Henderson, QEMU Developers, Michael Rolnik,
	E.J.C.Robbins, A.M.King

[-- Attachment #1: Type: text/plain, Size: 1997 bytes --]

12.10.2019. 09.31, "Philippe Mathieu-Daudé" <philmd@redhat.com> је
написао/ла:
>
> Hi Sarah,
>
>
> On 5/10/19 1:17 PM, Sarah Harris wrote:
>>
>> Hi Richard,
>>
>> Having discussed with my colleagues, we don't have the resources to
maintain this.
>> If you wanted to take up Michael's offer then I'm happy to respond to
queries and provide minor fixes.
>> Otherwise, we will make our repository publicly available in the near
future for anyone who wants to use it.
>
>
> Would you agree to be listed as reviewer for AVR (Michael being the
maintainer)?
>

I support this idea, and hopefully Sarah agrees. Reviewer role typically
require mucj less tome resources.

>   M: Mail patches to: FullName <address@domain>
>      Maintainers are looking after a certain area and must be CCed on
>      patches. They are considered the main contact point.
>   R: Designated reviewer: FullName <address@domain>
>      These reviewers should be CCed on patches.
>      Reviewers are familiar with the subject matter and provide feedback
>      even though they are not maintainers.
>
>
>> Kind regards,
>> Sarah Harris
>>
>> On Sun, 5 May 2019 09:10:00 -0700
>> Michael Rolnik <mrolnik@gmail.com> wrote:
>>
>>> Hi Richard.
>>>
>>> I can maintain it
>>>
>>> Sent from my cell phone, please ignore typos
>>>
>>> On Sun, May 5, 2019, 8:57 AM Richard Henderson <
richard.henderson@linaro.org>
>>> wrote:
>>>
>>>> On 5/4/19 1:36 AM, Sarah Harris wrote:
>>>>>
>>>>> Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
>>>>
>>>> ...
>>>>>
>>>>>
>>>>> +AVR
>>>>> +M: Michael Rolnik <mrolnik@gmail.com>
>>>>> +S: Odd Fixes
>>>>> +F: target-avr/
>>>>> +F: hw/avr/
>>>>> +
>>>>
>>>>
>>>> This is not how things work.  Michael wasn't up to maintaining the
code 2
>>>> years
>>>> ago; that's why it was never committed.
>>>>
>>>> You would need to maintain this yourself, and for more than "Odd
Fixes".
>>>>
>>>>
>>>> r~
>>>>
>>
>
>

[-- Attachment #2: Type: text/html, Size: 3153 bytes --]

^ permalink raw reply	[flat|nested] 31+ messages in thread

* Re: [Qemu-devel] [PATCH v1 8/8] target/avr: Register AVR support with the rest of QEMU, the build system, and the MAINTAINERS file
  2019-10-12  7:31         ` Philippe Mathieu-Daudé
  2019-10-12 12:24           ` Aleksandar Markovic
@ 2019-10-17 13:11           ` Sarah Harris
  1 sibling, 0 replies; 31+ messages in thread
From: Sarah Harris @ 2019-10-17 13:11 UTC (permalink / raw)
  To: Philippe Mathieu-Daudé
  Cc: Sarah Harris, Richard Henderson, QEMU Developers, Michael Rolnik,
	E.J.C.Robbins, A.M.King

Hi Philippe,

I've checked and yes, I can make time to review patches.
This is part of my current paid work, so when my contract eventually ends I will likely have to step down as reviewer.
I'll have notice of that happening some time before, so I can pass that along when it comes.

This message comes from my work email so the details should be correct, i.e. Sarah Harris <S.E.Harris@kent.ac.uk>

Kind regards,
Sarah Harris

On Sat, 12 Oct 2019 09:31:07 +0200
Philippe Mathieu-Daudé <philmd@redhat.com> wrote:

> Hi Sarah,
> 
> On 5/10/19 1:17 PM, Sarah Harris wrote:
> > Hi Richard,
> > 
> > Having discussed with my colleagues, we don't have the resources to maintain this.
> > If you wanted to take up Michael's offer then I'm happy to respond to queries and provide minor fixes.
> > Otherwise, we will make our repository publicly available in the near future for anyone who wants to use it.
> 
> Would you agree to be listed as reviewer for AVR (Michael being the 
> maintainer)?
> 
>    M: Mail patches to: FullName <address@domain>
>       Maintainers are looking after a certain area and must be CCed on
>       patches. They are considered the main contact point.
>    R: Designated reviewer: FullName <address@domain>
>       These reviewers should be CCed on patches.
>       Reviewers are familiar with the subject matter and provide feedback
>       even though they are not maintainers.
> 
> > Kind regards,
> > Sarah Harris
> > 
> > On Sun, 5 May 2019 09:10:00 -0700
> > Michael Rolnik <mrolnik@gmail.com> wrote:
> > 
> >> Hi Richard.
> >>
> >> I can maintain it
> >>
> >> Sent from my cell phone, please ignore typos
> >>
> >> On Sun, May 5, 2019, 8:57 AM Richard Henderson <richard.henderson@linaro.org>
> >> wrote:
> >>
> >>> On 5/4/19 1:36 AM, Sarah Harris wrote:
> >>>> Signed-off-by: Sarah Harris <S.E.Harris@kent.ac.uk>
> >>> ...
> >>>>
> >>>> +AVR
> >>>> +M: Michael Rolnik <mrolnik@gmail.com>
> >>>> +S: Odd Fixes
> >>>> +F: target-avr/
> >>>> +F: hw/avr/
> >>>> +
> >>>
> >>> This is not how things work.  Michael wasn't up to maintaining the code 2
> >>> years
> >>> ago; that's why it was never committed.
> >>>
> >>> You would need to maintain this yourself, and for more than "Odd Fixes".
> >>>
> >>>
> >>> r~
> >>>
> > 
> 


^ permalink raw reply	[flat|nested] 31+ messages in thread

end of thread, other threads:[~2019-10-17 14:41 UTC | newest]

Thread overview: 31+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2019-05-04  8:36 [Qemu-devel] [PATCH v1 0/8] DRAFT AVR Patches Sarah Harris
2019-05-04  8:36 ` Sarah Harris
2019-05-04  8:36 ` [Qemu-devel] [PATCH v1 1/8] target/avr: Add instruction decoder Sarah Harris
2019-05-04  8:36   ` Sarah Harris
2019-05-05 15:49   ` Richard Henderson
2019-05-05 15:49     ` Richard Henderson
2019-05-04  8:36 ` [Qemu-devel] [PATCH v1 2/8] target/avr: Add mechanism to check for active debugger connection Sarah Harris
2019-05-04  8:36   ` Sarah Harris
2019-05-04  8:36 ` [Qemu-devel] [PATCH v1 3/8] target/avr: Add outward facing interfaces and core CPU logic Sarah Harris
2019-05-04  8:36   ` Sarah Harris
2019-05-04  8:36 ` [Qemu-devel] [PATCH v1 4/8] target/avr: Add instruction helpers Sarah Harris
2019-05-04  8:36   ` Sarah Harris
2019-05-04  8:36 ` [Qemu-devel] [PATCH v1 5/8] target/avr: Add instruction translation Sarah Harris
2019-05-04  8:36   ` Sarah Harris
2019-05-04  8:36 ` [Qemu-devel] [PATCH v1 6/8] target/avr: Add limited support for USART and 16 bit timer peripherals Sarah Harris
2019-05-04  8:36   ` Sarah Harris
2019-05-04  8:36 ` [Qemu-devel] [PATCH v1 7/8] target/avr: Add example board configuration Sarah Harris
2019-05-04  8:36   ` Sarah Harris
2019-05-04  8:36 ` [Qemu-devel] [PATCH v1 8/8] target/avr: Register AVR support with the rest of QEMU, the build system, and the MAINTAINERS file Sarah Harris
2019-05-04  8:36   ` Sarah Harris
2019-05-05 15:57   ` Richard Henderson
2019-05-05 15:57     ` Richard Henderson
2019-05-05 16:10     ` Michael Rolnik
2019-05-05 16:10       ` Michael Rolnik
2019-05-07 12:10       ` Sarah Harris
2019-05-10 11:17       ` Sarah Harris
2019-10-12  7:31         ` Philippe Mathieu-Daudé
2019-10-12 12:24           ` Aleksandar Markovic
2019-10-17 13:11           ` Sarah Harris
2019-05-06 15:11   ` Eric Blake
2019-05-06 20:07     ` Michael Rolnik

This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.