All of lore.kernel.org
 help / color / mirror / Atom feed
From: Ralph Campbell <rcampbell@nvidia.com>
To: <linux-rdma@vger.kernel.org>, <linux-mm@kvack.org>,
	<linux-kernel@vger.kernel.org>, <nouveau@lists.freedesktop.org>,
	<linux-kselftest@vger.kernel.org>
Cc: Jerome Glisse <jglisse@redhat.com>,
	John Hubbard <jhubbard@nvidia.com>,
	Christoph Hellwig <hch@lst.de>,
	Jason Gunthorpe <jgg@mellanox.com>,
	"Andrew Morton" <akpm@linux-foundation.org>,
	Ben Skeggs <bskeggs@redhat.com>, "Shuah Khan" <shuah@kernel.org>,
	Ralph Campbell <rcampbell@nvidia.com>
Subject: [PATCH v6 6/6] mm/hmm/test: add self tests for HMM
Date: Mon, 13 Jan 2020 14:47:03 -0800	[thread overview]
Message-ID: <20200113224703.5917-7-rcampbell@nvidia.com> (raw)
In-Reply-To: <20200113224703.5917-1-rcampbell@nvidia.com>

Add some basic stand alone self tests for HMM.

Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
---
 MAINTAINERS                            |    3 +
 lib/Kconfig.debug                      |   11 +
 lib/Makefile                           |    1 +
 lib/test_hmm.c                         | 1368 ++++++++++++++++++++++++
 tools/testing/selftests/vm/.gitignore  |    1 +
 tools/testing/selftests/vm/Makefile    |    3 +
 tools/testing/selftests/vm/config      |    2 +
 tools/testing/selftests/vm/hmm-tests.c | 1354 +++++++++++++++++++++++
 tools/testing/selftests/vm/run_vmtests |   16 +
 tools/testing/selftests/vm/test_hmm.sh |   97 ++
 10 files changed, 2856 insertions(+)
 create mode 100644 lib/test_hmm.c
 create mode 100644 tools/testing/selftests/vm/hmm-tests.c
 create mode 100755 tools/testing/selftests/vm/test_hmm.sh

diff --git a/MAINTAINERS b/MAINTAINERS
index 4017e6b760be..08508a20e2cf 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -7514,7 +7514,10 @@ L:	linux-mm@kvack.org
 S:	Maintained
 F:	mm/hmm*
 F:	include/linux/hmm*
+F:	include/uapi/linux/test_hmm*
 F:	Documentation/vm/hmm.rst
+F:	lib/test_hmm*
+F:	tools/testing/selftests/vm/*hmm*
 
 HOST AP DRIVER
 M:	Jouni Malinen <j@w1.fi>
diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug
index 5ffe144c9794..d38d1e281dca 100644
--- a/lib/Kconfig.debug
+++ b/lib/Kconfig.debug
@@ -2162,6 +2162,17 @@ config TEST_MEMINIT
 
 	  If unsure, say N.
 
+config TEST_HMM
+	tristate "Test HMM (Heterogeneous Memory Management)"
+	depends on HMM_MIRROR
+	depends on DEVICE_PRIVATE
+	help
+	  This is a pseudo device driver solely for testing HMM.
+	  Say M here if you want to build the HMM test module.
+	  Doing so will allow you to run tools/testing/selftest/vm/hmm-tests.
+
+	  If unsure, say N.
+
 endif # RUNTIME_TESTING_MENU
 
 config MEMTEST
diff --git a/lib/Makefile b/lib/Makefile
index 93217d44237f..348ce83cb21f 100644
--- a/lib/Makefile
+++ b/lib/Makefile
@@ -88,6 +88,7 @@ obj-$(CONFIG_TEST_OBJAGG) += test_objagg.o
 obj-$(CONFIG_TEST_STACKINIT) += test_stackinit.o
 obj-$(CONFIG_TEST_BLACKHOLE_DEV) += test_blackhole_dev.o
 obj-$(CONFIG_TEST_MEMINIT) += test_meminit.o
+obj-$(CONFIG_TEST_HMM) += test_hmm.o
 
 obj-$(CONFIG_TEST_LIVEPATCH) += livepatch/
 
diff --git a/lib/test_hmm.c b/lib/test_hmm.c
new file mode 100644
index 000000000000..96ffa988969c
--- /dev/null
+++ b/lib/test_hmm.c
@@ -0,0 +1,1368 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * This is a module to test the HMM (Heterogeneous Memory Management)
+ * mirror and zone device private memory migration APIs of the kernel.
+ * Userspace programs can register with the driver to mirror their own address
+ * space and can use the device to read/write any valid virtual address.
+ */
+#include <linux/init.h>
+#include <linux/fs.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/cdev.h>
+#include <linux/device.h>
+#include <linux/mutex.h>
+#include <linux/rwsem.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/highmem.h>
+#include <linux/delay.h>
+#include <linux/pagemap.h>
+#include <linux/hmm.h>
+#include <linux/vmalloc.h>
+#include <linux/swap.h>
+#include <linux/swapops.h>
+#include <linux/sched/mm.h>
+#include <linux/platform_device.h>
+
+#include <uapi/linux/test_hmm.h>
+
+#define DMIRROR_NDEVICES		2
+#define DMIRROR_RANGE_FAULT_TIMEOUT	1000
+#define DEVMEM_CHUNK_SIZE		(256 * 1024 * 1024U)
+#define DEVMEM_CHUNKS_RESERVE		16
+
+static const struct dev_pagemap_ops dmirror_devmem_ops;
+static const struct mmu_interval_notifier_ops dmirror_min_ops;
+static dev_t dmirror_dev;
+static struct page *dmirror_zero_page;
+
+struct dmirror_device;
+
+struct dmirror_bounce {
+	void			*ptr;
+	unsigned long		size;
+	unsigned long		addr;
+	unsigned long		cpages;
+};
+
+#define DPT_SHIFT PAGE_SHIFT
+#define DPT_VALID (1UL << 0)
+#define DPT_WRITE (1UL << 1)
+#define DPT_DPAGE (1UL << 2)
+
+#define DPT_XA_TAG_WRITE 3UL
+
+static const uint64_t dmirror_hmm_flags[HMM_PFN_FLAG_MAX] = {
+	[HMM_PFN_VALID] = DPT_VALID,
+	[HMM_PFN_WRITE] = DPT_WRITE,
+	[HMM_PFN_DEVICE_PRIVATE] = DPT_DPAGE,
+};
+
+static const uint64_t dmirror_hmm_values[HMM_PFN_VALUE_MAX] = {
+	[HMM_PFN_NONE]    = 0,
+	[HMM_PFN_ERROR]   = 0x10,
+	[HMM_PFN_SPECIAL] = 0x10,
+};
+
+/*
+ * Data structure to track address ranges and register for mmu interval
+ * notifier updates.
+ */
+struct dmirror_interval {
+	struct mmu_interval_notifier	notifier;
+	struct dmirror			*dmirror;
+};
+
+/*
+ * Data attached to the open device file.
+ * Note that it might be shared after a fork().
+ */
+struct dmirror {
+	struct mm_struct	*mm;
+	struct dmirror_device	*mdevice;
+	struct xarray		pt;
+	struct mutex		mutex;
+};
+
+/*
+ * ZONE_DEVICE pages for migration and simulating device memory.
+ */
+struct dmirror_chunk {
+	struct dev_pagemap	pagemap;
+	struct dmirror_device	*mdevice;
+};
+
+/*
+ * Per device data.
+ */
+struct dmirror_device {
+	struct cdev		cdevice;
+	struct hmm_devmem	*devmem;
+
+	unsigned int		devmem_capacity;
+	unsigned int		devmem_count;
+	struct dmirror_chunk	**devmem_chunks;
+	struct mutex		devmem_lock;	/* protects the above */
+
+	unsigned long		calloc;
+	unsigned long		cfree;
+	struct page		*free_pages;
+	spinlock_t		lock;		/* protects the above */
+};
+
+static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES];
+
+static int dmirror_bounce_init(struct dmirror_bounce *bounce,
+			       unsigned long addr,
+			       unsigned long size)
+{
+	bounce->addr = addr;
+	bounce->size = size;
+	bounce->cpages = 0;
+	bounce->ptr = vmalloc(size);
+	if (!bounce->ptr)
+		return -ENOMEM;
+	return 0;
+}
+
+static void dmirror_bounce_fini(struct dmirror_bounce *bounce)
+{
+	vfree(bounce->ptr);
+}
+
+static int dmirror_fops_open(struct inode *inode, struct file *filp)
+{
+	struct cdev *cdev = inode->i_cdev;
+	struct dmirror *dmirror;
+	int ret;
+
+	/* Mirror this process address space */
+	dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL);
+	if (dmirror == NULL)
+		return -ENOMEM;
+
+	dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice);
+	mutex_init(&dmirror->mutex);
+	xa_init(&dmirror->pt);
+
+	/*
+	 * Pre-register for mmu interval notifiers so
+	 * mmu_interval_notifier_insert_safe() can be called without holding
+	 * mmap_sem for write.
+	 */
+	ret = mmu_notifier_register(NULL, current->mm);
+	if (ret) {
+		kfree(dmirror);
+		return ret;
+	}
+
+	/* Pairs with the mmdrop() in dmirror_fops_release(). */
+	mmgrab(current->mm);
+	dmirror->mm = current->mm;
+
+	/* Only the first open registers the address space. */
+	filp->private_data = dmirror;
+	return ret;
+}
+
+static int dmirror_fops_release(struct inode *inode, struct file *filp)
+{
+	struct dmirror *dmirror = filp->private_data;
+	struct mmu_interval_notifier *mni;
+
+	mutex_lock(&dmirror->mutex);
+	while (true) {
+		mni = mmu_interval_notifier_find(dmirror->mm, &dmirror_min_ops,
+						 0UL, ~0UL);
+		if (!mni)
+			break;
+		mmu_interval_notifier_put(mni);
+	}
+	mutex_unlock(&dmirror->mutex);
+	mmdrop(dmirror->mm);
+	mmu_notifier_synchronize();
+	xa_destroy(&dmirror->pt);
+	kfree(dmirror);
+	return 0;
+}
+
+static inline struct dmirror_device *dmirror_page_to_device(struct page *page)
+
+{
+	struct dmirror_chunk *devmem;
+
+	devmem = container_of(page->pgmap, struct dmirror_chunk, pagemap);
+	return devmem->mdevice;
+}
+
+static bool dmirror_device_is_mine(struct dmirror_device *mdevice,
+				   struct page *page)
+{
+	if (!is_zone_device_page(page))
+		return false;
+	return page->pgmap->ops == &dmirror_devmem_ops &&
+		dmirror_page_to_device(page) == mdevice;
+}
+
+static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range)
+{
+	uint64_t *pfns = range->pfns;
+	unsigned long pfn;
+
+	for (pfn = (range->start >> PAGE_SHIFT);
+	     pfn < (range->end >> PAGE_SHIFT);
+	     pfn++, pfns++) {
+		struct page *page;
+		void *entry;
+
+		/*
+		 * HMM_PFN_ERROR is returned if it is accessing invalid memory
+		 * either because of memory error (hardware detected memory
+		 * corruption) or more likely because of truncate on mmap
+		 * file.
+		 */
+		if (*pfns == range->values[HMM_PFN_ERROR])
+			return -EFAULT;
+		if (!(*pfns & range->flags[HMM_PFN_VALID]))
+			return -EFAULT;
+		page = hmm_device_entry_to_page(range, *pfns);
+		/* We asked for pages to be populated but check anyway. */
+		if (!page)
+			return -EFAULT;
+		if (is_zone_device_page(page)) {
+			/*
+			 * TODO: need a way to ask HMM to fault foreign zone
+			 * device private pages.
+			 */
+			if (!dmirror_device_is_mine(dmirror->mdevice, page))
+				continue;
+		}
+		entry = page;
+		if (*pfns & range->flags[HMM_PFN_WRITE])
+			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
+		else if (range->default_flags & range->flags[HMM_PFN_WRITE])
+			return -EFAULT;
+		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
+		if (xa_is_err(entry))
+			return xa_err(entry);
+	}
+
+	return 0;
+}
+
+static void dmirror_do_update(struct dmirror *dmirror, unsigned long start,
+			      unsigned long end)
+{
+	unsigned long pfn;
+
+	/*
+	 * The XArray doesn't hold references to pages since it relies on
+	 * the mmu notifier to clear pointers when they become stale.
+	 * Therefore, it is OK to just clear the entry.
+	 */
+	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++)
+		xa_erase(&dmirror->pt, pfn);
+}
+
+static struct dmirror_interval *dmirror_new_interval(struct dmirror *dmirror,
+						     unsigned long start,
+						     unsigned long last)
+{
+	struct dmirror_interval *dmi;
+	int ret;
+
+	dmi = kmalloc(sizeof(*dmi), GFP_ATOMIC);
+	if (!dmi)
+		return NULL;
+
+	dmi->dmirror = dmirror;
+
+	ret = mmu_interval_notifier_insert_safe(&dmi->notifier, dmirror->mm,
+				start, last - start + 1, &dmirror_min_ops);
+	if (ret) {
+		kfree(dmi);
+		return NULL;
+	}
+
+	return dmi;
+}
+
+static void dmirror_do_unmap(struct mmu_interval_notifier *mni,
+			     const struct mmu_notifier_range *range)
+{
+	struct dmirror_interval *dmi =
+		container_of(mni, struct dmirror_interval, notifier);
+	struct dmirror *dmirror = dmi->dmirror;
+	unsigned long start = mmu_interval_notifier_start(mni);
+	unsigned long last = mmu_interval_notifier_last(mni);
+
+	if (start >= range->start) {
+		/* Remove the whole interval or keep the right-hand part. */
+		if (last <= range->end)
+			mmu_interval_notifier_put(mni);
+		else
+			mmu_interval_notifier_update(mni, range->end, last);
+		return;
+	}
+
+	/* Keep the left-hand part of the interval. */
+	mmu_interval_notifier_update(mni, start, range->start - 1);
+
+	/* If a hole is created, create an interval for the right-hand part. */
+	if (last >= range->end) {
+		dmi = dmirror_new_interval(dmirror, range->end, last);
+		/*
+		 * If we can't allocate an interval, we won't get invalidation
+		 * callbacks so clear the mapping and rely on faults to reload
+		 * the mappings if needed.
+		 */
+		if (!dmi)
+			dmirror_do_update(dmirror, range->end, last + 1);
+	}
+}
+
+static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni,
+				const struct mmu_notifier_range *range,
+				unsigned long cur_seq)
+{
+	struct dmirror_interval *dmi =
+		container_of(mni, struct dmirror_interval, notifier);
+	struct dmirror *dmirror = dmi->dmirror;
+	unsigned long start = mmu_interval_notifier_start(mni);
+	unsigned long last = mmu_interval_notifier_last(mni);
+
+	if (mmu_notifier_range_blockable(range))
+		mutex_lock(&dmirror->mutex);
+	else if (!mutex_trylock(&dmirror->mutex))
+		return false;
+
+	mmu_interval_set_seq(mni, cur_seq);
+	dmirror_do_update(dmirror, max(start, range->start),
+			  min(last + 1, range->end));
+
+	/* Stop tracking the range if it is an unmap. */
+	if (range->event == MMU_NOTIFY_UNMAP)
+		dmirror_do_unmap(mni, range);
+
+	mutex_unlock(&dmirror->mutex);
+	return true;
+}
+
+static void dmirror_interval_release(struct mmu_interval_notifier *mni)
+{
+	struct dmirror_interval *dmi =
+		container_of(mni, struct dmirror_interval, notifier);
+
+	kfree(dmi);
+}
+
+static const struct mmu_interval_notifier_ops dmirror_min_ops = {
+	.invalidate = dmirror_interval_invalidate,
+	.release = dmirror_interval_release,
+};
+
+/*
+ * Find or create a mmu_interval_notifier for the given range.
+ * Although mmu_interval_notifier_insert_safe() can handle overlapping
+ * intervals, we only create non-overlapping intervals, shrinking the hmm_range
+ * if it spans more than one dmirror_interval.
+ */
+static int dmirror_interval_find(struct dmirror *dmirror,
+				 struct hmm_range *range)
+{
+	struct mmu_interval_notifier *mni;
+	struct dmirror_interval *dmi;
+	struct vm_area_struct *vma;
+	unsigned long start = range->start;
+	unsigned long last = range->end - 1;
+	int ret;
+
+	mutex_lock(&dmirror->mutex);
+	mni = mmu_interval_notifier_find(dmirror->mm, &dmirror_min_ops, start,
+					 last);
+	if (mni) {
+		if (start >= mmu_interval_notifier_start(mni)) {
+			dmi = container_of(mni, struct dmirror_interval,
+					   notifier);
+			if (last > mmu_interval_notifier_last(mni))
+				range->end =
+					mmu_interval_notifier_last(mni) + 1;
+			goto found;
+		}
+		WARN_ON(last <= mmu_interval_notifier_start(mni));
+		range->end = mmu_interval_notifier_start(mni);
+		last = range->end - 1;
+	}
+	/*
+	 * Might as well create an interval covering the underlying VMA to
+	 * avoid having to create a bunch of small intervals.
+	 */
+	vma = find_vma(dmirror->mm, start);
+	if (!vma || start < vma->vm_start) {
+		ret = -ENOENT;
+		goto err;
+	}
+	if (range->end > vma->vm_end) {
+		range->end = vma->vm_end;
+		last = range->end - 1;
+	} else if (!mni) {
+		/* Anything registered on the right part of the vma? */
+		mni = mmu_interval_notifier_find(dmirror->mm, &dmirror_min_ops,
+						 range->end, vma->vm_end - 1);
+		if (mni)
+			last = mmu_interval_notifier_start(mni) - 1;
+		else
+			last = vma->vm_end - 1;
+	}
+	/* Anything registered on the left part of the vma? */
+	mni = mmu_interval_notifier_find(dmirror->mm, &dmirror_min_ops,
+					 vma->vm_start, start - 1);
+	if (mni)
+		start = mmu_interval_notifier_last(mni) + 1;
+	else
+		start = vma->vm_start;
+	dmi = dmirror_new_interval(dmirror, start, last);
+	if (!dmi) {
+		ret = -ENOMEM;
+		goto err;
+	}
+
+found:
+	range->notifier = &dmi->notifier;
+	mutex_unlock(&dmirror->mutex);
+	return 0;
+
+err:
+	mutex_unlock(&dmirror->mutex);
+	return ret;
+}
+
+static int dmirror_range_fault(struct dmirror *dmirror,
+				struct hmm_range *range)
+{
+	struct mm_struct *mm = dmirror->mm;
+	unsigned long timeout =
+		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
+	int ret;
+
+	while (true) {
+		long count;
+
+		if (time_after(jiffies, timeout)) {
+			ret = -EBUSY;
+			goto out;
+		}
+
+		down_read(&mm->mmap_sem);
+		ret = dmirror_interval_find(dmirror, range);
+		if (ret) {
+			up_read(&mm->mmap_sem);
+			goto out;
+		}
+		range->notifier_seq = mmu_interval_read_begin(range->notifier);
+		count = hmm_range_fault(range, 0);
+		up_read(&mm->mmap_sem);
+		if (count <= 0) {
+			if (count == 0 || count == -EBUSY)
+				continue;
+			ret = count;
+			goto out;
+		}
+
+		mutex_lock(&dmirror->mutex);
+		if (mmu_interval_read_retry(range->notifier,
+					    range->notifier_seq)) {
+			mutex_unlock(&dmirror->mutex);
+			continue;
+		}
+		break;
+	}
+
+	ret = dmirror_do_fault(dmirror, range);
+
+	mutex_unlock(&dmirror->mutex);
+out:
+	return ret;
+}
+
+static int dmirror_fault(struct dmirror *dmirror, unsigned long start,
+			 unsigned long end, bool write)
+{
+	struct mm_struct *mm = dmirror->mm;
+	unsigned long addr;
+	unsigned long next;
+	uint64_t pfns[64];
+	struct hmm_range range = {
+		.pfns = pfns,
+		.flags = dmirror_hmm_flags,
+		.values = dmirror_hmm_values,
+		.pfn_shift = DPT_SHIFT,
+		.pfn_flags_mask = ~(dmirror_hmm_flags[HMM_PFN_VALID] |
+				    dmirror_hmm_flags[HMM_PFN_WRITE]),
+		.default_flags = dmirror_hmm_flags[HMM_PFN_VALID] |
+				(write ? dmirror_hmm_flags[HMM_PFN_WRITE] : 0),
+	};
+	int ret = 0;
+
+	/* Since the mm is for the mirrored process, get a reference first. */
+	if (!mmget_not_zero(mm))
+		return 0;
+
+	for (addr = start; addr < end; addr = next) {
+		next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
+		range.start = addr;
+		range.end = next;
+
+		ret = dmirror_range_fault(dmirror, &range);
+		if (ret)
+			break;
+	}
+
+	mmput(mm);
+	return ret;
+}
+
+static int dmirror_do_read(struct dmirror *dmirror, unsigned long start,
+			   unsigned long end, struct dmirror_bounce *bounce)
+{
+	unsigned long pfn;
+	void *ptr;
+
+	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
+
+	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
+		void *entry;
+		struct page *page;
+		void *tmp;
+
+		entry = xa_load(&dmirror->pt, pfn);
+		page = xa_untag_pointer(entry);
+		if (!page)
+			return -ENOENT;
+
+		tmp = kmap(page);
+		memcpy(ptr, tmp, PAGE_SIZE);
+		kunmap(page);
+
+		ptr += PAGE_SIZE;
+		bounce->cpages++;
+	}
+
+	return 0;
+}
+
+static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
+{
+	struct dmirror_bounce bounce;
+	unsigned long start, end;
+	unsigned long size = cmd->npages << PAGE_SHIFT;
+	int ret;
+
+	start = cmd->addr;
+	end = start + size;
+	if (end < start)
+		return -EINVAL;
+
+	ret = dmirror_bounce_init(&bounce, start, size);
+	if (ret)
+		return ret;
+
+again:
+	mutex_lock(&dmirror->mutex);
+	ret = dmirror_do_read(dmirror, start, end, &bounce);
+	mutex_unlock(&dmirror->mutex);
+	if (ret == 0)
+		ret = copy_to_user((void __user *)cmd->ptr, bounce.ptr,
+					bounce.size);
+	else if (ret == -ENOENT) {
+		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
+		ret = dmirror_fault(dmirror, start, end, false);
+		if (ret == 0) {
+			cmd->faults++;
+			goto again;
+		}
+	}
+
+	cmd->cpages = bounce.cpages;
+	dmirror_bounce_fini(&bounce);
+	return ret;
+}
+
+static int dmirror_do_write(struct dmirror *dmirror, unsigned long start,
+			    unsigned long end, struct dmirror_bounce *bounce)
+{
+	unsigned long pfn;
+	void *ptr;
+
+	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
+
+	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
+		void *entry;
+		struct page *page;
+		void *tmp;
+
+		entry = xa_load(&dmirror->pt, pfn);
+		page = xa_untag_pointer(entry);
+		if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE)
+			return -ENOENT;
+
+		tmp = kmap(page);
+		memcpy(tmp, ptr, PAGE_SIZE);
+		kunmap(page);
+
+		ptr += PAGE_SIZE;
+		bounce->cpages++;
+	}
+
+	return 0;
+}
+
+static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
+{
+	struct dmirror_bounce bounce;
+	unsigned long start, end;
+	unsigned long size = cmd->npages << PAGE_SHIFT;
+	int ret;
+
+	start = cmd->addr;
+	end = start + size;
+	if (end < start)
+		return -EINVAL;
+
+	ret = dmirror_bounce_init(&bounce, start, size);
+	if (ret)
+		return ret;
+	ret = copy_from_user(bounce.ptr, (void __user *)cmd->ptr,
+				bounce.size);
+	if (ret)
+		return ret;
+
+again:
+	mutex_lock(&dmirror->mutex);
+	ret = dmirror_do_write(dmirror, start, end, &bounce);
+	mutex_unlock(&dmirror->mutex);
+	if (ret == -ENOENT) {
+		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
+		ret = dmirror_fault(dmirror, start, end, true);
+		if (ret == 0) {
+			cmd->faults++;
+			goto again;
+		}
+	}
+
+	cmd->cpages = bounce.cpages;
+	dmirror_bounce_fini(&bounce);
+	return ret;
+}
+
+static bool dmirror_allocate_chunk(struct dmirror_device *mdevice,
+				   struct page **ppage)
+{
+	struct dmirror_chunk *devmem;
+	struct resource *res;
+	unsigned long pfn;
+	unsigned long pfn_first;
+	unsigned long pfn_last;
+	void *ptr;
+
+	mutex_lock(&mdevice->devmem_lock);
+
+	if (mdevice->devmem_count == mdevice->devmem_capacity) {
+		struct dmirror_chunk **new_chunks;
+		unsigned int new_capacity;
+
+		new_capacity = mdevice->devmem_capacity +
+				DEVMEM_CHUNKS_RESERVE;
+		new_chunks = krealloc(mdevice->devmem_chunks,
+				sizeof(new_chunks[0]) * new_capacity,
+				GFP_KERNEL);
+		if (!new_chunks)
+			goto err;
+		mdevice->devmem_capacity = new_capacity;
+		mdevice->devmem_chunks = new_chunks;
+	}
+
+	res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE,
+					"hmm_dmirror");
+	if (IS_ERR(res))
+		goto err;
+
+	devmem = kzalloc(sizeof(*devmem), GFP_KERNEL);
+	if (!devmem)
+		goto err;
+
+	devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
+	devmem->pagemap.res = *res;
+	devmem->pagemap.ops = &dmirror_devmem_ops;
+
+	ptr = memremap_pages(&devmem->pagemap, numa_node_id());
+	if (IS_ERR(ptr))
+		goto err_free;
+
+	devmem->mdevice = mdevice;
+	pfn_first = devmem->pagemap.res.start >> PAGE_SHIFT;
+	pfn_last = pfn_first +
+		(resource_size(&devmem->pagemap.res) >> PAGE_SHIFT);
+	mdevice->devmem_chunks[mdevice->devmem_count++] = devmem;
+
+	mutex_unlock(&mdevice->devmem_lock);
+
+	pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n",
+		DEVMEM_CHUNK_SIZE / (1024 * 1024),
+		mdevice->devmem_count,
+		mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)),
+		pfn_first, pfn_last);
+
+	spin_lock(&mdevice->lock);
+	for (pfn = pfn_first; pfn < pfn_last; pfn++) {
+		struct page *page = pfn_to_page(pfn);
+
+		page->zone_device_data = mdevice->free_pages;
+		mdevice->free_pages = page;
+	}
+	if (ppage) {
+		*ppage = mdevice->free_pages;
+		mdevice->free_pages = (*ppage)->zone_device_data;
+		mdevice->calloc++;
+	}
+	spin_unlock(&mdevice->lock);
+
+	return true;
+
+err_free:
+	kfree(devmem);
+err:
+	mutex_unlock(&mdevice->devmem_lock);
+	return false;
+}
+
+static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice)
+{
+	struct page *dpage = NULL;
+	struct page *rpage;
+
+	/*
+	 * This is a fake device so we alloc real system memory to store
+	 * our device memory.
+	 */
+	rpage = alloc_page(GFP_HIGHUSER);
+	if (!rpage)
+		return NULL;
+
+	spin_lock(&mdevice->lock);
+
+	if (mdevice->free_pages) {
+		dpage = mdevice->free_pages;
+		mdevice->free_pages = dpage->zone_device_data;
+		mdevice->calloc++;
+		spin_unlock(&mdevice->lock);
+	} else {
+		spin_unlock(&mdevice->lock);
+		if (!dmirror_allocate_chunk(mdevice, &dpage))
+			goto error;
+	}
+
+	dpage->zone_device_data = rpage;
+	get_page(dpage);
+	lock_page(dpage);
+	return dpage;
+
+error:
+	__free_page(rpage);
+	return NULL;
+}
+
+static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args,
+					   struct dmirror *dmirror)
+{
+	struct dmirror_device *mdevice = dmirror->mdevice;
+	const unsigned long *src = args->src;
+	unsigned long *dst = args->dst;
+	unsigned long addr;
+
+	for (addr = args->start; addr < args->end; addr += PAGE_SIZE,
+						   src++, dst++) {
+		struct page *spage;
+		struct page *dpage;
+		struct page *rpage;
+
+		if (!(*src & MIGRATE_PFN_MIGRATE))
+			continue;
+
+		/*
+		 * Note that spage might be NULL which is OK since it is an
+		 * unallocated pte_none() or read-only zero page.
+		 */
+		spage = migrate_pfn_to_page(*src);
+
+		/*
+		 * Don't migrate device private pages from our own driver or
+		 * others. For our own we would do a device private memory copy
+		 * not a migration and for others, we would need to fault the
+		 * other device's page into system memory first.
+		 */
+		if (spage && is_zone_device_page(spage))
+			continue;
+
+		dpage = dmirror_devmem_alloc_page(mdevice);
+		if (!dpage)
+			continue;
+
+		rpage = dpage->zone_device_data;
+		if (spage)
+			copy_highpage(rpage, spage);
+		else
+			clear_highpage(rpage);
+
+		/*
+		 * Normally, a device would use the page->zone_device_data to
+		 * point to the mirror but here we use it to hold the page for
+		 * the simulated device memory and that page holds the pointer
+		 * to the mirror.
+		 */
+		rpage->zone_device_data = dmirror;
+
+		*dst = migrate_pfn(page_to_pfn(dpage)) |
+			    MIGRATE_PFN_LOCKED;
+		if ((*src & MIGRATE_PFN_WRITE) ||
+		    (!spage && args->vma->vm_flags & VM_WRITE))
+			*dst |= MIGRATE_PFN_WRITE;
+	}
+}
+
+static int dmirror_migrate_finalize_and_map(struct migrate_vma *args,
+					    struct dmirror *dmirror)
+{
+	unsigned long start = args->start;
+	unsigned long end = args->end;
+	const unsigned long *src = args->src;
+	const unsigned long *dst = args->dst;
+	unsigned long pfn;
+
+	/* Map the migrated pages into the device's page tables. */
+	mutex_lock(&dmirror->mutex);
+
+	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++,
+								src++, dst++) {
+		struct page *dpage;
+		void *entry;
+
+		if (!(*src & MIGRATE_PFN_MIGRATE))
+			continue;
+
+		dpage = migrate_pfn_to_page(*dst);
+		if (!dpage)
+			continue;
+
+		/*
+		 * Store the page that holds the data so the page table
+		 * doesn't have to deal with ZONE_DEVICE private pages.
+		 */
+		entry = dpage->zone_device_data;
+		if (*dst & MIGRATE_PFN_WRITE)
+			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
+		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
+		if (xa_is_err(entry))
+			return xa_err(entry);
+	}
+
+	mutex_unlock(&dmirror->mutex);
+	return 0;
+}
+
+static int dmirror_migrate(struct dmirror *dmirror,
+			   struct hmm_dmirror_cmd *cmd)
+{
+	unsigned long start, end, addr;
+	unsigned long size = cmd->npages << PAGE_SHIFT;
+	struct mm_struct *mm = dmirror->mm;
+	struct vm_area_struct *vma;
+	unsigned long src_pfns[64];
+	unsigned long dst_pfns[64];
+	struct dmirror_bounce bounce;
+	struct migrate_vma args;
+	unsigned long next;
+	int ret;
+
+	start = cmd->addr;
+	end = start + size;
+	if (end < start)
+		return -EINVAL;
+
+	/* Since the mm is for the mirrored process, get a reference first. */
+	if (!mmget_not_zero(mm))
+		return -EINVAL;
+
+	down_read(&mm->mmap_sem);
+	for (addr = start; addr < end; addr = next) {
+		vma = find_vma(mm, addr);
+		if (!vma || addr < vma->vm_start) {
+			ret = -EINVAL;
+			goto out;
+		}
+		next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
+		if (next > vma->vm_end)
+			next = vma->vm_end;
+
+		args.vma = vma;
+		args.src = src_pfns;
+		args.dst = dst_pfns;
+		args.start = addr;
+		args.end = next;
+		ret = migrate_vma_setup(&args);
+		if (ret)
+			goto out;
+
+		dmirror_migrate_alloc_and_copy(&args, dmirror);
+		migrate_vma_pages(&args);
+		dmirror_migrate_finalize_and_map(&args, dmirror);
+		migrate_vma_finalize(&args);
+	}
+	up_read(&mm->mmap_sem);
+	mmput(mm);
+
+	/* Return the migrated data for verification. */
+	ret = dmirror_bounce_init(&bounce, start, size);
+	if (ret)
+		return ret;
+	mutex_lock(&dmirror->mutex);
+	ret = dmirror_do_read(dmirror, start, end, &bounce);
+	mutex_unlock(&dmirror->mutex);
+	if (ret == 0)
+		ret = copy_to_user((void __user *)cmd->ptr, bounce.ptr,
+					bounce.size);
+	cmd->cpages = bounce.cpages;
+	dmirror_bounce_fini(&bounce);
+	return ret;
+
+out:
+	up_read(&mm->mmap_sem);
+	mmput(mm);
+	return ret;
+}
+
+static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range,
+			    unsigned char *perm, uint64_t entry)
+{
+	struct page *page;
+
+	if (entry == range->values[HMM_PFN_ERROR]) {
+		*perm = HMM_DMIRROR_PROT_ERROR;
+		return;
+	}
+	page = hmm_device_entry_to_page(range, entry);
+	if (!page) {
+		*perm = HMM_DMIRROR_PROT_NONE;
+		return;
+	}
+	if (entry & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
+		/* Is the page migrated to this device or some other? */
+		if (dmirror->mdevice == dmirror_page_to_device(page))
+			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL;
+		else
+			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE;
+	} else if (is_zero_pfn(page_to_pfn(page)))
+		*perm = HMM_DMIRROR_PROT_ZERO;
+	else
+		*perm = HMM_DMIRROR_PROT_NONE;
+	if (entry & range->flags[HMM_PFN_WRITE])
+		*perm |= HMM_DMIRROR_PROT_WRITE;
+	else
+		*perm |= HMM_DMIRROR_PROT_READ;
+}
+
+static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni,
+				const struct mmu_notifier_range *range,
+				unsigned long cur_seq)
+{
+	struct dmirror_interval *dmi =
+		container_of(mni, struct dmirror_interval, notifier);
+	struct dmirror *dmirror = dmi->dmirror;
+
+	if (mmu_notifier_range_blockable(range))
+		mutex_lock(&dmirror->mutex);
+	else if (!mutex_trylock(&dmirror->mutex))
+		return false;
+
+	/*
+	 * Snapshots only need to set the sequence number since the
+	 * invalidations are handled by the dmirror_interval ranges.
+	 */
+	mmu_interval_set_seq(mni, cur_seq);
+
+	mutex_unlock(&dmirror->mutex);
+	return true;
+}
+
+static const struct mmu_interval_notifier_ops dmirror_mrn_ops = {
+	.invalidate = dmirror_snapshot_invalidate,
+};
+
+static int dmirror_range_snapshot(struct dmirror *dmirror,
+				  struct hmm_range *range,
+				  unsigned char *perm)
+{
+	struct mm_struct *mm = dmirror->mm;
+	struct dmirror_interval notifier;
+	unsigned long timeout =
+		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
+	unsigned long i;
+	unsigned long n;
+	int ret = 0;
+
+	notifier.dmirror = dmirror;
+	range->notifier = &notifier.notifier;
+
+	ret = mmu_interval_notifier_insert_safe(range->notifier, mm,
+			range->start, range->end - range->start,
+			&dmirror_mrn_ops);
+	if (ret)
+		return ret;
+
+	while (true) {
+		long count;
+
+		if (time_after(jiffies, timeout)) {
+			ret = -EBUSY;
+			goto out;
+		}
+
+		range->notifier_seq = mmu_interval_read_begin(range->notifier);
+
+		down_read(&mm->mmap_sem);
+		count = hmm_range_fault(range, HMM_FAULT_SNAPSHOT);
+		up_read(&mm->mmap_sem);
+		if (count <= 0) {
+			if (count == 0 || count == -EBUSY)
+				continue;
+			ret = count;
+			goto out;
+		}
+
+		mutex_lock(&dmirror->mutex);
+		if (mmu_interval_read_retry(range->notifier,
+					    range->notifier_seq)) {
+			mutex_unlock(&dmirror->mutex);
+			continue;
+		}
+		break;
+	}
+
+	n = (range->end - range->start) >> PAGE_SHIFT;
+	for (i = 0; i < n; i++)
+		dmirror_mkentry(dmirror, range, perm + i, range->pfns[i]);
+
+	mutex_unlock(&dmirror->mutex);
+out:
+	mmu_interval_notifier_remove(range->notifier);
+	return ret;
+}
+
+static int dmirror_snapshot(struct dmirror *dmirror,
+			    struct hmm_dmirror_cmd *cmd)
+{
+	struct mm_struct *mm = dmirror->mm;
+	unsigned long start, end;
+	unsigned long size = cmd->npages << PAGE_SHIFT;
+	unsigned long addr;
+	unsigned long next;
+	uint64_t pfns[64];
+	unsigned char perm[64];
+	char __user *uptr;
+	struct hmm_range range = {
+		.pfns = pfns,
+		.flags = dmirror_hmm_flags,
+		.values = dmirror_hmm_values,
+		.pfn_shift = DPT_SHIFT,
+		.pfn_flags_mask = ~0ULL,
+	};
+	int ret = 0;
+
+	start = cmd->addr;
+	end = start + size;
+	if (end < start)
+		return -EINVAL;
+
+	/* Since the mm is for the mirrored process, get a reference first. */
+	if (!mmget_not_zero(mm))
+		return -EINVAL;
+
+	/*
+	 * Register a temporary notifier to detect invalidations even if it
+	 * overlaps with other mmu_interval_notifiers.
+	 */
+	uptr = (void __user *)cmd->ptr;
+	for (addr = start; addr < end; addr = next) {
+		unsigned long n;
+
+		next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
+		range.start = addr;
+		range.end = next;
+
+		ret = dmirror_range_snapshot(dmirror, &range, perm);
+		if (ret)
+			break;
+
+		n = (range.end - range.start) >> PAGE_SHIFT;
+		ret = copy_to_user(uptr, perm, n);
+		if (ret)
+			break;
+
+		cmd->cpages += n;
+		uptr += n;
+	}
+	mmput(mm);
+
+	return ret;
+}
+
+static long dmirror_fops_unlocked_ioctl(struct file *filp,
+					unsigned int command,
+					unsigned long arg)
+{
+	void __user *uarg = (void __user *)arg;
+	struct hmm_dmirror_cmd cmd;
+	struct dmirror *dmirror;
+	int ret;
+
+	dmirror = filp->private_data;
+	if (!dmirror)
+		return -EINVAL;
+
+	ret = copy_from_user(&cmd, uarg, sizeof(cmd));
+	if (ret)
+		return ret;
+
+	if (cmd.addr & ~PAGE_MASK)
+		return -EINVAL;
+	if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT)))
+		return -EINVAL;
+
+	cmd.cpages = 0;
+	cmd.faults = 0;
+
+	switch (command) {
+	case HMM_DMIRROR_READ:
+		ret = dmirror_read(dmirror, &cmd);
+		break;
+
+	case HMM_DMIRROR_WRITE:
+		ret = dmirror_write(dmirror, &cmd);
+		break;
+
+	case HMM_DMIRROR_MIGRATE:
+		ret = dmirror_migrate(dmirror, &cmd);
+		break;
+
+	case HMM_DMIRROR_SNAPSHOT:
+		ret = dmirror_snapshot(dmirror, &cmd);
+		break;
+
+	default:
+		return -EINVAL;
+	}
+	if (ret)
+		return ret;
+
+	return copy_to_user(uarg, &cmd, sizeof(cmd));
+}
+
+static const struct file_operations dmirror_fops = {
+	.open		= dmirror_fops_open,
+	.release	= dmirror_fops_release,
+	.unlocked_ioctl = dmirror_fops_unlocked_ioctl,
+	.llseek		= default_llseek,
+	.owner		= THIS_MODULE,
+};
+
+static void dmirror_devmem_free(struct page *page)
+{
+	struct page *rpage = page->zone_device_data;
+	struct dmirror_device *mdevice;
+
+	if (rpage)
+		__free_page(rpage);
+
+	mdevice = dmirror_page_to_device(page);
+
+	spin_lock(&mdevice->lock);
+	mdevice->cfree++;
+	page->zone_device_data = mdevice->free_pages;
+	mdevice->free_pages = page;
+	spin_unlock(&mdevice->lock);
+}
+
+static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args,
+						struct dmirror_device *mdevice)
+{
+	struct vm_area_struct *vma = args->vma;
+	const unsigned long *src = args->src;
+	unsigned long *dst = args->dst;
+	unsigned long start = args->start;
+	unsigned long end = args->end;
+	unsigned long addr;
+
+	for (addr = start; addr < end; addr += PAGE_SIZE,
+				       src++, dst++) {
+		struct page *dpage, *spage;
+
+		spage = migrate_pfn_to_page(*src);
+		if (!spage || !(*src & MIGRATE_PFN_MIGRATE))
+			continue;
+		if (!dmirror_device_is_mine(mdevice, spage))
+			continue;
+		spage = spage->zone_device_data;
+
+		dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
+		if (!dpage)
+			continue;
+
+		lock_page(dpage);
+		copy_highpage(dpage, spage);
+		*dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
+		if (*src & MIGRATE_PFN_WRITE)
+			*dst |= MIGRATE_PFN_WRITE;
+	}
+	return 0;
+}
+
+static void dmirror_devmem_fault_finalize_and_map(struct migrate_vma *args,
+						  struct dmirror *dmirror)
+{
+	/* Invalidate the device's page table mapping. */
+	mutex_lock(&dmirror->mutex);
+	dmirror_do_update(dmirror, args->start, args->end);
+	mutex_unlock(&dmirror->mutex);
+}
+
+static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf)
+{
+	struct migrate_vma args;
+	unsigned long src_pfns;
+	unsigned long dst_pfns;
+	struct page *rpage;
+	struct dmirror *dmirror;
+	vm_fault_t ret;
+
+	/* FIXME demonstrate how we can adjust migrate range */
+	args.vma = vmf->vma;
+	args.start = vmf->address;
+	args.end = args.start + PAGE_SIZE;
+	args.src = &src_pfns;
+	args.dst = &dst_pfns;
+
+	if (migrate_vma_setup(&args))
+		return VM_FAULT_SIGBUS;
+
+	/*
+	 * Normally, a device would use the page->zone_device_data to point to
+	 * the mirror but here we use it to hold the page for the simulated
+	 * device memory and that page holds the pointer to the mirror.
+	 */
+	rpage = vmf->page->zone_device_data;
+	dmirror = rpage->zone_device_data;
+
+	ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror->mdevice);
+	if (ret)
+		return ret;
+	migrate_vma_pages(&args);
+	dmirror_devmem_fault_finalize_and_map(&args, dmirror);
+	migrate_vma_finalize(&args);
+	return 0;
+}
+
+static const struct dev_pagemap_ops dmirror_devmem_ops = {
+	.page_free	= dmirror_devmem_free,
+	.migrate_to_ram	= dmirror_devmem_fault,
+};
+
+static int dmirror_device_init(struct dmirror_device *mdevice, int id)
+{
+	dev_t dev;
+	int ret;
+
+	dev = MKDEV(MAJOR(dmirror_dev), id);
+	mutex_init(&mdevice->devmem_lock);
+	spin_lock_init(&mdevice->lock);
+
+	cdev_init(&mdevice->cdevice, &dmirror_fops);
+	ret = cdev_add(&mdevice->cdevice, dev, 1);
+	if (ret)
+		return ret;
+
+	/* Build a list of free ZONE_DEVICE private struct pages */
+	dmirror_allocate_chunk(mdevice, NULL);
+
+	return 0;
+}
+
+static void dmirror_device_remove(struct dmirror_device *mdevice)
+{
+	unsigned int i;
+
+	if (mdevice->devmem_chunks) {
+		for (i = 0; i < mdevice->devmem_count; i++) {
+			struct dmirror_chunk *devmem =
+				mdevice->devmem_chunks[i];
+
+			memunmap_pages(&devmem->pagemap);
+			kfree(devmem);
+		}
+		kfree(mdevice->devmem_chunks);
+	}
+
+	cdev_del(&mdevice->cdevice);
+}
+
+static int __init hmm_dmirror_init(void)
+{
+	int ret;
+	int id;
+
+	ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES,
+				  "HMM_DMIRROR");
+	if (ret)
+		goto err_unreg;
+
+	for (id = 0; id < DMIRROR_NDEVICES; id++) {
+		ret = dmirror_device_init(dmirror_devices + id, id);
+		if (ret)
+			goto err_chrdev;
+	}
+
+	/*
+	 * Allocate a zero page to simulate a reserved page of device private
+	 * memory which is always zero. The zero_pfn page isn't used just to
+	 * make the code here simpler (i.e., we need a struct page for it).
+	 */
+	dmirror_zero_page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
+	if (!dmirror_zero_page)
+		goto err_chrdev;
+
+	pr_info("HMM test module loaded. This is only for testing HMM.\n");
+	return 0;
+
+err_chrdev:
+	while (--id >= 0)
+		dmirror_device_remove(dmirror_devices + id);
+	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
+err_unreg:
+	return ret;
+}
+
+static void __exit hmm_dmirror_exit(void)
+{
+	int id;
+
+	if (dmirror_zero_page)
+		__free_page(dmirror_zero_page);
+	for (id = 0; id < DMIRROR_NDEVICES; id++)
+		dmirror_device_remove(dmirror_devices + id);
+	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
+}
+
+module_init(hmm_dmirror_init);
+module_exit(hmm_dmirror_exit);
+MODULE_LICENSE("GPL");
diff --git a/tools/testing/selftests/vm/.gitignore b/tools/testing/selftests/vm/.gitignore
index 31b3c98b6d34..3054565b3f07 100644
--- a/tools/testing/selftests/vm/.gitignore
+++ b/tools/testing/selftests/vm/.gitignore
@@ -14,3 +14,4 @@ virtual_address_range
 gup_benchmark
 va_128TBswitch
 map_fixed_noreplace
+hmm-tests
diff --git a/tools/testing/selftests/vm/Makefile b/tools/testing/selftests/vm/Makefile
index 7f9a8a8c31da..3fadab99d991 100644
--- a/tools/testing/selftests/vm/Makefile
+++ b/tools/testing/selftests/vm/Makefile
@@ -7,6 +7,7 @@ CFLAGS = -Wall -I ../../../../usr/include $(EXTRA_CFLAGS)
 LDLIBS = -lrt
 TEST_GEN_FILES = compaction_test
 TEST_GEN_FILES += gup_benchmark
+TEST_GEN_FILES += hmm-tests
 TEST_GEN_FILES += hugepage-mmap
 TEST_GEN_FILES += hugepage-shm
 TEST_GEN_FILES += map_hugetlb
@@ -31,6 +32,8 @@ TEST_FILES := test_vmalloc.sh
 KSFT_KHDR_INSTALL := 1
 include ../lib.mk
 
+$(OUTPUT)/hmm-tests: LDLIBS += -lhugetlbfs -lpthread
+
 $(OUTPUT)/userfaultfd: LDLIBS += -lpthread
 
 $(OUTPUT)/mlock-random-test: LDLIBS += -lcap
diff --git a/tools/testing/selftests/vm/config b/tools/testing/selftests/vm/config
index 93b90a9b1eeb..f6d0adad739f 100644
--- a/tools/testing/selftests/vm/config
+++ b/tools/testing/selftests/vm/config
@@ -1,3 +1,5 @@
 CONFIG_SYSVIPC=y
 CONFIG_USERFAULTFD=y
 CONFIG_TEST_VMALLOC=m
+CONFIG_HMM_MIRROR=y
+CONFIG_DEVICE_PRIVATE=y
diff --git a/tools/testing/selftests/vm/hmm-tests.c b/tools/testing/selftests/vm/hmm-tests.c
new file mode 100644
index 000000000000..23bf2e956f1d
--- /dev/null
+++ b/tools/testing/selftests/vm/hmm-tests.c
@@ -0,0 +1,1354 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * HMM stands for Heterogeneous Memory Management, it is a helper layer inside
+ * the linux kernel to help device drivers mirror a process address space in
+ * the device. This allows the device to use the same address space which
+ * makes communication and data exchange a lot easier.
+ *
+ * This framework's sole purpose is to exercise various code paths inside
+ * the kernel to make sure that HMM performs as expected and to flush out any
+ * bugs.
+ */
+
+#include "../kselftest_harness.h"
+
+#include <errno.h>
+#include <fcntl.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <stdint.h>
+#include <unistd.h>
+#include <strings.h>
+#include <time.h>
+#include <pthread.h>
+#include <hugetlbfs.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <sys/mman.h>
+#include <sys/ioctl.h>
+#include <linux/test_hmm.h>
+
+struct hmm_buffer {
+	void		*ptr;
+	void		*mirror;
+	unsigned long	size;
+	int		fd;
+	uint64_t	cpages;
+	uint64_t	faults;
+};
+
+#define TWOMEG		(1 << 21)
+#define HMM_BUFFER_SIZE (1024 << 12)
+#define HMM_PATH_MAX    64
+#define NTIMES		256
+
+#define ALIGN(x, a) (((x) + (a - 1)) & (~((a) - 1)))
+
+FIXTURE(hmm)
+{
+	int		fd;
+	unsigned int	page_size;
+	unsigned int	page_shift;
+};
+
+FIXTURE(hmm2)
+{
+	int		fd0;
+	int		fd1;
+	unsigned int	page_size;
+	unsigned int	page_shift;
+};
+
+static int hmm_open(int unit)
+{
+	char pathname[HMM_PATH_MAX];
+	int fd;
+
+	snprintf(pathname, sizeof(pathname), "/dev/hmm_dmirror%d", unit);
+	fd = open(pathname, O_RDWR, 0);
+	if (fd < 0)
+		fprintf(stderr, "could not open hmm dmirror driver (%s)\n",
+			pathname);
+	return fd;
+}
+
+FIXTURE_SETUP(hmm)
+{
+	self->page_size = sysconf(_SC_PAGE_SIZE);
+	self->page_shift = ffs(self->page_size) - 1;
+
+	self->fd = hmm_open(0);
+	ASSERT_GE(self->fd, 0);
+}
+
+FIXTURE_SETUP(hmm2)
+{
+	self->page_size = sysconf(_SC_PAGE_SIZE);
+	self->page_shift = ffs(self->page_size) - 1;
+
+	self->fd0 = hmm_open(0);
+	ASSERT_GE(self->fd0, 0);
+	self->fd1 = hmm_open(1);
+	ASSERT_GE(self->fd1, 0);
+}
+
+FIXTURE_TEARDOWN(hmm)
+{
+	int ret = close(self->fd);
+
+	ASSERT_EQ(ret, 0);
+	self->fd = -1;
+}
+
+FIXTURE_TEARDOWN(hmm2)
+{
+	int ret = close(self->fd0);
+
+	ASSERT_EQ(ret, 0);
+	self->fd0 = -1;
+
+	ret = close(self->fd1);
+	ASSERT_EQ(ret, 0);
+	self->fd1 = -1;
+}
+
+static int hmm_dmirror_cmd(int fd,
+			   unsigned long request,
+			   struct hmm_buffer *buffer,
+			   unsigned long npages)
+{
+	struct hmm_dmirror_cmd cmd;
+	int ret;
+
+	/* Simulate a device reading system memory. */
+	cmd.addr = (__u64)buffer->ptr;
+	cmd.ptr = (__u64)buffer->mirror;
+	cmd.npages = npages;
+
+	for (;;) {
+		ret = ioctl(fd, request, &cmd);
+		if (ret == 0)
+			break;
+		if (errno == EINTR)
+			continue;
+		return -errno;
+	}
+	buffer->cpages = cmd.cpages;
+	buffer->faults = cmd.faults;
+
+	return 0;
+}
+
+static void hmm_buffer_free(struct hmm_buffer *buffer)
+{
+	if (buffer == NULL)
+		return;
+
+	if (buffer->ptr)
+		munmap(buffer->ptr, buffer->size);
+	free(buffer->mirror);
+	free(buffer);
+}
+
+/*
+ * Create a temporary file that will be deleted on close.
+ */
+static int hmm_create_file(unsigned long size)
+{
+	char path[HMM_PATH_MAX];
+	int fd;
+
+	strcpy(path, "/tmp");
+	fd = open(path, O_TMPFILE | O_EXCL | O_RDWR, 0600);
+	if (fd >= 0) {
+		int r;
+
+		do {
+			r = ftruncate(fd, size);
+		} while (r == -1 && errno == EINTR);
+		if (!r)
+			return fd;
+		close(fd);
+	}
+	return -1;
+}
+
+/*
+ * Return a random unsigned number.
+ */
+static unsigned int hmm_random(void)
+{
+	static int fd = -1;
+	unsigned int r;
+
+	if (fd < 0) {
+		fd = open("/dev/urandom", O_RDONLY);
+		if (fd < 0) {
+			fprintf(stderr, "%s:%d failed to open /dev/urandom\n",
+					__FILE__, __LINE__);
+			return ~0U;
+		}
+	}
+	read(fd, &r, sizeof(r));
+	return r;
+}
+
+static void hmm_nanosleep(unsigned int n)
+{
+	struct timespec t;
+
+	t.tv_sec = 0;
+	t.tv_nsec = n;
+	nanosleep(&t, NULL);
+}
+
+/*
+ * Simple NULL test of device open/close.
+ */
+TEST_F(hmm, open_close)
+{
+}
+
+/*
+ * Read private anonymous memory.
+ */
+TEST_F(hmm, anon_read)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+	int val;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/*
+	 * Initialize buffer in system memory but leave the first two pages
+	 * zero (pte_none and pfn_zero).
+	 */
+	i = 2 * self->page_size / sizeof(*ptr);
+	for (ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Set buffer permission to read-only. */
+	ret = mprotect(buffer->ptr, size, PROT_READ);
+	ASSERT_EQ(ret, 0);
+
+	/* Populate the CPU page table with a special zero page. */
+	val = *(int *)(buffer->ptr + self->page_size);
+	ASSERT_EQ(val, 0);
+
+	/* Simulate a device reading system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device read. */
+	ptr = buffer->mirror;
+	for (i = 0; i < 2 * self->page_size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], 0);
+	for (; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Read private anonymous memory which has been protected with
+ * mprotect() PROT_NONE.
+ */
+TEST_F(hmm, anon_read_prot)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Initialize buffer in system memory. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Initialize mirror buffer so we can verify it isn't written. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = -i;
+
+	/* Protect buffer from reading. */
+	ret = mprotect(buffer->ptr, size, PROT_NONE);
+	ASSERT_EQ(ret, 0);
+
+	/* Simulate a device reading system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
+	ASSERT_EQ(ret, -EFAULT);
+
+	/* Allow CPU to read the buffer so we can check it. */
+	ret = mprotect(buffer->ptr, size, PROT_READ);
+	ASSERT_EQ(ret, 0);
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	/* Check what the device read. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], -i);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Write private anonymous memory.
+ */
+TEST_F(hmm, anon_write)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Initialize data that the device will write to buffer->ptr. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Simulate a device writing system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device wrote. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Write private anonymous memory which has been protected with
+ * mprotect() PROT_READ.
+ */
+TEST_F(hmm, anon_write_prot)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Simulate a device reading a zero page of memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, 1);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, 1);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Initialize data that the device will write to buffer->ptr. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Simulate a device writing system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+	ASSERT_EQ(ret, -EPERM);
+
+	/* Check what the device wrote. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], 0);
+
+	/* Now allow writing and see that the zero page is replaced. */
+	ret = mprotect(buffer->ptr, size, PROT_WRITE | PROT_READ);
+	ASSERT_EQ(ret, 0);
+
+	/* Simulate a device writing system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device wrote. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Check that a device writing an anonymous private mapping
+ * will copy-on-write if a child process inherits the mapping.
+ */
+TEST_F(hmm, anon_write_child)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	pid_t pid;
+	int child_fd;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Initialize buffer->ptr so we can tell if it is written. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Initialize data that the device will write to buffer->ptr. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = -i;
+
+	pid = fork();
+	if (pid == -1)
+		ASSERT_EQ(pid, 0);
+	if (pid != 0) {
+		waitpid(pid, &ret, 0);
+		ASSERT_EQ(WIFEXITED(ret), 1);
+
+		/* Check that the parent's buffer did not change. */
+		for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+			ASSERT_EQ(ptr[i], i);
+		return;
+	}
+
+	/* Check that we see the parent's values. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], -i);
+
+	/* The child process needs its own mirror to its own mm. */
+	child_fd = hmm_open(0);
+	ASSERT_GE(child_fd, 0);
+
+	/* Simulate a device writing system memory. */
+	ret = hmm_dmirror_cmd(child_fd, HMM_DMIRROR_WRITE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device wrote. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], -i);
+
+	close(child_fd);
+	exit(0);
+}
+
+/*
+ * Check that a device writing an anonymous shared mapping
+ * will not copy-on-write if a child process inherits the mapping.
+ */
+TEST_F(hmm, anon_write_child_shared)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	pid_t pid;
+	int child_fd;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_SHARED | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Initialize buffer->ptr so we can tell if it is written. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Initialize data that the device will write to buffer->ptr. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = -i;
+
+	pid = fork();
+	if (pid == -1)
+		ASSERT_EQ(pid, 0);
+	if (pid != 0) {
+		waitpid(pid, &ret, 0);
+		ASSERT_EQ(WIFEXITED(ret), 1);
+
+		/* Check that the parent's buffer did change. */
+		for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+			ASSERT_EQ(ptr[i], -i);
+		return;
+	}
+
+	/* Check that we see the parent's values. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], -i);
+
+	/* The child process needs its own mirror to its own mm. */
+	child_fd = hmm_open(0);
+	ASSERT_GE(child_fd, 0);
+
+	/* Simulate a device writing system memory. */
+	ret = hmm_dmirror_cmd(child_fd, HMM_DMIRROR_WRITE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device wrote. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], -i);
+
+	close(child_fd);
+	exit(0);
+}
+
+/*
+ * Write private anonymous huge page.
+ */
+TEST_F(hmm, anon_write_huge)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	void *old_ptr;
+	void *map;
+	int *ptr;
+	int ret;
+
+	size = 2 * TWOMEG;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	size = TWOMEG;
+	npages = size >> self->page_shift;
+	map = (void *)ALIGN((uintptr_t)buffer->ptr, size);
+	ret = madvise(map, size, MADV_HUGEPAGE);
+	ASSERT_EQ(ret, 0);
+	old_ptr = buffer->ptr;
+	buffer->ptr = map;
+
+	/* Initialize data that the device will write to buffer->ptr. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Simulate a device writing system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device wrote. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	buffer->ptr = old_ptr;
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Write huge TLBFS page.
+ */
+TEST_F(hmm, anon_write_hugetlbfs)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+	long pagesizes[4];
+	int n, idx;
+
+	/* Skip test if we can't allocate a hugetlbfs page. */
+
+	n = gethugepagesizes(pagesizes, 4);
+	if (n <= 0)
+		return;
+	for (idx = 0; --n > 0; ) {
+		if (pagesizes[n] < pagesizes[idx])
+			idx = n;
+	}
+	size = ALIGN(TWOMEG, pagesizes[idx]);
+	npages = size >> self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->ptr = get_hugepage_region(size, GHR_STRICT);
+	if (buffer->ptr == NULL) {
+		free(buffer);
+		return;
+	}
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	/* Initialize data that the device will write to buffer->ptr. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Simulate a device writing system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device wrote. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	free_hugepage_region(buffer->ptr);
+	buffer->ptr = NULL;
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Read mmap'ed file memory.
+ */
+TEST_F(hmm, file_read)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+	int fd;
+	ssize_t len;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	fd = hmm_create_file(size);
+	ASSERT_GE(fd, 0);
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = fd;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	/* Write initial contents of the file. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+	len = pwrite(fd, buffer->mirror, size, 0);
+	ASSERT_EQ(len, size);
+	memset(buffer->mirror, 0, size);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ,
+			   MAP_SHARED,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Simulate a device reading system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device read. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Write mmap'ed file memory.
+ */
+TEST_F(hmm, file_write)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+	int fd;
+	ssize_t len;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	fd = hmm_create_file(size);
+	ASSERT_GE(fd, 0);
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = fd;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_SHARED,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Initialize data that the device will write to buffer->ptr. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Simulate a device writing system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device wrote. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	/* Check that the device also wrote the file. */
+	len = pread(fd, buffer->mirror, size, 0);
+	ASSERT_EQ(len, size);
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Migrate anonymous memory to device private memory.
+ */
+TEST_F(hmm, migrate)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Initialize buffer in system memory. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Migrate memory to device. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_MIGRATE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+
+	/* Check what the device read. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Migrate anonymous memory to device private memory and fault it back to system
+ * memory.
+ */
+TEST_F(hmm, migrate_fault)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Initialize buffer in system memory. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Migrate memory to device. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_MIGRATE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+
+	/* Check what the device read. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	/* Fault pages back to system memory and check them. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Try to migrate various memory types to device private memory.
+ */
+TEST_F(hmm2, migrate_mixed)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	int *ptr;
+	unsigned char *p;
+	int ret;
+	int val;
+
+	npages = 6;
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	/* Reserve a range of addresses. */
+	buffer->ptr = mmap(NULL, size,
+			   PROT_NONE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+	p = buffer->ptr;
+
+	/* Now try to migrate everything to device 1. */
+	ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_MIGRATE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, 6);
+
+	/* Punch a hole after the first page address. */
+	ret = munmap(buffer->ptr + self->page_size, self->page_size);
+	ASSERT_EQ(ret, 0);
+
+	/* We expect an error if the vma doesn't cover the range. */
+	ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_MIGRATE, buffer, 3);
+	ASSERT_EQ(ret, -EINVAL);
+
+	/* Page 2 will be a read-only zero page. */
+	ret = mprotect(buffer->ptr + 2 * self->page_size, self->page_size,
+				PROT_READ);
+	ASSERT_EQ(ret, 0);
+	ptr = (int *)(buffer->ptr + 2 * self->page_size);
+	val = *ptr + 3;
+	ASSERT_EQ(val, 3);
+
+	/* Page 3 will be read-only. */
+	ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
+				PROT_READ | PROT_WRITE);
+	ASSERT_EQ(ret, 0);
+	ptr = (int *)(buffer->ptr + 3 * self->page_size);
+	*ptr = val;
+	ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
+				PROT_READ);
+	ASSERT_EQ(ret, 0);
+
+	/* Page 4 will be read-write. */
+	ret = mprotect(buffer->ptr + 4 * self->page_size, self->page_size,
+				PROT_READ | PROT_WRITE);
+	ASSERT_EQ(ret, 0);
+	ptr = (int *)(buffer->ptr + 4 * self->page_size);
+	*ptr = val;
+
+	/* Page 5 won't be migrated to device 0 because it's on device 1. */
+	buffer->ptr = p + 5 * self->page_size;
+	ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_MIGRATE, buffer, 1);
+	ASSERT_EQ(ret, -ENOENT);
+	buffer->ptr = p;
+
+	/* Now try to migrate pages 2-3 to device 1. */
+	buffer->ptr = p + 2 * self->page_size;
+	ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_MIGRATE, buffer, 2);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, 2);
+	buffer->ptr = p;
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Migrate anonymous memory to device private memory and fault it back to system
+ * memory multiple times.
+ */
+TEST_F(hmm, migrate_multiple)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	unsigned long c;
+	int *ptr;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	for (c = 0; c < NTIMES; c++) {
+		buffer = malloc(sizeof(*buffer));
+		ASSERT_NE(buffer, NULL);
+
+		buffer->fd = -1;
+		buffer->size = size;
+		buffer->mirror = malloc(size);
+		ASSERT_NE(buffer->mirror, NULL);
+
+		buffer->ptr = mmap(NULL, size,
+				   PROT_READ | PROT_WRITE,
+				   MAP_PRIVATE | MAP_ANONYMOUS,
+				   buffer->fd, 0);
+		ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+		/* Initialize buffer in system memory. */
+		for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+			ptr[i] = i;
+
+		/* Migrate memory to device. */
+		ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_MIGRATE, buffer,
+				      npages);
+		ASSERT_EQ(ret, 0);
+		ASSERT_EQ(buffer->cpages, npages);
+
+		/* Check what the device read. */
+		for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+			ASSERT_EQ(ptr[i], i);
+
+		/* Fault pages back to system memory and check them. */
+		for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+			ASSERT_EQ(ptr[i], i);
+
+		hmm_buffer_free(buffer);
+	}
+}
+
+/*
+ * Read anonymous memory multiple times.
+ */
+TEST_F(hmm, anon_read_multiple)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	unsigned long c;
+	int *ptr;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	for (c = 0; c < NTIMES; c++) {
+		buffer = malloc(sizeof(*buffer));
+		ASSERT_NE(buffer, NULL);
+
+		buffer->fd = -1;
+		buffer->size = size;
+		buffer->mirror = malloc(size);
+		ASSERT_NE(buffer->mirror, NULL);
+
+		buffer->ptr = mmap(NULL, size,
+				   PROT_READ | PROT_WRITE,
+				   MAP_PRIVATE | MAP_ANONYMOUS,
+				   buffer->fd, 0);
+		ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+		/* Initialize buffer in system memory. */
+		for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+			ptr[i] = i + c;
+
+		/* Simulate a device reading system memory. */
+		ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer,
+				      npages);
+		ASSERT_EQ(ret, 0);
+		ASSERT_EQ(buffer->cpages, npages);
+		ASSERT_EQ(buffer->faults, 1);
+
+		/* Check what the device read. */
+		for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+			ASSERT_EQ(ptr[i], i + c);
+
+		hmm_buffer_free(buffer);
+	}
+}
+
+void *unmap_buffer(void *p)
+{
+	struct hmm_buffer *buffer = p;
+
+	/* Delay for a bit and then unmap buffer while it is being read. */
+	hmm_nanosleep(hmm_random() % 32000);
+	munmap(buffer->ptr + buffer->size / 2, buffer->size / 2);
+	buffer->ptr = NULL;
+
+	return NULL;
+}
+
+/*
+ * Try reading anonymous memory while it is being unmapped.
+ */
+TEST_F(hmm, anon_teardown)
+{
+	unsigned long npages;
+	unsigned long size;
+	unsigned long c;
+	void *ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	for (c = 0; c < NTIMES; ++c) {
+		pthread_t thread;
+		struct hmm_buffer *buffer;
+		unsigned long i;
+		int *ptr;
+		int rc;
+
+		buffer = malloc(sizeof(*buffer));
+		ASSERT_NE(buffer, NULL);
+
+		buffer->fd = -1;
+		buffer->size = size;
+		buffer->mirror = malloc(size);
+		ASSERT_NE(buffer->mirror, NULL);
+
+		buffer->ptr = mmap(NULL, size,
+				   PROT_READ | PROT_WRITE,
+				   MAP_PRIVATE | MAP_ANONYMOUS,
+				   buffer->fd, 0);
+		ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+		/* Initialize buffer in system memory. */
+		for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+			ptr[i] = i + c;
+
+		rc = pthread_create(&thread, NULL, unmap_buffer, buffer);
+		ASSERT_EQ(rc, 0);
+
+		/* Simulate a device reading system memory. */
+		rc = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer,
+				     npages);
+		if (rc == 0) {
+			ASSERT_EQ(buffer->cpages, npages);
+			ASSERT_EQ(buffer->faults, 1);
+
+			/* Check what the device read. */
+			for (i = 0, ptr = buffer->mirror;
+			     i < size / sizeof(*ptr);
+			     ++i)
+				ASSERT_EQ(ptr[i], i + c);
+		}
+
+		pthread_join(thread, &ret);
+		hmm_buffer_free(buffer);
+	}
+}
+
+/*
+ * Test memory snapshot without faulting in pages accessed by the device.
+ */
+TEST_F(hmm2, snapshot)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	int *ptr;
+	unsigned char *p;
+	unsigned char *m;
+	int ret;
+	int val;
+
+	npages = 7;
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(npages);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	/* Reserve a range of addresses. */
+	buffer->ptr = mmap(NULL, size,
+			   PROT_NONE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+	p = buffer->ptr;
+
+	/* Punch a hole after the first page address. */
+	ret = munmap(buffer->ptr + self->page_size, self->page_size);
+	ASSERT_EQ(ret, 0);
+
+	/* Page 2 will be read-only zero page. */
+	ret = mprotect(buffer->ptr + 2 * self->page_size, self->page_size,
+				PROT_READ);
+	ASSERT_EQ(ret, 0);
+	ptr = (int *)(buffer->ptr + 2 * self->page_size);
+	val = *ptr + 3;
+	ASSERT_EQ(val, 3);
+
+	/* Page 3 will be read-only. */
+	ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
+				PROT_READ | PROT_WRITE);
+	ASSERT_EQ(ret, 0);
+	ptr = (int *)(buffer->ptr + 3 * self->page_size);
+	*ptr = val;
+	ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
+				PROT_READ);
+	ASSERT_EQ(ret, 0);
+
+	/* Page 4-6 will be read-write. */
+	ret = mprotect(buffer->ptr + 4 * self->page_size, 3 * self->page_size,
+				PROT_READ | PROT_WRITE);
+	ASSERT_EQ(ret, 0);
+	ptr = (int *)(buffer->ptr + 4 * self->page_size);
+	*ptr = val;
+
+	/* Page 5 will be migrated to device 0. */
+	buffer->ptr = p + 5 * self->page_size;
+	ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_MIGRATE, buffer, 1);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, 1);
+
+	/* Page 6 will be migrated to device 1. */
+	buffer->ptr = p + 6 * self->page_size;
+	ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_MIGRATE, buffer, 1);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, 1);
+
+	/* Simulate a device snapshotting CPU pagetables. */
+	buffer->ptr = p;
+	ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_SNAPSHOT, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+
+	/* Check what the device saw. */
+	m = buffer->mirror;
+	ASSERT_EQ(m[0], HMM_DMIRROR_PROT_NONE);
+	ASSERT_EQ(m[1], HMM_DMIRROR_PROT_NONE);
+	ASSERT_EQ(m[2], HMM_DMIRROR_PROT_ZERO | HMM_DMIRROR_PROT_READ);
+	ASSERT_EQ(m[3], HMM_DMIRROR_PROT_READ);
+	ASSERT_EQ(m[4], HMM_DMIRROR_PROT_WRITE);
+	ASSERT_EQ(m[5], HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL |
+			HMM_DMIRROR_PROT_WRITE);
+	ASSERT_EQ(m[6], HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE |
+			HMM_DMIRROR_PROT_WRITE);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Test two devices reading the same memory (double mapped).
+ */
+TEST_F(hmm2, double_map)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+
+	npages = 6;
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(npages);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	/* Reserve a range of addresses. */
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Initialize buffer in system memory. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Make region read-only. */
+	ret = mprotect(buffer->ptr, size, PROT_READ);
+	ASSERT_EQ(ret, 0);
+
+	/* Simulate device 0 reading system memory. */
+	ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_READ, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device read. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	/* Simulate device 1 reading system memory. */
+	ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_READ, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device read. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	/* Punch a hole after the first page address. */
+	ret = munmap(buffer->ptr + self->page_size, self->page_size);
+	ASSERT_EQ(ret, 0);
+
+	hmm_buffer_free(buffer);
+}
+
+TEST_HARNESS_MAIN
diff --git a/tools/testing/selftests/vm/run_vmtests b/tools/testing/selftests/vm/run_vmtests
index a692ea828317..ea3728570585 100755
--- a/tools/testing/selftests/vm/run_vmtests
+++ b/tools/testing/selftests/vm/run_vmtests
@@ -237,4 +237,20 @@ else
 	exitcode=1
 fi
 
+echo "------------------------------------"
+echo "running HMM smoke test"
+echo "------------------------------------"
+./test_hmm.sh smoke
+ret_val=$?
+
+if [ $ret_val -eq 0 ]; then
+	echo "[PASS]"
+elif [ $ret_val -eq $ksft_skip ]; then
+	echo "[SKIP]"
+	exitcode=$ksft_skip
+else
+	echo "[FAIL]"
+	exitcode=1
+fi
+
 exit $exitcode
diff --git a/tools/testing/selftests/vm/test_hmm.sh b/tools/testing/selftests/vm/test_hmm.sh
new file mode 100755
index 000000000000..461e4a99a362
--- /dev/null
+++ b/tools/testing/selftests/vm/test_hmm.sh
@@ -0,0 +1,97 @@
+#!/bin/bash
+# SPDX-License-Identifier: GPL-2.0
+#
+# Copyright (C) 2018 Uladzislau Rezki (Sony) <urezki@gmail.com>
+#
+# This is a test script for the kernel test driver to analyse vmalloc
+# allocator. Therefore it is just a kernel module loader. You can specify
+# and pass different parameters in order to:
+#     a) analyse performance of vmalloc allocations;
+#     b) stressing and stability check of vmalloc subsystem.
+
+TEST_NAME="test_hmm"
+DRIVER="test_hmm"
+
+# 1 if fails
+exitcode=1
+
+# Kselftest framework requirement - SKIP code is 4.
+ksft_skip=4
+
+check_test_requirements()
+{
+	uid=$(id -u)
+	if [ $uid -ne 0 ]; then
+		echo "$0: Must be run as root"
+		exit $ksft_skip
+	fi
+
+	if ! which modprobe > /dev/null 2>&1; then
+		echo "$0: You need modprobe installed"
+		exit $ksft_skip
+	fi
+
+	if ! modinfo $DRIVER > /dev/null 2>&1; then
+		echo "$0: You must have the following enabled in your kernel:"
+		echo "CONFIG_TEST_HMM=m"
+		exit $ksft_skip
+	fi
+}
+
+load_driver()
+{
+	modprobe $DRIVER > /dev/null 2>&1
+	if [ $? == 0 ]; then
+		major=$(awk "\$2==\"HMM_DMIRROR\" {print \$1}" /proc/devices)
+		mknod /dev/hmm_dmirror0 c $major 0
+		mknod /dev/hmm_dmirror1 c $major 1
+	fi
+}
+
+unload_driver()
+{
+	modprobe -r $DRIVER > /dev/null 2>&1
+	rm -f /dev/hmm_dmirror?
+}
+
+run_smoke()
+{
+	echo "Running smoke test. Note, this test provides basic coverage."
+
+	load_driver
+	./hmm-tests
+	unload_driver
+}
+
+usage()
+{
+	echo -n "Usage: $0"
+	echo
+	echo "Example usage:"
+	echo
+	echo "# Shows help message"
+	echo "./${TEST_NAME}.sh"
+	echo
+	echo "# Smoke testing"
+	echo "./${TEST_NAME}.sh smoke"
+	echo
+	exit 0
+}
+
+function run_test()
+{
+	if [ $# -eq 0 ]; then
+		usage
+	else
+		if [ "$1" = "smoke" ]; then
+			run_smoke
+		else
+			usage
+		fi
+	fi
+}
+
+check_test_requirements
+run_test $@
+
+exit 0
-- 
2.20.1


WARNING: multiple messages have this Message-ID (diff)
From: Ralph Campbell <rcampbell@nvidia.com>
To: linux-rdma@vger.kernel.org, linux-mm@kvack.org,
	linux-kernel@vger.kernel.org, nouveau@lists.freedesktop.org,
	linux-kselftest@vger.kernel.org
Cc: Jerome Glisse <jglisse@redhat.com>,
	John Hubbard <jhubbard@nvidia.com>,
	Christoph Hellwig <hch@lst.de>,
	Jason Gunthorpe <jgg@mellanox.com>,
	Andrew Morton <akpm@linux-foundation.org>,
	Ben Skeggs <bskeggs@redhat.com>, Shuah Khan <shuah@kernel.org>,
	Ralph Campbell <rcampbell@nvidia.com>
Subject: [PATCH v6 6/6] mm/hmm/test: add self tests for HMM
Date: Mon, 13 Jan 2020 14:47:03 -0800	[thread overview]
Message-ID: <20200113224703.5917-7-rcampbell@nvidia.com> (raw)
In-Reply-To: <20200113224703.5917-1-rcampbell@nvidia.com>

Add some basic stand alone self tests for HMM.

Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
---
 MAINTAINERS                            |    3 +
 lib/Kconfig.debug                      |   11 +
 lib/Makefile                           |    1 +
 lib/test_hmm.c                         | 1368 ++++++++++++++++++++++++
 tools/testing/selftests/vm/.gitignore  |    1 +
 tools/testing/selftests/vm/Makefile    |    3 +
 tools/testing/selftests/vm/config      |    2 +
 tools/testing/selftests/vm/hmm-tests.c | 1354 +++++++++++++++++++++++
 tools/testing/selftests/vm/run_vmtests |   16 +
 tools/testing/selftests/vm/test_hmm.sh |   97 ++
 10 files changed, 2856 insertions(+)
 create mode 100644 lib/test_hmm.c
 create mode 100644 tools/testing/selftests/vm/hmm-tests.c
 create mode 100755 tools/testing/selftests/vm/test_hmm.sh

diff --git a/MAINTAINERS b/MAINTAINERS
index 4017e6b760be..08508a20e2cf 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -7514,7 +7514,10 @@ L:	linux-mm@kvack.org
 S:	Maintained
 F:	mm/hmm*
 F:	include/linux/hmm*
+F:	include/uapi/linux/test_hmm*
 F:	Documentation/vm/hmm.rst
+F:	lib/test_hmm*
+F:	tools/testing/selftests/vm/*hmm*
 
 HOST AP DRIVER
 M:	Jouni Malinen <j@w1.fi>
diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug
index 5ffe144c9794..d38d1e281dca 100644
--- a/lib/Kconfig.debug
+++ b/lib/Kconfig.debug
@@ -2162,6 +2162,17 @@ config TEST_MEMINIT
 
 	  If unsure, say N.
 
+config TEST_HMM
+	tristate "Test HMM (Heterogeneous Memory Management)"
+	depends on HMM_MIRROR
+	depends on DEVICE_PRIVATE
+	help
+	  This is a pseudo device driver solely for testing HMM.
+	  Say M here if you want to build the HMM test module.
+	  Doing so will allow you to run tools/testing/selftest/vm/hmm-tests.
+
+	  If unsure, say N.
+
 endif # RUNTIME_TESTING_MENU
 
 config MEMTEST
diff --git a/lib/Makefile b/lib/Makefile
index 93217d44237f..348ce83cb21f 100644
--- a/lib/Makefile
+++ b/lib/Makefile
@@ -88,6 +88,7 @@ obj-$(CONFIG_TEST_OBJAGG) += test_objagg.o
 obj-$(CONFIG_TEST_STACKINIT) += test_stackinit.o
 obj-$(CONFIG_TEST_BLACKHOLE_DEV) += test_blackhole_dev.o
 obj-$(CONFIG_TEST_MEMINIT) += test_meminit.o
+obj-$(CONFIG_TEST_HMM) += test_hmm.o
 
 obj-$(CONFIG_TEST_LIVEPATCH) += livepatch/
 
diff --git a/lib/test_hmm.c b/lib/test_hmm.c
new file mode 100644
index 000000000000..96ffa988969c
--- /dev/null
+++ b/lib/test_hmm.c
@@ -0,0 +1,1368 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * This is a module to test the HMM (Heterogeneous Memory Management)
+ * mirror and zone device private memory migration APIs of the kernel.
+ * Userspace programs can register with the driver to mirror their own address
+ * space and can use the device to read/write any valid virtual address.
+ */
+#include <linux/init.h>
+#include <linux/fs.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/cdev.h>
+#include <linux/device.h>
+#include <linux/mutex.h>
+#include <linux/rwsem.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/highmem.h>
+#include <linux/delay.h>
+#include <linux/pagemap.h>
+#include <linux/hmm.h>
+#include <linux/vmalloc.h>
+#include <linux/swap.h>
+#include <linux/swapops.h>
+#include <linux/sched/mm.h>
+#include <linux/platform_device.h>
+
+#include <uapi/linux/test_hmm.h>
+
+#define DMIRROR_NDEVICES		2
+#define DMIRROR_RANGE_FAULT_TIMEOUT	1000
+#define DEVMEM_CHUNK_SIZE		(256 * 1024 * 1024U)
+#define DEVMEM_CHUNKS_RESERVE		16
+
+static const struct dev_pagemap_ops dmirror_devmem_ops;
+static const struct mmu_interval_notifier_ops dmirror_min_ops;
+static dev_t dmirror_dev;
+static struct page *dmirror_zero_page;
+
+struct dmirror_device;
+
+struct dmirror_bounce {
+	void			*ptr;
+	unsigned long		size;
+	unsigned long		addr;
+	unsigned long		cpages;
+};
+
+#define DPT_SHIFT PAGE_SHIFT
+#define DPT_VALID (1UL << 0)
+#define DPT_WRITE (1UL << 1)
+#define DPT_DPAGE (1UL << 2)
+
+#define DPT_XA_TAG_WRITE 3UL
+
+static const uint64_t dmirror_hmm_flags[HMM_PFN_FLAG_MAX] = {
+	[HMM_PFN_VALID] = DPT_VALID,
+	[HMM_PFN_WRITE] = DPT_WRITE,
+	[HMM_PFN_DEVICE_PRIVATE] = DPT_DPAGE,
+};
+
+static const uint64_t dmirror_hmm_values[HMM_PFN_VALUE_MAX] = {
+	[HMM_PFN_NONE]    = 0,
+	[HMM_PFN_ERROR]   = 0x10,
+	[HMM_PFN_SPECIAL] = 0x10,
+};
+
+/*
+ * Data structure to track address ranges and register for mmu interval
+ * notifier updates.
+ */
+struct dmirror_interval {
+	struct mmu_interval_notifier	notifier;
+	struct dmirror			*dmirror;
+};
+
+/*
+ * Data attached to the open device file.
+ * Note that it might be shared after a fork().
+ */
+struct dmirror {
+	struct mm_struct	*mm;
+	struct dmirror_device	*mdevice;
+	struct xarray		pt;
+	struct mutex		mutex;
+};
+
+/*
+ * ZONE_DEVICE pages for migration and simulating device memory.
+ */
+struct dmirror_chunk {
+	struct dev_pagemap	pagemap;
+	struct dmirror_device	*mdevice;
+};
+
+/*
+ * Per device data.
+ */
+struct dmirror_device {
+	struct cdev		cdevice;
+	struct hmm_devmem	*devmem;
+
+	unsigned int		devmem_capacity;
+	unsigned int		devmem_count;
+	struct dmirror_chunk	**devmem_chunks;
+	struct mutex		devmem_lock;	/* protects the above */
+
+	unsigned long		calloc;
+	unsigned long		cfree;
+	struct page		*free_pages;
+	spinlock_t		lock;		/* protects the above */
+};
+
+static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES];
+
+static int dmirror_bounce_init(struct dmirror_bounce *bounce,
+			       unsigned long addr,
+			       unsigned long size)
+{
+	bounce->addr = addr;
+	bounce->size = size;
+	bounce->cpages = 0;
+	bounce->ptr = vmalloc(size);
+	if (!bounce->ptr)
+		return -ENOMEM;
+	return 0;
+}
+
+static void dmirror_bounce_fini(struct dmirror_bounce *bounce)
+{
+	vfree(bounce->ptr);
+}
+
+static int dmirror_fops_open(struct inode *inode, struct file *filp)
+{
+	struct cdev *cdev = inode->i_cdev;
+	struct dmirror *dmirror;
+	int ret;
+
+	/* Mirror this process address space */
+	dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL);
+	if (dmirror == NULL)
+		return -ENOMEM;
+
+	dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice);
+	mutex_init(&dmirror->mutex);
+	xa_init(&dmirror->pt);
+
+	/*
+	 * Pre-register for mmu interval notifiers so
+	 * mmu_interval_notifier_insert_safe() can be called without holding
+	 * mmap_sem for write.
+	 */
+	ret = mmu_notifier_register(NULL, current->mm);
+	if (ret) {
+		kfree(dmirror);
+		return ret;
+	}
+
+	/* Pairs with the mmdrop() in dmirror_fops_release(). */
+	mmgrab(current->mm);
+	dmirror->mm = current->mm;
+
+	/* Only the first open registers the address space. */
+	filp->private_data = dmirror;
+	return ret;
+}
+
+static int dmirror_fops_release(struct inode *inode, struct file *filp)
+{
+	struct dmirror *dmirror = filp->private_data;
+	struct mmu_interval_notifier *mni;
+
+	mutex_lock(&dmirror->mutex);
+	while (true) {
+		mni = mmu_interval_notifier_find(dmirror->mm, &dmirror_min_ops,
+						 0UL, ~0UL);
+		if (!mni)
+			break;
+		mmu_interval_notifier_put(mni);
+	}
+	mutex_unlock(&dmirror->mutex);
+	mmdrop(dmirror->mm);
+	mmu_notifier_synchronize();
+	xa_destroy(&dmirror->pt);
+	kfree(dmirror);
+	return 0;
+}
+
+static inline struct dmirror_device *dmirror_page_to_device(struct page *page)
+
+{
+	struct dmirror_chunk *devmem;
+
+	devmem = container_of(page->pgmap, struct dmirror_chunk, pagemap);
+	return devmem->mdevice;
+}
+
+static bool dmirror_device_is_mine(struct dmirror_device *mdevice,
+				   struct page *page)
+{
+	if (!is_zone_device_page(page))
+		return false;
+	return page->pgmap->ops == &dmirror_devmem_ops &&
+		dmirror_page_to_device(page) == mdevice;
+}
+
+static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range)
+{
+	uint64_t *pfns = range->pfns;
+	unsigned long pfn;
+
+	for (pfn = (range->start >> PAGE_SHIFT);
+	     pfn < (range->end >> PAGE_SHIFT);
+	     pfn++, pfns++) {
+		struct page *page;
+		void *entry;
+
+		/*
+		 * HMM_PFN_ERROR is returned if it is accessing invalid memory
+		 * either because of memory error (hardware detected memory
+		 * corruption) or more likely because of truncate on mmap
+		 * file.
+		 */
+		if (*pfns == range->values[HMM_PFN_ERROR])
+			return -EFAULT;
+		if (!(*pfns & range->flags[HMM_PFN_VALID]))
+			return -EFAULT;
+		page = hmm_device_entry_to_page(range, *pfns);
+		/* We asked for pages to be populated but check anyway. */
+		if (!page)
+			return -EFAULT;
+		if (is_zone_device_page(page)) {
+			/*
+			 * TODO: need a way to ask HMM to fault foreign zone
+			 * device private pages.
+			 */
+			if (!dmirror_device_is_mine(dmirror->mdevice, page))
+				continue;
+		}
+		entry = page;
+		if (*pfns & range->flags[HMM_PFN_WRITE])
+			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
+		else if (range->default_flags & range->flags[HMM_PFN_WRITE])
+			return -EFAULT;
+		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
+		if (xa_is_err(entry))
+			return xa_err(entry);
+	}
+
+	return 0;
+}
+
+static void dmirror_do_update(struct dmirror *dmirror, unsigned long start,
+			      unsigned long end)
+{
+	unsigned long pfn;
+
+	/*
+	 * The XArray doesn't hold references to pages since it relies on
+	 * the mmu notifier to clear pointers when they become stale.
+	 * Therefore, it is OK to just clear the entry.
+	 */
+	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++)
+		xa_erase(&dmirror->pt, pfn);
+}
+
+static struct dmirror_interval *dmirror_new_interval(struct dmirror *dmirror,
+						     unsigned long start,
+						     unsigned long last)
+{
+	struct dmirror_interval *dmi;
+	int ret;
+
+	dmi = kmalloc(sizeof(*dmi), GFP_ATOMIC);
+	if (!dmi)
+		return NULL;
+
+	dmi->dmirror = dmirror;
+
+	ret = mmu_interval_notifier_insert_safe(&dmi->notifier, dmirror->mm,
+				start, last - start + 1, &dmirror_min_ops);
+	if (ret) {
+		kfree(dmi);
+		return NULL;
+	}
+
+	return dmi;
+}
+
+static void dmirror_do_unmap(struct mmu_interval_notifier *mni,
+			     const struct mmu_notifier_range *range)
+{
+	struct dmirror_interval *dmi =
+		container_of(mni, struct dmirror_interval, notifier);
+	struct dmirror *dmirror = dmi->dmirror;
+	unsigned long start = mmu_interval_notifier_start(mni);
+	unsigned long last = mmu_interval_notifier_last(mni);
+
+	if (start >= range->start) {
+		/* Remove the whole interval or keep the right-hand part. */
+		if (last <= range->end)
+			mmu_interval_notifier_put(mni);
+		else
+			mmu_interval_notifier_update(mni, range->end, last);
+		return;
+	}
+
+	/* Keep the left-hand part of the interval. */
+	mmu_interval_notifier_update(mni, start, range->start - 1);
+
+	/* If a hole is created, create an interval for the right-hand part. */
+	if (last >= range->end) {
+		dmi = dmirror_new_interval(dmirror, range->end, last);
+		/*
+		 * If we can't allocate an interval, we won't get invalidation
+		 * callbacks so clear the mapping and rely on faults to reload
+		 * the mappings if needed.
+		 */
+		if (!dmi)
+			dmirror_do_update(dmirror, range->end, last + 1);
+	}
+}
+
+static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni,
+				const struct mmu_notifier_range *range,
+				unsigned long cur_seq)
+{
+	struct dmirror_interval *dmi =
+		container_of(mni, struct dmirror_interval, notifier);
+	struct dmirror *dmirror = dmi->dmirror;
+	unsigned long start = mmu_interval_notifier_start(mni);
+	unsigned long last = mmu_interval_notifier_last(mni);
+
+	if (mmu_notifier_range_blockable(range))
+		mutex_lock(&dmirror->mutex);
+	else if (!mutex_trylock(&dmirror->mutex))
+		return false;
+
+	mmu_interval_set_seq(mni, cur_seq);
+	dmirror_do_update(dmirror, max(start, range->start),
+			  min(last + 1, range->end));
+
+	/* Stop tracking the range if it is an unmap. */
+	if (range->event == MMU_NOTIFY_UNMAP)
+		dmirror_do_unmap(mni, range);
+
+	mutex_unlock(&dmirror->mutex);
+	return true;
+}
+
+static void dmirror_interval_release(struct mmu_interval_notifier *mni)
+{
+	struct dmirror_interval *dmi =
+		container_of(mni, struct dmirror_interval, notifier);
+
+	kfree(dmi);
+}
+
+static const struct mmu_interval_notifier_ops dmirror_min_ops = {
+	.invalidate = dmirror_interval_invalidate,
+	.release = dmirror_interval_release,
+};
+
+/*
+ * Find or create a mmu_interval_notifier for the given range.
+ * Although mmu_interval_notifier_insert_safe() can handle overlapping
+ * intervals, we only create non-overlapping intervals, shrinking the hmm_range
+ * if it spans more than one dmirror_interval.
+ */
+static int dmirror_interval_find(struct dmirror *dmirror,
+				 struct hmm_range *range)
+{
+	struct mmu_interval_notifier *mni;
+	struct dmirror_interval *dmi;
+	struct vm_area_struct *vma;
+	unsigned long start = range->start;
+	unsigned long last = range->end - 1;
+	int ret;
+
+	mutex_lock(&dmirror->mutex);
+	mni = mmu_interval_notifier_find(dmirror->mm, &dmirror_min_ops, start,
+					 last);
+	if (mni) {
+		if (start >= mmu_interval_notifier_start(mni)) {
+			dmi = container_of(mni, struct dmirror_interval,
+					   notifier);
+			if (last > mmu_interval_notifier_last(mni))
+				range->end =
+					mmu_interval_notifier_last(mni) + 1;
+			goto found;
+		}
+		WARN_ON(last <= mmu_interval_notifier_start(mni));
+		range->end = mmu_interval_notifier_start(mni);
+		last = range->end - 1;
+	}
+	/*
+	 * Might as well create an interval covering the underlying VMA to
+	 * avoid having to create a bunch of small intervals.
+	 */
+	vma = find_vma(dmirror->mm, start);
+	if (!vma || start < vma->vm_start) {
+		ret = -ENOENT;
+		goto err;
+	}
+	if (range->end > vma->vm_end) {
+		range->end = vma->vm_end;
+		last = range->end - 1;
+	} else if (!mni) {
+		/* Anything registered on the right part of the vma? */
+		mni = mmu_interval_notifier_find(dmirror->mm, &dmirror_min_ops,
+						 range->end, vma->vm_end - 1);
+		if (mni)
+			last = mmu_interval_notifier_start(mni) - 1;
+		else
+			last = vma->vm_end - 1;
+	}
+	/* Anything registered on the left part of the vma? */
+	mni = mmu_interval_notifier_find(dmirror->mm, &dmirror_min_ops,
+					 vma->vm_start, start - 1);
+	if (mni)
+		start = mmu_interval_notifier_last(mni) + 1;
+	else
+		start = vma->vm_start;
+	dmi = dmirror_new_interval(dmirror, start, last);
+	if (!dmi) {
+		ret = -ENOMEM;
+		goto err;
+	}
+
+found:
+	range->notifier = &dmi->notifier;
+	mutex_unlock(&dmirror->mutex);
+	return 0;
+
+err:
+	mutex_unlock(&dmirror->mutex);
+	return ret;
+}
+
+static int dmirror_range_fault(struct dmirror *dmirror,
+				struct hmm_range *range)
+{
+	struct mm_struct *mm = dmirror->mm;
+	unsigned long timeout =
+		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
+	int ret;
+
+	while (true) {
+		long count;
+
+		if (time_after(jiffies, timeout)) {
+			ret = -EBUSY;
+			goto out;
+		}
+
+		down_read(&mm->mmap_sem);
+		ret = dmirror_interval_find(dmirror, range);
+		if (ret) {
+			up_read(&mm->mmap_sem);
+			goto out;
+		}
+		range->notifier_seq = mmu_interval_read_begin(range->notifier);
+		count = hmm_range_fault(range, 0);
+		up_read(&mm->mmap_sem);
+		if (count <= 0) {
+			if (count == 0 || count == -EBUSY)
+				continue;
+			ret = count;
+			goto out;
+		}
+
+		mutex_lock(&dmirror->mutex);
+		if (mmu_interval_read_retry(range->notifier,
+					    range->notifier_seq)) {
+			mutex_unlock(&dmirror->mutex);
+			continue;
+		}
+		break;
+	}
+
+	ret = dmirror_do_fault(dmirror, range);
+
+	mutex_unlock(&dmirror->mutex);
+out:
+	return ret;
+}
+
+static int dmirror_fault(struct dmirror *dmirror, unsigned long start,
+			 unsigned long end, bool write)
+{
+	struct mm_struct *mm = dmirror->mm;
+	unsigned long addr;
+	unsigned long next;
+	uint64_t pfns[64];
+	struct hmm_range range = {
+		.pfns = pfns,
+		.flags = dmirror_hmm_flags,
+		.values = dmirror_hmm_values,
+		.pfn_shift = DPT_SHIFT,
+		.pfn_flags_mask = ~(dmirror_hmm_flags[HMM_PFN_VALID] |
+				    dmirror_hmm_flags[HMM_PFN_WRITE]),
+		.default_flags = dmirror_hmm_flags[HMM_PFN_VALID] |
+				(write ? dmirror_hmm_flags[HMM_PFN_WRITE] : 0),
+	};
+	int ret = 0;
+
+	/* Since the mm is for the mirrored process, get a reference first. */
+	if (!mmget_not_zero(mm))
+		return 0;
+
+	for (addr = start; addr < end; addr = next) {
+		next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
+		range.start = addr;
+		range.end = next;
+
+		ret = dmirror_range_fault(dmirror, &range);
+		if (ret)
+			break;
+	}
+
+	mmput(mm);
+	return ret;
+}
+
+static int dmirror_do_read(struct dmirror *dmirror, unsigned long start,
+			   unsigned long end, struct dmirror_bounce *bounce)
+{
+	unsigned long pfn;
+	void *ptr;
+
+	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
+
+	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
+		void *entry;
+		struct page *page;
+		void *tmp;
+
+		entry = xa_load(&dmirror->pt, pfn);
+		page = xa_untag_pointer(entry);
+		if (!page)
+			return -ENOENT;
+
+		tmp = kmap(page);
+		memcpy(ptr, tmp, PAGE_SIZE);
+		kunmap(page);
+
+		ptr += PAGE_SIZE;
+		bounce->cpages++;
+	}
+
+	return 0;
+}
+
+static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
+{
+	struct dmirror_bounce bounce;
+	unsigned long start, end;
+	unsigned long size = cmd->npages << PAGE_SHIFT;
+	int ret;
+
+	start = cmd->addr;
+	end = start + size;
+	if (end < start)
+		return -EINVAL;
+
+	ret = dmirror_bounce_init(&bounce, start, size);
+	if (ret)
+		return ret;
+
+again:
+	mutex_lock(&dmirror->mutex);
+	ret = dmirror_do_read(dmirror, start, end, &bounce);
+	mutex_unlock(&dmirror->mutex);
+	if (ret == 0)
+		ret = copy_to_user((void __user *)cmd->ptr, bounce.ptr,
+					bounce.size);
+	else if (ret == -ENOENT) {
+		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
+		ret = dmirror_fault(dmirror, start, end, false);
+		if (ret == 0) {
+			cmd->faults++;
+			goto again;
+		}
+	}
+
+	cmd->cpages = bounce.cpages;
+	dmirror_bounce_fini(&bounce);
+	return ret;
+}
+
+static int dmirror_do_write(struct dmirror *dmirror, unsigned long start,
+			    unsigned long end, struct dmirror_bounce *bounce)
+{
+	unsigned long pfn;
+	void *ptr;
+
+	ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
+
+	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
+		void *entry;
+		struct page *page;
+		void *tmp;
+
+		entry = xa_load(&dmirror->pt, pfn);
+		page = xa_untag_pointer(entry);
+		if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE)
+			return -ENOENT;
+
+		tmp = kmap(page);
+		memcpy(tmp, ptr, PAGE_SIZE);
+		kunmap(page);
+
+		ptr += PAGE_SIZE;
+		bounce->cpages++;
+	}
+
+	return 0;
+}
+
+static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
+{
+	struct dmirror_bounce bounce;
+	unsigned long start, end;
+	unsigned long size = cmd->npages << PAGE_SHIFT;
+	int ret;
+
+	start = cmd->addr;
+	end = start + size;
+	if (end < start)
+		return -EINVAL;
+
+	ret = dmirror_bounce_init(&bounce, start, size);
+	if (ret)
+		return ret;
+	ret = copy_from_user(bounce.ptr, (void __user *)cmd->ptr,
+				bounce.size);
+	if (ret)
+		return ret;
+
+again:
+	mutex_lock(&dmirror->mutex);
+	ret = dmirror_do_write(dmirror, start, end, &bounce);
+	mutex_unlock(&dmirror->mutex);
+	if (ret == -ENOENT) {
+		start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
+		ret = dmirror_fault(dmirror, start, end, true);
+		if (ret == 0) {
+			cmd->faults++;
+			goto again;
+		}
+	}
+
+	cmd->cpages = bounce.cpages;
+	dmirror_bounce_fini(&bounce);
+	return ret;
+}
+
+static bool dmirror_allocate_chunk(struct dmirror_device *mdevice,
+				   struct page **ppage)
+{
+	struct dmirror_chunk *devmem;
+	struct resource *res;
+	unsigned long pfn;
+	unsigned long pfn_first;
+	unsigned long pfn_last;
+	void *ptr;
+
+	mutex_lock(&mdevice->devmem_lock);
+
+	if (mdevice->devmem_count == mdevice->devmem_capacity) {
+		struct dmirror_chunk **new_chunks;
+		unsigned int new_capacity;
+
+		new_capacity = mdevice->devmem_capacity +
+				DEVMEM_CHUNKS_RESERVE;
+		new_chunks = krealloc(mdevice->devmem_chunks,
+				sizeof(new_chunks[0]) * new_capacity,
+				GFP_KERNEL);
+		if (!new_chunks)
+			goto err;
+		mdevice->devmem_capacity = new_capacity;
+		mdevice->devmem_chunks = new_chunks;
+	}
+
+	res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE,
+					"hmm_dmirror");
+	if (IS_ERR(res))
+		goto err;
+
+	devmem = kzalloc(sizeof(*devmem), GFP_KERNEL);
+	if (!devmem)
+		goto err;
+
+	devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
+	devmem->pagemap.res = *res;
+	devmem->pagemap.ops = &dmirror_devmem_ops;
+
+	ptr = memremap_pages(&devmem->pagemap, numa_node_id());
+	if (IS_ERR(ptr))
+		goto err_free;
+
+	devmem->mdevice = mdevice;
+	pfn_first = devmem->pagemap.res.start >> PAGE_SHIFT;
+	pfn_last = pfn_first +
+		(resource_size(&devmem->pagemap.res) >> PAGE_SHIFT);
+	mdevice->devmem_chunks[mdevice->devmem_count++] = devmem;
+
+	mutex_unlock(&mdevice->devmem_lock);
+
+	pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n",
+		DEVMEM_CHUNK_SIZE / (1024 * 1024),
+		mdevice->devmem_count,
+		mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)),
+		pfn_first, pfn_last);
+
+	spin_lock(&mdevice->lock);
+	for (pfn = pfn_first; pfn < pfn_last; pfn++) {
+		struct page *page = pfn_to_page(pfn);
+
+		page->zone_device_data = mdevice->free_pages;
+		mdevice->free_pages = page;
+	}
+	if (ppage) {
+		*ppage = mdevice->free_pages;
+		mdevice->free_pages = (*ppage)->zone_device_data;
+		mdevice->calloc++;
+	}
+	spin_unlock(&mdevice->lock);
+
+	return true;
+
+err_free:
+	kfree(devmem);
+err:
+	mutex_unlock(&mdevice->devmem_lock);
+	return false;
+}
+
+static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice)
+{
+	struct page *dpage = NULL;
+	struct page *rpage;
+
+	/*
+	 * This is a fake device so we alloc real system memory to store
+	 * our device memory.
+	 */
+	rpage = alloc_page(GFP_HIGHUSER);
+	if (!rpage)
+		return NULL;
+
+	spin_lock(&mdevice->lock);
+
+	if (mdevice->free_pages) {
+		dpage = mdevice->free_pages;
+		mdevice->free_pages = dpage->zone_device_data;
+		mdevice->calloc++;
+		spin_unlock(&mdevice->lock);
+	} else {
+		spin_unlock(&mdevice->lock);
+		if (!dmirror_allocate_chunk(mdevice, &dpage))
+			goto error;
+	}
+
+	dpage->zone_device_data = rpage;
+	get_page(dpage);
+	lock_page(dpage);
+	return dpage;
+
+error:
+	__free_page(rpage);
+	return NULL;
+}
+
+static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args,
+					   struct dmirror *dmirror)
+{
+	struct dmirror_device *mdevice = dmirror->mdevice;
+	const unsigned long *src = args->src;
+	unsigned long *dst = args->dst;
+	unsigned long addr;
+
+	for (addr = args->start; addr < args->end; addr += PAGE_SIZE,
+						   src++, dst++) {
+		struct page *spage;
+		struct page *dpage;
+		struct page *rpage;
+
+		if (!(*src & MIGRATE_PFN_MIGRATE))
+			continue;
+
+		/*
+		 * Note that spage might be NULL which is OK since it is an
+		 * unallocated pte_none() or read-only zero page.
+		 */
+		spage = migrate_pfn_to_page(*src);
+
+		/*
+		 * Don't migrate device private pages from our own driver or
+		 * others. For our own we would do a device private memory copy
+		 * not a migration and for others, we would need to fault the
+		 * other device's page into system memory first.
+		 */
+		if (spage && is_zone_device_page(spage))
+			continue;
+
+		dpage = dmirror_devmem_alloc_page(mdevice);
+		if (!dpage)
+			continue;
+
+		rpage = dpage->zone_device_data;
+		if (spage)
+			copy_highpage(rpage, spage);
+		else
+			clear_highpage(rpage);
+
+		/*
+		 * Normally, a device would use the page->zone_device_data to
+		 * point to the mirror but here we use it to hold the page for
+		 * the simulated device memory and that page holds the pointer
+		 * to the mirror.
+		 */
+		rpage->zone_device_data = dmirror;
+
+		*dst = migrate_pfn(page_to_pfn(dpage)) |
+			    MIGRATE_PFN_LOCKED;
+		if ((*src & MIGRATE_PFN_WRITE) ||
+		    (!spage && args->vma->vm_flags & VM_WRITE))
+			*dst |= MIGRATE_PFN_WRITE;
+	}
+}
+
+static int dmirror_migrate_finalize_and_map(struct migrate_vma *args,
+					    struct dmirror *dmirror)
+{
+	unsigned long start = args->start;
+	unsigned long end = args->end;
+	const unsigned long *src = args->src;
+	const unsigned long *dst = args->dst;
+	unsigned long pfn;
+
+	/* Map the migrated pages into the device's page tables. */
+	mutex_lock(&dmirror->mutex);
+
+	for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++,
+								src++, dst++) {
+		struct page *dpage;
+		void *entry;
+
+		if (!(*src & MIGRATE_PFN_MIGRATE))
+			continue;
+
+		dpage = migrate_pfn_to_page(*dst);
+		if (!dpage)
+			continue;
+
+		/*
+		 * Store the page that holds the data so the page table
+		 * doesn't have to deal with ZONE_DEVICE private pages.
+		 */
+		entry = dpage->zone_device_data;
+		if (*dst & MIGRATE_PFN_WRITE)
+			entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
+		entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
+		if (xa_is_err(entry))
+			return xa_err(entry);
+	}
+
+	mutex_unlock(&dmirror->mutex);
+	return 0;
+}
+
+static int dmirror_migrate(struct dmirror *dmirror,
+			   struct hmm_dmirror_cmd *cmd)
+{
+	unsigned long start, end, addr;
+	unsigned long size = cmd->npages << PAGE_SHIFT;
+	struct mm_struct *mm = dmirror->mm;
+	struct vm_area_struct *vma;
+	unsigned long src_pfns[64];
+	unsigned long dst_pfns[64];
+	struct dmirror_bounce bounce;
+	struct migrate_vma args;
+	unsigned long next;
+	int ret;
+
+	start = cmd->addr;
+	end = start + size;
+	if (end < start)
+		return -EINVAL;
+
+	/* Since the mm is for the mirrored process, get a reference first. */
+	if (!mmget_not_zero(mm))
+		return -EINVAL;
+
+	down_read(&mm->mmap_sem);
+	for (addr = start; addr < end; addr = next) {
+		vma = find_vma(mm, addr);
+		if (!vma || addr < vma->vm_start) {
+			ret = -EINVAL;
+			goto out;
+		}
+		next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
+		if (next > vma->vm_end)
+			next = vma->vm_end;
+
+		args.vma = vma;
+		args.src = src_pfns;
+		args.dst = dst_pfns;
+		args.start = addr;
+		args.end = next;
+		ret = migrate_vma_setup(&args);
+		if (ret)
+			goto out;
+
+		dmirror_migrate_alloc_and_copy(&args, dmirror);
+		migrate_vma_pages(&args);
+		dmirror_migrate_finalize_and_map(&args, dmirror);
+		migrate_vma_finalize(&args);
+	}
+	up_read(&mm->mmap_sem);
+	mmput(mm);
+
+	/* Return the migrated data for verification. */
+	ret = dmirror_bounce_init(&bounce, start, size);
+	if (ret)
+		return ret;
+	mutex_lock(&dmirror->mutex);
+	ret = dmirror_do_read(dmirror, start, end, &bounce);
+	mutex_unlock(&dmirror->mutex);
+	if (ret == 0)
+		ret = copy_to_user((void __user *)cmd->ptr, bounce.ptr,
+					bounce.size);
+	cmd->cpages = bounce.cpages;
+	dmirror_bounce_fini(&bounce);
+	return ret;
+
+out:
+	up_read(&mm->mmap_sem);
+	mmput(mm);
+	return ret;
+}
+
+static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range,
+			    unsigned char *perm, uint64_t entry)
+{
+	struct page *page;
+
+	if (entry == range->values[HMM_PFN_ERROR]) {
+		*perm = HMM_DMIRROR_PROT_ERROR;
+		return;
+	}
+	page = hmm_device_entry_to_page(range, entry);
+	if (!page) {
+		*perm = HMM_DMIRROR_PROT_NONE;
+		return;
+	}
+	if (entry & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
+		/* Is the page migrated to this device or some other? */
+		if (dmirror->mdevice == dmirror_page_to_device(page))
+			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL;
+		else
+			*perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE;
+	} else if (is_zero_pfn(page_to_pfn(page)))
+		*perm = HMM_DMIRROR_PROT_ZERO;
+	else
+		*perm = HMM_DMIRROR_PROT_NONE;
+	if (entry & range->flags[HMM_PFN_WRITE])
+		*perm |= HMM_DMIRROR_PROT_WRITE;
+	else
+		*perm |= HMM_DMIRROR_PROT_READ;
+}
+
+static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni,
+				const struct mmu_notifier_range *range,
+				unsigned long cur_seq)
+{
+	struct dmirror_interval *dmi =
+		container_of(mni, struct dmirror_interval, notifier);
+	struct dmirror *dmirror = dmi->dmirror;
+
+	if (mmu_notifier_range_blockable(range))
+		mutex_lock(&dmirror->mutex);
+	else if (!mutex_trylock(&dmirror->mutex))
+		return false;
+
+	/*
+	 * Snapshots only need to set the sequence number since the
+	 * invalidations are handled by the dmirror_interval ranges.
+	 */
+	mmu_interval_set_seq(mni, cur_seq);
+
+	mutex_unlock(&dmirror->mutex);
+	return true;
+}
+
+static const struct mmu_interval_notifier_ops dmirror_mrn_ops = {
+	.invalidate = dmirror_snapshot_invalidate,
+};
+
+static int dmirror_range_snapshot(struct dmirror *dmirror,
+				  struct hmm_range *range,
+				  unsigned char *perm)
+{
+	struct mm_struct *mm = dmirror->mm;
+	struct dmirror_interval notifier;
+	unsigned long timeout =
+		jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
+	unsigned long i;
+	unsigned long n;
+	int ret = 0;
+
+	notifier.dmirror = dmirror;
+	range->notifier = &notifier.notifier;
+
+	ret = mmu_interval_notifier_insert_safe(range->notifier, mm,
+			range->start, range->end - range->start,
+			&dmirror_mrn_ops);
+	if (ret)
+		return ret;
+
+	while (true) {
+		long count;
+
+		if (time_after(jiffies, timeout)) {
+			ret = -EBUSY;
+			goto out;
+		}
+
+		range->notifier_seq = mmu_interval_read_begin(range->notifier);
+
+		down_read(&mm->mmap_sem);
+		count = hmm_range_fault(range, HMM_FAULT_SNAPSHOT);
+		up_read(&mm->mmap_sem);
+		if (count <= 0) {
+			if (count == 0 || count == -EBUSY)
+				continue;
+			ret = count;
+			goto out;
+		}
+
+		mutex_lock(&dmirror->mutex);
+		if (mmu_interval_read_retry(range->notifier,
+					    range->notifier_seq)) {
+			mutex_unlock(&dmirror->mutex);
+			continue;
+		}
+		break;
+	}
+
+	n = (range->end - range->start) >> PAGE_SHIFT;
+	for (i = 0; i < n; i++)
+		dmirror_mkentry(dmirror, range, perm + i, range->pfns[i]);
+
+	mutex_unlock(&dmirror->mutex);
+out:
+	mmu_interval_notifier_remove(range->notifier);
+	return ret;
+}
+
+static int dmirror_snapshot(struct dmirror *dmirror,
+			    struct hmm_dmirror_cmd *cmd)
+{
+	struct mm_struct *mm = dmirror->mm;
+	unsigned long start, end;
+	unsigned long size = cmd->npages << PAGE_SHIFT;
+	unsigned long addr;
+	unsigned long next;
+	uint64_t pfns[64];
+	unsigned char perm[64];
+	char __user *uptr;
+	struct hmm_range range = {
+		.pfns = pfns,
+		.flags = dmirror_hmm_flags,
+		.values = dmirror_hmm_values,
+		.pfn_shift = DPT_SHIFT,
+		.pfn_flags_mask = ~0ULL,
+	};
+	int ret = 0;
+
+	start = cmd->addr;
+	end = start + size;
+	if (end < start)
+		return -EINVAL;
+
+	/* Since the mm is for the mirrored process, get a reference first. */
+	if (!mmget_not_zero(mm))
+		return -EINVAL;
+
+	/*
+	 * Register a temporary notifier to detect invalidations even if it
+	 * overlaps with other mmu_interval_notifiers.
+	 */
+	uptr = (void __user *)cmd->ptr;
+	for (addr = start; addr < end; addr = next) {
+		unsigned long n;
+
+		next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
+		range.start = addr;
+		range.end = next;
+
+		ret = dmirror_range_snapshot(dmirror, &range, perm);
+		if (ret)
+			break;
+
+		n = (range.end - range.start) >> PAGE_SHIFT;
+		ret = copy_to_user(uptr, perm, n);
+		if (ret)
+			break;
+
+		cmd->cpages += n;
+		uptr += n;
+	}
+	mmput(mm);
+
+	return ret;
+}
+
+static long dmirror_fops_unlocked_ioctl(struct file *filp,
+					unsigned int command,
+					unsigned long arg)
+{
+	void __user *uarg = (void __user *)arg;
+	struct hmm_dmirror_cmd cmd;
+	struct dmirror *dmirror;
+	int ret;
+
+	dmirror = filp->private_data;
+	if (!dmirror)
+		return -EINVAL;
+
+	ret = copy_from_user(&cmd, uarg, sizeof(cmd));
+	if (ret)
+		return ret;
+
+	if (cmd.addr & ~PAGE_MASK)
+		return -EINVAL;
+	if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT)))
+		return -EINVAL;
+
+	cmd.cpages = 0;
+	cmd.faults = 0;
+
+	switch (command) {
+	case HMM_DMIRROR_READ:
+		ret = dmirror_read(dmirror, &cmd);
+		break;
+
+	case HMM_DMIRROR_WRITE:
+		ret = dmirror_write(dmirror, &cmd);
+		break;
+
+	case HMM_DMIRROR_MIGRATE:
+		ret = dmirror_migrate(dmirror, &cmd);
+		break;
+
+	case HMM_DMIRROR_SNAPSHOT:
+		ret = dmirror_snapshot(dmirror, &cmd);
+		break;
+
+	default:
+		return -EINVAL;
+	}
+	if (ret)
+		return ret;
+
+	return copy_to_user(uarg, &cmd, sizeof(cmd));
+}
+
+static const struct file_operations dmirror_fops = {
+	.open		= dmirror_fops_open,
+	.release	= dmirror_fops_release,
+	.unlocked_ioctl = dmirror_fops_unlocked_ioctl,
+	.llseek		= default_llseek,
+	.owner		= THIS_MODULE,
+};
+
+static void dmirror_devmem_free(struct page *page)
+{
+	struct page *rpage = page->zone_device_data;
+	struct dmirror_device *mdevice;
+
+	if (rpage)
+		__free_page(rpage);
+
+	mdevice = dmirror_page_to_device(page);
+
+	spin_lock(&mdevice->lock);
+	mdevice->cfree++;
+	page->zone_device_data = mdevice->free_pages;
+	mdevice->free_pages = page;
+	spin_unlock(&mdevice->lock);
+}
+
+static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args,
+						struct dmirror_device *mdevice)
+{
+	struct vm_area_struct *vma = args->vma;
+	const unsigned long *src = args->src;
+	unsigned long *dst = args->dst;
+	unsigned long start = args->start;
+	unsigned long end = args->end;
+	unsigned long addr;
+
+	for (addr = start; addr < end; addr += PAGE_SIZE,
+				       src++, dst++) {
+		struct page *dpage, *spage;
+
+		spage = migrate_pfn_to_page(*src);
+		if (!spage || !(*src & MIGRATE_PFN_MIGRATE))
+			continue;
+		if (!dmirror_device_is_mine(mdevice, spage))
+			continue;
+		spage = spage->zone_device_data;
+
+		dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
+		if (!dpage)
+			continue;
+
+		lock_page(dpage);
+		copy_highpage(dpage, spage);
+		*dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
+		if (*src & MIGRATE_PFN_WRITE)
+			*dst |= MIGRATE_PFN_WRITE;
+	}
+	return 0;
+}
+
+static void dmirror_devmem_fault_finalize_and_map(struct migrate_vma *args,
+						  struct dmirror *dmirror)
+{
+	/* Invalidate the device's page table mapping. */
+	mutex_lock(&dmirror->mutex);
+	dmirror_do_update(dmirror, args->start, args->end);
+	mutex_unlock(&dmirror->mutex);
+}
+
+static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf)
+{
+	struct migrate_vma args;
+	unsigned long src_pfns;
+	unsigned long dst_pfns;
+	struct page *rpage;
+	struct dmirror *dmirror;
+	vm_fault_t ret;
+
+	/* FIXME demonstrate how we can adjust migrate range */
+	args.vma = vmf->vma;
+	args.start = vmf->address;
+	args.end = args.start + PAGE_SIZE;
+	args.src = &src_pfns;
+	args.dst = &dst_pfns;
+
+	if (migrate_vma_setup(&args))
+		return VM_FAULT_SIGBUS;
+
+	/*
+	 * Normally, a device would use the page->zone_device_data to point to
+	 * the mirror but here we use it to hold the page for the simulated
+	 * device memory and that page holds the pointer to the mirror.
+	 */
+	rpage = vmf->page->zone_device_data;
+	dmirror = rpage->zone_device_data;
+
+	ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror->mdevice);
+	if (ret)
+		return ret;
+	migrate_vma_pages(&args);
+	dmirror_devmem_fault_finalize_and_map(&args, dmirror);
+	migrate_vma_finalize(&args);
+	return 0;
+}
+
+static const struct dev_pagemap_ops dmirror_devmem_ops = {
+	.page_free	= dmirror_devmem_free,
+	.migrate_to_ram	= dmirror_devmem_fault,
+};
+
+static int dmirror_device_init(struct dmirror_device *mdevice, int id)
+{
+	dev_t dev;
+	int ret;
+
+	dev = MKDEV(MAJOR(dmirror_dev), id);
+	mutex_init(&mdevice->devmem_lock);
+	spin_lock_init(&mdevice->lock);
+
+	cdev_init(&mdevice->cdevice, &dmirror_fops);
+	ret = cdev_add(&mdevice->cdevice, dev, 1);
+	if (ret)
+		return ret;
+
+	/* Build a list of free ZONE_DEVICE private struct pages */
+	dmirror_allocate_chunk(mdevice, NULL);
+
+	return 0;
+}
+
+static void dmirror_device_remove(struct dmirror_device *mdevice)
+{
+	unsigned int i;
+
+	if (mdevice->devmem_chunks) {
+		for (i = 0; i < mdevice->devmem_count; i++) {
+			struct dmirror_chunk *devmem =
+				mdevice->devmem_chunks[i];
+
+			memunmap_pages(&devmem->pagemap);
+			kfree(devmem);
+		}
+		kfree(mdevice->devmem_chunks);
+	}
+
+	cdev_del(&mdevice->cdevice);
+}
+
+static int __init hmm_dmirror_init(void)
+{
+	int ret;
+	int id;
+
+	ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES,
+				  "HMM_DMIRROR");
+	if (ret)
+		goto err_unreg;
+
+	for (id = 0; id < DMIRROR_NDEVICES; id++) {
+		ret = dmirror_device_init(dmirror_devices + id, id);
+		if (ret)
+			goto err_chrdev;
+	}
+
+	/*
+	 * Allocate a zero page to simulate a reserved page of device private
+	 * memory which is always zero. The zero_pfn page isn't used just to
+	 * make the code here simpler (i.e., we need a struct page for it).
+	 */
+	dmirror_zero_page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
+	if (!dmirror_zero_page)
+		goto err_chrdev;
+
+	pr_info("HMM test module loaded. This is only for testing HMM.\n");
+	return 0;
+
+err_chrdev:
+	while (--id >= 0)
+		dmirror_device_remove(dmirror_devices + id);
+	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
+err_unreg:
+	return ret;
+}
+
+static void __exit hmm_dmirror_exit(void)
+{
+	int id;
+
+	if (dmirror_zero_page)
+		__free_page(dmirror_zero_page);
+	for (id = 0; id < DMIRROR_NDEVICES; id++)
+		dmirror_device_remove(dmirror_devices + id);
+	unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
+}
+
+module_init(hmm_dmirror_init);
+module_exit(hmm_dmirror_exit);
+MODULE_LICENSE("GPL");
diff --git a/tools/testing/selftests/vm/.gitignore b/tools/testing/selftests/vm/.gitignore
index 31b3c98b6d34..3054565b3f07 100644
--- a/tools/testing/selftests/vm/.gitignore
+++ b/tools/testing/selftests/vm/.gitignore
@@ -14,3 +14,4 @@ virtual_address_range
 gup_benchmark
 va_128TBswitch
 map_fixed_noreplace
+hmm-tests
diff --git a/tools/testing/selftests/vm/Makefile b/tools/testing/selftests/vm/Makefile
index 7f9a8a8c31da..3fadab99d991 100644
--- a/tools/testing/selftests/vm/Makefile
+++ b/tools/testing/selftests/vm/Makefile
@@ -7,6 +7,7 @@ CFLAGS = -Wall -I ../../../../usr/include $(EXTRA_CFLAGS)
 LDLIBS = -lrt
 TEST_GEN_FILES = compaction_test
 TEST_GEN_FILES += gup_benchmark
+TEST_GEN_FILES += hmm-tests
 TEST_GEN_FILES += hugepage-mmap
 TEST_GEN_FILES += hugepage-shm
 TEST_GEN_FILES += map_hugetlb
@@ -31,6 +32,8 @@ TEST_FILES := test_vmalloc.sh
 KSFT_KHDR_INSTALL := 1
 include ../lib.mk
 
+$(OUTPUT)/hmm-tests: LDLIBS += -lhugetlbfs -lpthread
+
 $(OUTPUT)/userfaultfd: LDLIBS += -lpthread
 
 $(OUTPUT)/mlock-random-test: LDLIBS += -lcap
diff --git a/tools/testing/selftests/vm/config b/tools/testing/selftests/vm/config
index 93b90a9b1eeb..f6d0adad739f 100644
--- a/tools/testing/selftests/vm/config
+++ b/tools/testing/selftests/vm/config
@@ -1,3 +1,5 @@
 CONFIG_SYSVIPC=y
 CONFIG_USERFAULTFD=y
 CONFIG_TEST_VMALLOC=m
+CONFIG_HMM_MIRROR=y
+CONFIG_DEVICE_PRIVATE=y
diff --git a/tools/testing/selftests/vm/hmm-tests.c b/tools/testing/selftests/vm/hmm-tests.c
new file mode 100644
index 000000000000..23bf2e956f1d
--- /dev/null
+++ b/tools/testing/selftests/vm/hmm-tests.c
@@ -0,0 +1,1354 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * HMM stands for Heterogeneous Memory Management, it is a helper layer inside
+ * the linux kernel to help device drivers mirror a process address space in
+ * the device. This allows the device to use the same address space which
+ * makes communication and data exchange a lot easier.
+ *
+ * This framework's sole purpose is to exercise various code paths inside
+ * the kernel to make sure that HMM performs as expected and to flush out any
+ * bugs.
+ */
+
+#include "../kselftest_harness.h"
+
+#include <errno.h>
+#include <fcntl.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <stdint.h>
+#include <unistd.h>
+#include <strings.h>
+#include <time.h>
+#include <pthread.h>
+#include <hugetlbfs.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <sys/mman.h>
+#include <sys/ioctl.h>
+#include <linux/test_hmm.h>
+
+struct hmm_buffer {
+	void		*ptr;
+	void		*mirror;
+	unsigned long	size;
+	int		fd;
+	uint64_t	cpages;
+	uint64_t	faults;
+};
+
+#define TWOMEG		(1 << 21)
+#define HMM_BUFFER_SIZE (1024 << 12)
+#define HMM_PATH_MAX    64
+#define NTIMES		256
+
+#define ALIGN(x, a) (((x) + (a - 1)) & (~((a) - 1)))
+
+FIXTURE(hmm)
+{
+	int		fd;
+	unsigned int	page_size;
+	unsigned int	page_shift;
+};
+
+FIXTURE(hmm2)
+{
+	int		fd0;
+	int		fd1;
+	unsigned int	page_size;
+	unsigned int	page_shift;
+};
+
+static int hmm_open(int unit)
+{
+	char pathname[HMM_PATH_MAX];
+	int fd;
+
+	snprintf(pathname, sizeof(pathname), "/dev/hmm_dmirror%d", unit);
+	fd = open(pathname, O_RDWR, 0);
+	if (fd < 0)
+		fprintf(stderr, "could not open hmm dmirror driver (%s)\n",
+			pathname);
+	return fd;
+}
+
+FIXTURE_SETUP(hmm)
+{
+	self->page_size = sysconf(_SC_PAGE_SIZE);
+	self->page_shift = ffs(self->page_size) - 1;
+
+	self->fd = hmm_open(0);
+	ASSERT_GE(self->fd, 0);
+}
+
+FIXTURE_SETUP(hmm2)
+{
+	self->page_size = sysconf(_SC_PAGE_SIZE);
+	self->page_shift = ffs(self->page_size) - 1;
+
+	self->fd0 = hmm_open(0);
+	ASSERT_GE(self->fd0, 0);
+	self->fd1 = hmm_open(1);
+	ASSERT_GE(self->fd1, 0);
+}
+
+FIXTURE_TEARDOWN(hmm)
+{
+	int ret = close(self->fd);
+
+	ASSERT_EQ(ret, 0);
+	self->fd = -1;
+}
+
+FIXTURE_TEARDOWN(hmm2)
+{
+	int ret = close(self->fd0);
+
+	ASSERT_EQ(ret, 0);
+	self->fd0 = -1;
+
+	ret = close(self->fd1);
+	ASSERT_EQ(ret, 0);
+	self->fd1 = -1;
+}
+
+static int hmm_dmirror_cmd(int fd,
+			   unsigned long request,
+			   struct hmm_buffer *buffer,
+			   unsigned long npages)
+{
+	struct hmm_dmirror_cmd cmd;
+	int ret;
+
+	/* Simulate a device reading system memory. */
+	cmd.addr = (__u64)buffer->ptr;
+	cmd.ptr = (__u64)buffer->mirror;
+	cmd.npages = npages;
+
+	for (;;) {
+		ret = ioctl(fd, request, &cmd);
+		if (ret == 0)
+			break;
+		if (errno == EINTR)
+			continue;
+		return -errno;
+	}
+	buffer->cpages = cmd.cpages;
+	buffer->faults = cmd.faults;
+
+	return 0;
+}
+
+static void hmm_buffer_free(struct hmm_buffer *buffer)
+{
+	if (buffer == NULL)
+		return;
+
+	if (buffer->ptr)
+		munmap(buffer->ptr, buffer->size);
+	free(buffer->mirror);
+	free(buffer);
+}
+
+/*
+ * Create a temporary file that will be deleted on close.
+ */
+static int hmm_create_file(unsigned long size)
+{
+	char path[HMM_PATH_MAX];
+	int fd;
+
+	strcpy(path, "/tmp");
+	fd = open(path, O_TMPFILE | O_EXCL | O_RDWR, 0600);
+	if (fd >= 0) {
+		int r;
+
+		do {
+			r = ftruncate(fd, size);
+		} while (r == -1 && errno == EINTR);
+		if (!r)
+			return fd;
+		close(fd);
+	}
+	return -1;
+}
+
+/*
+ * Return a random unsigned number.
+ */
+static unsigned int hmm_random(void)
+{
+	static int fd = -1;
+	unsigned int r;
+
+	if (fd < 0) {
+		fd = open("/dev/urandom", O_RDONLY);
+		if (fd < 0) {
+			fprintf(stderr, "%s:%d failed to open /dev/urandom\n",
+					__FILE__, __LINE__);
+			return ~0U;
+		}
+	}
+	read(fd, &r, sizeof(r));
+	return r;
+}
+
+static void hmm_nanosleep(unsigned int n)
+{
+	struct timespec t;
+
+	t.tv_sec = 0;
+	t.tv_nsec = n;
+	nanosleep(&t, NULL);
+}
+
+/*
+ * Simple NULL test of device open/close.
+ */
+TEST_F(hmm, open_close)
+{
+}
+
+/*
+ * Read private anonymous memory.
+ */
+TEST_F(hmm, anon_read)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+	int val;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/*
+	 * Initialize buffer in system memory but leave the first two pages
+	 * zero (pte_none and pfn_zero).
+	 */
+	i = 2 * self->page_size / sizeof(*ptr);
+	for (ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Set buffer permission to read-only. */
+	ret = mprotect(buffer->ptr, size, PROT_READ);
+	ASSERT_EQ(ret, 0);
+
+	/* Populate the CPU page table with a special zero page. */
+	val = *(int *)(buffer->ptr + self->page_size);
+	ASSERT_EQ(val, 0);
+
+	/* Simulate a device reading system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device read. */
+	ptr = buffer->mirror;
+	for (i = 0; i < 2 * self->page_size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], 0);
+	for (; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Read private anonymous memory which has been protected with
+ * mprotect() PROT_NONE.
+ */
+TEST_F(hmm, anon_read_prot)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Initialize buffer in system memory. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Initialize mirror buffer so we can verify it isn't written. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = -i;
+
+	/* Protect buffer from reading. */
+	ret = mprotect(buffer->ptr, size, PROT_NONE);
+	ASSERT_EQ(ret, 0);
+
+	/* Simulate a device reading system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
+	ASSERT_EQ(ret, -EFAULT);
+
+	/* Allow CPU to read the buffer so we can check it. */
+	ret = mprotect(buffer->ptr, size, PROT_READ);
+	ASSERT_EQ(ret, 0);
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	/* Check what the device read. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], -i);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Write private anonymous memory.
+ */
+TEST_F(hmm, anon_write)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Initialize data that the device will write to buffer->ptr. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Simulate a device writing system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device wrote. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Write private anonymous memory which has been protected with
+ * mprotect() PROT_READ.
+ */
+TEST_F(hmm, anon_write_prot)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Simulate a device reading a zero page of memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, 1);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, 1);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Initialize data that the device will write to buffer->ptr. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Simulate a device writing system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+	ASSERT_EQ(ret, -EPERM);
+
+	/* Check what the device wrote. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], 0);
+
+	/* Now allow writing and see that the zero page is replaced. */
+	ret = mprotect(buffer->ptr, size, PROT_WRITE | PROT_READ);
+	ASSERT_EQ(ret, 0);
+
+	/* Simulate a device writing system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device wrote. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Check that a device writing an anonymous private mapping
+ * will copy-on-write if a child process inherits the mapping.
+ */
+TEST_F(hmm, anon_write_child)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	pid_t pid;
+	int child_fd;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Initialize buffer->ptr so we can tell if it is written. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Initialize data that the device will write to buffer->ptr. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = -i;
+
+	pid = fork();
+	if (pid == -1)
+		ASSERT_EQ(pid, 0);
+	if (pid != 0) {
+		waitpid(pid, &ret, 0);
+		ASSERT_EQ(WIFEXITED(ret), 1);
+
+		/* Check that the parent's buffer did not change. */
+		for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+			ASSERT_EQ(ptr[i], i);
+		return;
+	}
+
+	/* Check that we see the parent's values. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], -i);
+
+	/* The child process needs its own mirror to its own mm. */
+	child_fd = hmm_open(0);
+	ASSERT_GE(child_fd, 0);
+
+	/* Simulate a device writing system memory. */
+	ret = hmm_dmirror_cmd(child_fd, HMM_DMIRROR_WRITE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device wrote. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], -i);
+
+	close(child_fd);
+	exit(0);
+}
+
+/*
+ * Check that a device writing an anonymous shared mapping
+ * will not copy-on-write if a child process inherits the mapping.
+ */
+TEST_F(hmm, anon_write_child_shared)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	pid_t pid;
+	int child_fd;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_SHARED | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Initialize buffer->ptr so we can tell if it is written. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Initialize data that the device will write to buffer->ptr. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = -i;
+
+	pid = fork();
+	if (pid == -1)
+		ASSERT_EQ(pid, 0);
+	if (pid != 0) {
+		waitpid(pid, &ret, 0);
+		ASSERT_EQ(WIFEXITED(ret), 1);
+
+		/* Check that the parent's buffer did change. */
+		for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+			ASSERT_EQ(ptr[i], -i);
+		return;
+	}
+
+	/* Check that we see the parent's values. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], -i);
+
+	/* The child process needs its own mirror to its own mm. */
+	child_fd = hmm_open(0);
+	ASSERT_GE(child_fd, 0);
+
+	/* Simulate a device writing system memory. */
+	ret = hmm_dmirror_cmd(child_fd, HMM_DMIRROR_WRITE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device wrote. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], -i);
+
+	close(child_fd);
+	exit(0);
+}
+
+/*
+ * Write private anonymous huge page.
+ */
+TEST_F(hmm, anon_write_huge)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	void *old_ptr;
+	void *map;
+	int *ptr;
+	int ret;
+
+	size = 2 * TWOMEG;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	size = TWOMEG;
+	npages = size >> self->page_shift;
+	map = (void *)ALIGN((uintptr_t)buffer->ptr, size);
+	ret = madvise(map, size, MADV_HUGEPAGE);
+	ASSERT_EQ(ret, 0);
+	old_ptr = buffer->ptr;
+	buffer->ptr = map;
+
+	/* Initialize data that the device will write to buffer->ptr. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Simulate a device writing system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device wrote. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	buffer->ptr = old_ptr;
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Write huge TLBFS page.
+ */
+TEST_F(hmm, anon_write_hugetlbfs)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+	long pagesizes[4];
+	int n, idx;
+
+	/* Skip test if we can't allocate a hugetlbfs page. */
+
+	n = gethugepagesizes(pagesizes, 4);
+	if (n <= 0)
+		return;
+	for (idx = 0; --n > 0; ) {
+		if (pagesizes[n] < pagesizes[idx])
+			idx = n;
+	}
+	size = ALIGN(TWOMEG, pagesizes[idx]);
+	npages = size >> self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->ptr = get_hugepage_region(size, GHR_STRICT);
+	if (buffer->ptr == NULL) {
+		free(buffer);
+		return;
+	}
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	/* Initialize data that the device will write to buffer->ptr. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Simulate a device writing system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device wrote. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	free_hugepage_region(buffer->ptr);
+	buffer->ptr = NULL;
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Read mmap'ed file memory.
+ */
+TEST_F(hmm, file_read)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+	int fd;
+	ssize_t len;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	fd = hmm_create_file(size);
+	ASSERT_GE(fd, 0);
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = fd;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	/* Write initial contents of the file. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+	len = pwrite(fd, buffer->mirror, size, 0);
+	ASSERT_EQ(len, size);
+	memset(buffer->mirror, 0, size);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ,
+			   MAP_SHARED,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Simulate a device reading system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device read. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Write mmap'ed file memory.
+ */
+TEST_F(hmm, file_write)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+	int fd;
+	ssize_t len;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	fd = hmm_create_file(size);
+	ASSERT_GE(fd, 0);
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = fd;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_SHARED,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Initialize data that the device will write to buffer->ptr. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Simulate a device writing system memory. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_WRITE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device wrote. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	/* Check that the device also wrote the file. */
+	len = pread(fd, buffer->mirror, size, 0);
+	ASSERT_EQ(len, size);
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Migrate anonymous memory to device private memory.
+ */
+TEST_F(hmm, migrate)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Initialize buffer in system memory. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Migrate memory to device. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_MIGRATE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+
+	/* Check what the device read. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Migrate anonymous memory to device private memory and fault it back to system
+ * memory.
+ */
+TEST_F(hmm, migrate_fault)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Initialize buffer in system memory. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Migrate memory to device. */
+	ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_MIGRATE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+
+	/* Check what the device read. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	/* Fault pages back to system memory and check them. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Try to migrate various memory types to device private memory.
+ */
+TEST_F(hmm2, migrate_mixed)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	int *ptr;
+	unsigned char *p;
+	int ret;
+	int val;
+
+	npages = 6;
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(size);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	/* Reserve a range of addresses. */
+	buffer->ptr = mmap(NULL, size,
+			   PROT_NONE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+	p = buffer->ptr;
+
+	/* Now try to migrate everything to device 1. */
+	ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_MIGRATE, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, 6);
+
+	/* Punch a hole after the first page address. */
+	ret = munmap(buffer->ptr + self->page_size, self->page_size);
+	ASSERT_EQ(ret, 0);
+
+	/* We expect an error if the vma doesn't cover the range. */
+	ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_MIGRATE, buffer, 3);
+	ASSERT_EQ(ret, -EINVAL);
+
+	/* Page 2 will be a read-only zero page. */
+	ret = mprotect(buffer->ptr + 2 * self->page_size, self->page_size,
+				PROT_READ);
+	ASSERT_EQ(ret, 0);
+	ptr = (int *)(buffer->ptr + 2 * self->page_size);
+	val = *ptr + 3;
+	ASSERT_EQ(val, 3);
+
+	/* Page 3 will be read-only. */
+	ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
+				PROT_READ | PROT_WRITE);
+	ASSERT_EQ(ret, 0);
+	ptr = (int *)(buffer->ptr + 3 * self->page_size);
+	*ptr = val;
+	ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
+				PROT_READ);
+	ASSERT_EQ(ret, 0);
+
+	/* Page 4 will be read-write. */
+	ret = mprotect(buffer->ptr + 4 * self->page_size, self->page_size,
+				PROT_READ | PROT_WRITE);
+	ASSERT_EQ(ret, 0);
+	ptr = (int *)(buffer->ptr + 4 * self->page_size);
+	*ptr = val;
+
+	/* Page 5 won't be migrated to device 0 because it's on device 1. */
+	buffer->ptr = p + 5 * self->page_size;
+	ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_MIGRATE, buffer, 1);
+	ASSERT_EQ(ret, -ENOENT);
+	buffer->ptr = p;
+
+	/* Now try to migrate pages 2-3 to device 1. */
+	buffer->ptr = p + 2 * self->page_size;
+	ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_MIGRATE, buffer, 2);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, 2);
+	buffer->ptr = p;
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Migrate anonymous memory to device private memory and fault it back to system
+ * memory multiple times.
+ */
+TEST_F(hmm, migrate_multiple)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	unsigned long c;
+	int *ptr;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	for (c = 0; c < NTIMES; c++) {
+		buffer = malloc(sizeof(*buffer));
+		ASSERT_NE(buffer, NULL);
+
+		buffer->fd = -1;
+		buffer->size = size;
+		buffer->mirror = malloc(size);
+		ASSERT_NE(buffer->mirror, NULL);
+
+		buffer->ptr = mmap(NULL, size,
+				   PROT_READ | PROT_WRITE,
+				   MAP_PRIVATE | MAP_ANONYMOUS,
+				   buffer->fd, 0);
+		ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+		/* Initialize buffer in system memory. */
+		for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+			ptr[i] = i;
+
+		/* Migrate memory to device. */
+		ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_MIGRATE, buffer,
+				      npages);
+		ASSERT_EQ(ret, 0);
+		ASSERT_EQ(buffer->cpages, npages);
+
+		/* Check what the device read. */
+		for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+			ASSERT_EQ(ptr[i], i);
+
+		/* Fault pages back to system memory and check them. */
+		for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+			ASSERT_EQ(ptr[i], i);
+
+		hmm_buffer_free(buffer);
+	}
+}
+
+/*
+ * Read anonymous memory multiple times.
+ */
+TEST_F(hmm, anon_read_multiple)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	unsigned long c;
+	int *ptr;
+	int ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	for (c = 0; c < NTIMES; c++) {
+		buffer = malloc(sizeof(*buffer));
+		ASSERT_NE(buffer, NULL);
+
+		buffer->fd = -1;
+		buffer->size = size;
+		buffer->mirror = malloc(size);
+		ASSERT_NE(buffer->mirror, NULL);
+
+		buffer->ptr = mmap(NULL, size,
+				   PROT_READ | PROT_WRITE,
+				   MAP_PRIVATE | MAP_ANONYMOUS,
+				   buffer->fd, 0);
+		ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+		/* Initialize buffer in system memory. */
+		for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+			ptr[i] = i + c;
+
+		/* Simulate a device reading system memory. */
+		ret = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer,
+				      npages);
+		ASSERT_EQ(ret, 0);
+		ASSERT_EQ(buffer->cpages, npages);
+		ASSERT_EQ(buffer->faults, 1);
+
+		/* Check what the device read. */
+		for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+			ASSERT_EQ(ptr[i], i + c);
+
+		hmm_buffer_free(buffer);
+	}
+}
+
+void *unmap_buffer(void *p)
+{
+	struct hmm_buffer *buffer = p;
+
+	/* Delay for a bit and then unmap buffer while it is being read. */
+	hmm_nanosleep(hmm_random() % 32000);
+	munmap(buffer->ptr + buffer->size / 2, buffer->size / 2);
+	buffer->ptr = NULL;
+
+	return NULL;
+}
+
+/*
+ * Try reading anonymous memory while it is being unmapped.
+ */
+TEST_F(hmm, anon_teardown)
+{
+	unsigned long npages;
+	unsigned long size;
+	unsigned long c;
+	void *ret;
+
+	npages = ALIGN(HMM_BUFFER_SIZE, self->page_size) >> self->page_shift;
+	ASSERT_NE(npages, 0);
+	size = npages << self->page_shift;
+
+	for (c = 0; c < NTIMES; ++c) {
+		pthread_t thread;
+		struct hmm_buffer *buffer;
+		unsigned long i;
+		int *ptr;
+		int rc;
+
+		buffer = malloc(sizeof(*buffer));
+		ASSERT_NE(buffer, NULL);
+
+		buffer->fd = -1;
+		buffer->size = size;
+		buffer->mirror = malloc(size);
+		ASSERT_NE(buffer->mirror, NULL);
+
+		buffer->ptr = mmap(NULL, size,
+				   PROT_READ | PROT_WRITE,
+				   MAP_PRIVATE | MAP_ANONYMOUS,
+				   buffer->fd, 0);
+		ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+		/* Initialize buffer in system memory. */
+		for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+			ptr[i] = i + c;
+
+		rc = pthread_create(&thread, NULL, unmap_buffer, buffer);
+		ASSERT_EQ(rc, 0);
+
+		/* Simulate a device reading system memory. */
+		rc = hmm_dmirror_cmd(self->fd, HMM_DMIRROR_READ, buffer,
+				     npages);
+		if (rc == 0) {
+			ASSERT_EQ(buffer->cpages, npages);
+			ASSERT_EQ(buffer->faults, 1);
+
+			/* Check what the device read. */
+			for (i = 0, ptr = buffer->mirror;
+			     i < size / sizeof(*ptr);
+			     ++i)
+				ASSERT_EQ(ptr[i], i + c);
+		}
+
+		pthread_join(thread, &ret);
+		hmm_buffer_free(buffer);
+	}
+}
+
+/*
+ * Test memory snapshot without faulting in pages accessed by the device.
+ */
+TEST_F(hmm2, snapshot)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	int *ptr;
+	unsigned char *p;
+	unsigned char *m;
+	int ret;
+	int val;
+
+	npages = 7;
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(npages);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	/* Reserve a range of addresses. */
+	buffer->ptr = mmap(NULL, size,
+			   PROT_NONE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+	p = buffer->ptr;
+
+	/* Punch a hole after the first page address. */
+	ret = munmap(buffer->ptr + self->page_size, self->page_size);
+	ASSERT_EQ(ret, 0);
+
+	/* Page 2 will be read-only zero page. */
+	ret = mprotect(buffer->ptr + 2 * self->page_size, self->page_size,
+				PROT_READ);
+	ASSERT_EQ(ret, 0);
+	ptr = (int *)(buffer->ptr + 2 * self->page_size);
+	val = *ptr + 3;
+	ASSERT_EQ(val, 3);
+
+	/* Page 3 will be read-only. */
+	ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
+				PROT_READ | PROT_WRITE);
+	ASSERT_EQ(ret, 0);
+	ptr = (int *)(buffer->ptr + 3 * self->page_size);
+	*ptr = val;
+	ret = mprotect(buffer->ptr + 3 * self->page_size, self->page_size,
+				PROT_READ);
+	ASSERT_EQ(ret, 0);
+
+	/* Page 4-6 will be read-write. */
+	ret = mprotect(buffer->ptr + 4 * self->page_size, 3 * self->page_size,
+				PROT_READ | PROT_WRITE);
+	ASSERT_EQ(ret, 0);
+	ptr = (int *)(buffer->ptr + 4 * self->page_size);
+	*ptr = val;
+
+	/* Page 5 will be migrated to device 0. */
+	buffer->ptr = p + 5 * self->page_size;
+	ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_MIGRATE, buffer, 1);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, 1);
+
+	/* Page 6 will be migrated to device 1. */
+	buffer->ptr = p + 6 * self->page_size;
+	ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_MIGRATE, buffer, 1);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, 1);
+
+	/* Simulate a device snapshotting CPU pagetables. */
+	buffer->ptr = p;
+	ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_SNAPSHOT, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+
+	/* Check what the device saw. */
+	m = buffer->mirror;
+	ASSERT_EQ(m[0], HMM_DMIRROR_PROT_NONE);
+	ASSERT_EQ(m[1], HMM_DMIRROR_PROT_NONE);
+	ASSERT_EQ(m[2], HMM_DMIRROR_PROT_ZERO | HMM_DMIRROR_PROT_READ);
+	ASSERT_EQ(m[3], HMM_DMIRROR_PROT_READ);
+	ASSERT_EQ(m[4], HMM_DMIRROR_PROT_WRITE);
+	ASSERT_EQ(m[5], HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL |
+			HMM_DMIRROR_PROT_WRITE);
+	ASSERT_EQ(m[6], HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE |
+			HMM_DMIRROR_PROT_WRITE);
+
+	hmm_buffer_free(buffer);
+}
+
+/*
+ * Test two devices reading the same memory (double mapped).
+ */
+TEST_F(hmm2, double_map)
+{
+	struct hmm_buffer *buffer;
+	unsigned long npages;
+	unsigned long size;
+	unsigned long i;
+	int *ptr;
+	int ret;
+
+	npages = 6;
+	size = npages << self->page_shift;
+
+	buffer = malloc(sizeof(*buffer));
+	ASSERT_NE(buffer, NULL);
+
+	buffer->fd = -1;
+	buffer->size = size;
+	buffer->mirror = malloc(npages);
+	ASSERT_NE(buffer->mirror, NULL);
+
+	/* Reserve a range of addresses. */
+	buffer->ptr = mmap(NULL, size,
+			   PROT_READ | PROT_WRITE,
+			   MAP_PRIVATE | MAP_ANONYMOUS,
+			   buffer->fd, 0);
+	ASSERT_NE(buffer->ptr, MAP_FAILED);
+
+	/* Initialize buffer in system memory. */
+	for (i = 0, ptr = buffer->ptr; i < size / sizeof(*ptr); ++i)
+		ptr[i] = i;
+
+	/* Make region read-only. */
+	ret = mprotect(buffer->ptr, size, PROT_READ);
+	ASSERT_EQ(ret, 0);
+
+	/* Simulate device 0 reading system memory. */
+	ret = hmm_dmirror_cmd(self->fd0, HMM_DMIRROR_READ, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device read. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	/* Simulate device 1 reading system memory. */
+	ret = hmm_dmirror_cmd(self->fd1, HMM_DMIRROR_READ, buffer, npages);
+	ASSERT_EQ(ret, 0);
+	ASSERT_EQ(buffer->cpages, npages);
+	ASSERT_EQ(buffer->faults, 1);
+
+	/* Check what the device read. */
+	for (i = 0, ptr = buffer->mirror; i < size / sizeof(*ptr); ++i)
+		ASSERT_EQ(ptr[i], i);
+
+	/* Punch a hole after the first page address. */
+	ret = munmap(buffer->ptr + self->page_size, self->page_size);
+	ASSERT_EQ(ret, 0);
+
+	hmm_buffer_free(buffer);
+}
+
+TEST_HARNESS_MAIN
diff --git a/tools/testing/selftests/vm/run_vmtests b/tools/testing/selftests/vm/run_vmtests
index a692ea828317..ea3728570585 100755
--- a/tools/testing/selftests/vm/run_vmtests
+++ b/tools/testing/selftests/vm/run_vmtests
@@ -237,4 +237,20 @@ else
 	exitcode=1
 fi
 
+echo "------------------------------------"
+echo "running HMM smoke test"
+echo "------------------------------------"
+./test_hmm.sh smoke
+ret_val=$?
+
+if [ $ret_val -eq 0 ]; then
+	echo "[PASS]"
+elif [ $ret_val -eq $ksft_skip ]; then
+	echo "[SKIP]"
+	exitcode=$ksft_skip
+else
+	echo "[FAIL]"
+	exitcode=1
+fi
+
 exit $exitcode
diff --git a/tools/testing/selftests/vm/test_hmm.sh b/tools/testing/selftests/vm/test_hmm.sh
new file mode 100755
index 000000000000..461e4a99a362
--- /dev/null
+++ b/tools/testing/selftests/vm/test_hmm.sh
@@ -0,0 +1,97 @@
+#!/bin/bash
+# SPDX-License-Identifier: GPL-2.0
+#
+# Copyright (C) 2018 Uladzislau Rezki (Sony) <urezki@gmail.com>
+#
+# This is a test script for the kernel test driver to analyse vmalloc
+# allocator. Therefore it is just a kernel module loader. You can specify
+# and pass different parameters in order to:
+#     a) analyse performance of vmalloc allocations;
+#     b) stressing and stability check of vmalloc subsystem.
+
+TEST_NAME="test_hmm"
+DRIVER="test_hmm"
+
+# 1 if fails
+exitcode=1
+
+# Kselftest framework requirement - SKIP code is 4.
+ksft_skip=4
+
+check_test_requirements()
+{
+	uid=$(id -u)
+	if [ $uid -ne 0 ]; then
+		echo "$0: Must be run as root"
+		exit $ksft_skip
+	fi
+
+	if ! which modprobe > /dev/null 2>&1; then
+		echo "$0: You need modprobe installed"
+		exit $ksft_skip
+	fi
+
+	if ! modinfo $DRIVER > /dev/null 2>&1; then
+		echo "$0: You must have the following enabled in your kernel:"
+		echo "CONFIG_TEST_HMM=m"
+		exit $ksft_skip
+	fi
+}
+
+load_driver()
+{
+	modprobe $DRIVER > /dev/null 2>&1
+	if [ $? == 0 ]; then
+		major=$(awk "\$2==\"HMM_DMIRROR\" {print \$1}" /proc/devices)
+		mknod /dev/hmm_dmirror0 c $major 0
+		mknod /dev/hmm_dmirror1 c $major 1
+	fi
+}
+
+unload_driver()
+{
+	modprobe -r $DRIVER > /dev/null 2>&1
+	rm -f /dev/hmm_dmirror?
+}
+
+run_smoke()
+{
+	echo "Running smoke test. Note, this test provides basic coverage."
+
+	load_driver
+	./hmm-tests
+	unload_driver
+}
+
+usage()
+{
+	echo -n "Usage: $0"
+	echo
+	echo "Example usage:"
+	echo
+	echo "# Shows help message"
+	echo "./${TEST_NAME}.sh"
+	echo
+	echo "# Smoke testing"
+	echo "./${TEST_NAME}.sh smoke"
+	echo
+	exit 0
+}
+
+function run_test()
+{
+	if [ $# -eq 0 ]; then
+		usage
+	else
+		if [ "$1" = "smoke" ]; then
+			run_smoke
+		else
+			usage
+		fi
+	fi
+}
+
+check_test_requirements
+run_test $@
+
+exit 0
-- 
2.20.1

  parent reply	other threads:[~2020-01-13 22:47 UTC|newest]

Thread overview: 29+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2020-01-13 22:46 [PATCH v6 0/6] mm/hmm/test: add self tests for HMM Ralph Campbell
2020-01-13 22:46 ` Ralph Campbell
2020-01-13 22:46 ` [PATCH v6 1/6] mm/mmu_notifier: add mmu_interval_notifier_insert_safe() Ralph Campbell
2020-01-13 22:46   ` Ralph Campbell
2020-01-16 10:07   ` Christoph Hellwig
2020-01-13 22:46 ` [PATCH v6 2/6] mm/mmu_notifier: add mmu_interval_notifier_put() Ralph Campbell
2020-01-13 22:46   ` Ralph Campbell
2020-01-13 22:47 ` [PATCH v6 3/6] mm/notifier: add mmu_interval_notifier_update() Ralph Campbell
2020-01-13 22:47   ` Ralph Campbell
2020-01-13 22:47 ` [PATCH v6 4/6] mm/mmu_notifier: add mmu_interval_notifier_find() Ralph Campbell
2020-01-13 22:47   ` Ralph Campbell
2020-01-14 12:49   ` Jason Gunthorpe
2020-01-14 12:49     ` Jason Gunthorpe
2020-01-15 22:05     ` Ralph Campbell
2020-01-15 22:05       ` Ralph Campbell
2020-01-16 14:11       ` Jason Gunthorpe
2020-01-13 22:47 ` [PATCH v6 5/6] nouveau: use new mmu interval notifiers Ralph Campbell
2020-01-13 22:47   ` Ralph Campbell
2020-01-14 13:00   ` Jason Gunthorpe
2020-01-14 13:00     ` Jason Gunthorpe
2020-01-15 22:09     ` Ralph Campbell
2020-01-16 16:00       ` Jason Gunthorpe
2020-01-16 20:16         ` Ralph Campbell
2020-01-16 20:16           ` Ralph Campbell
2020-01-16 20:21           ` Jason Gunthorpe
2020-02-20  1:10             ` Ralph Campbell
2020-02-20  1:10               ` Ralph Campbell
2020-01-13 22:47 ` Ralph Campbell [this message]
2020-01-13 22:47   ` [PATCH v6 6/6] mm/hmm/test: add self tests for HMM Ralph Campbell

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20200113224703.5917-7-rcampbell@nvidia.com \
    --to=rcampbell@nvidia.com \
    --cc=akpm@linux-foundation.org \
    --cc=bskeggs@redhat.com \
    --cc=hch@lst.de \
    --cc=jgg@mellanox.com \
    --cc=jglisse@redhat.com \
    --cc=jhubbard@nvidia.com \
    --cc=linux-kernel@vger.kernel.org \
    --cc=linux-kselftest@vger.kernel.org \
    --cc=linux-mm@kvack.org \
    --cc=linux-rdma@vger.kernel.org \
    --cc=nouveau@lists.freedesktop.org \
    --cc=shuah@kernel.org \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.