All of lore.kernel.org
 help / color / mirror / Atom feed
From: Bjorn Helgaas <helgaas@kernel.org>
To: Ian Kumlien <ian.kumlien@gmail.com>
Cc: Kai-Heng Feng <kai.heng.feng@canonical.com>,
	linux-pci <linux-pci@vger.kernel.org>,
	Alexander Duyck <alexander.duyck@gmail.com>,
	"Saheed O. Bolarinwa" <refactormyself@gmail.com>,
	Puranjay Mohan <puranjay12@gmail.com>,
	Jesse Brandeburg <jesse.brandeburg@intel.com>,
	Tony Nguyen <anthony.l.nguyen@intel.com>,
	"David S. Miller" <davem@davemloft.net>,
	Jakub Kicinski <kuba@kernel.org>,
	Heiner Kallweit <hkallweit1@gmail.com>,
	intel-wired-lan <intel-wired-lan@lists.osuosl.org>,
	Linux Kernel Network Developers <netdev@vger.kernel.org>,
	"linux-kernel@vger.kernel.org" <linux-kernel@vger.kernel.org>
Subject: Re: [PATCH 1/3] PCI/ASPM: Use the path max in L1 ASPM latency check
Date: Mon, 14 Dec 2020 13:19:55 -0600	[thread overview]
Message-ID: <20201214191955.GA228095@bjorn-Precision-5520> (raw)
In-Reply-To: <CAA85sZuG2TbTjOAJ1TRhCbsZ2HRhUzD48b+SQ9JuAmW9gUm_dA@mail.gmail.com>

On Mon, Dec 14, 2020 at 04:47:32PM +0100, Ian Kumlien wrote:
> On Mon, Dec 14, 2020 at 3:02 PM Bjorn Helgaas <helgaas@kernel.org> wrote:
> > On Mon, Dec 14, 2020 at 10:14:18AM +0100, Ian Kumlien wrote:
> > > On Mon, Dec 14, 2020 at 6:44 AM Bjorn Helgaas <helgaas@kernel.org> wrote:
> > > >
> > > > [+cc Jesse, Tony, David, Jakub, Heiner, lists in case there's an ASPM
> > > > issue with I211 or Realtek NICs.  Beginning of thread:
> > > > https://lore.kernel.org/r/20201024205548.1837770-1-ian.kumlien@gmail.com
> > > >
> > > > Short story: Ian has:
> > > >
> > > >   Root Port --- Switch --- I211 NIC
> > > >                        \-- multifunction Realtek NIC, etc
> > > >
> > > > and the I211 performance is poor with ASPM L1 enabled on both links
> > > > in the path to it.  The patch here disables ASPM on the upstream link
> > > > and fixes the performance, but AFAICT the devices in that path give us
> > > > no reason to disable L1.  If I understand the spec correctly, the
> > > > Realtek device should not be relevant to the I211 path.]
> > > >
> > > > On Sun, Dec 13, 2020 at 10:39:53PM +0100, Ian Kumlien wrote:
> > > > > On Sun, Dec 13, 2020 at 12:47 AM Bjorn Helgaas <helgaas@kernel.org> wrote:
> > > > > > On Sat, Oct 24, 2020 at 10:55:46PM +0200, Ian Kumlien wrote:
> > > > > > > Make pcie_aspm_check_latency comply with the PCIe spec, specifically:
> > > > > > > "5.4.1.2.2. Exit from the L1 State"
> > > > > > >
> > > > > > > Which makes it clear that each switch is required to
> > > > > > > initiate a transition within 1μs from receiving it,
> > > > > > > accumulating this latency and then we have to wait for the
> > > > > > > slowest link along the path before entering L0 state from
> > > > > > > L1.
> > > > > > > ...
> > > > > >
> > > > > > > On my specific system:
> > > > > > > 03:00.0 Ethernet controller: Intel Corporation I211 Gigabit Network Connection (rev 03)
> > > > > > > 04:00.0 Unassigned class [ff00]: Realtek Semiconductor Co., Ltd. Device 816e (rev 1a)
> > > > > > >
> > > > > > >             Exit latency       Acceptable latency
> > > > > > > Tree:       L1       L0s       L1       L0s
> > > > > > > ----------  -------  -----     -------  ------
> > > > > > > 00:01.2     <32 us   -
> > > > > > > | 01:00.0   <32 us   -
> > > > > > > |- 02:03.0  <32 us   -
> > > > > > > | \03:00.0  <16 us   <2us      <64 us   <512ns
> > > > > > > |
> > > > > > > \- 02:04.0  <32 us   -
> > > > > > >   \04:00.0  <64 us   unlimited <64 us   <512ns
> > > > > > >
> > > > > > > 04:00.0's latency is the same as the maximum it allows so as
> > > > > > > we walk the path the first switchs startup latency will pass
> > > > > > > the acceptable latency limit for the link, and as a
> > > > > > > side-effect it fixes my issues with 03:00.0.
> > > > > > >
> > > > > > > Without this patch, 03:00.0 misbehaves and only gives me ~40
> > > > > > > mbit/s over links with 6 or more hops. With this patch I'm
> > > > > > > back to a maximum of ~933 mbit/s.
> > > > > >
> > > > > > There are two paths here that share a Link:
> > > > > >
> > > > > >   00:01.2 --- 01:00.0 -- 02:03.0 --- 03:00.0 I211 NIC
> > > > > >   00:01.2 --- 01:00.0 -- 02:04.0 --- 04:00.x multifunction Realtek
> > > > > >
> > > > > > 1) The path to the I211 NIC includes four Ports and two Links (the
> > > > > >    connection between 01:00.0 and 02:03.0 is internal Switch routing,
> > > > > >    not a Link).
> > > > >
> > > > > >    The Ports advertise L1 exit latencies of <32us, <32us, <32us,
> > > > > >    <16us.  If both Links are in L1 and 03:00.0 initiates L1 exit at T,
> > > > > >    01:00.0 initiates L1 exit at T + 1.  A TLP from 03:00.0 may see up
> > > > > >    to 1 + 32 = 33us of L1 exit latency.
> > > > > >
> > > > > >    The NIC can tolerate up to 64us of L1 exit latency, so it is safe
> > > > > >    to enable L1 for both Links.
> > > > > >
> > > > > > 2) The path to the Realtek device is similar except that the Realtek
> > > > > >    L1 exit latency is <64us.  If both Links are in L1 and 04:00.x
> > > > > >    initiates L1 exit at T, 01:00.0 again initiates L1 exit at T + 1,
> > > > > >    but a TLP from 04:00.x may see up to 1 + 64 = 65us of L1 exit
> > > > > >    latency.
> > > > > >
> > > > > >    The Realtek device can only tolerate 64us of latency, so it is not
> > > > > >    safe to enable L1 for both Links.  It should be safe to enable L1
> > > > > >    on the shared link because the exit latency for that link would be
> > > > > >    <32us.
> > > > >
> > > > > 04:00.0:
> > > > > DevCap: MaxPayload 128 bytes, PhantFunc 0, Latency L0s <512ns, L1 <64us
> > > > > LnkCap: Port #0, Speed 5GT/s, Width x1, ASPM L0s L1, Exit Latency L0s
> > > > > unlimited, L1 <64us
> > > > >
> > > > > So maximum latency for the entire link has to be <64 us
> > > > > For the device to leave L1 ASPM takes <64us
> > > > >
> > > > > So the device itself is the slowest entry along the link, which
> > > > > means that nothing else along that path can have ASPM enabled
> > > >
> > > > Yes.  That's what I said above: "it is not safe to enable L1 for both
> > > > Links."  Unless I'm missing something, we agree on that.
> > > >
> > > > I also said that it should be safe to enable L1 on the shared Link
> > > > (from 00:01.2 to 01:00.0) because if the downstream Link is always in
> > > > L0, the exit latency of the shared Link should be <32us, and 04:00.x
> > > > can tolerate 64us.
> > >
> > > Exit latency of shared link would be max of link, ie 64 + L1-hops, not 32
> >
> > I don't think this is true.  The path from 00:01.2 to 04:00.x includes
> > two Links, and they are independent.  The exit latency for each Link
> > depends only on the Port at each end:
> 
> The full path is what is important, because that is the actual latency
> (which the current linux code doesn't do)

I think you're saying we need to include the 04:00.x exit latency of
64us even though L1 is not enabled for 04:00.x.  I disagree; the L1
exit latency of Ports where L1 is disabled is irrelevant.  

> >   Link 1 (depends on 00:01.2 and 01:00.0): max(32, 32) = 32us
> >   Link 2 (depends on 02:04.0 and 04:00.x): max(32, 64) = 64us
> >
> > If L1 is enabled for Link 1 and disabled for Link 2, Link 2 will
> > remain in L0 so it has no L1 exit latency, and the exit latency of
> > the entire path should be 32us.
> 
> My patch disables this so yes.
> 
> > > > > > > The original code path did:
> > > > > > > 04:00:0-02:04.0 max latency 64    -> ok
> > > > > > > 02:04.0-01:00.0 max latency 32 +1 -> ok
> > > > > > > 01:00.0-00:01.2 max latency 32 +2 -> ok
> > > > > > >
> > > > > > > And thus didn't see any L1 ASPM latency issues.
> > > > > > >
> > > > > > > The new code does:
> > > > > > > 04:00:0-02:04.0 max latency 64    -> ok
> > > > > > > 02:04.0-01:00.0 max latency 64 +1 -> latency exceeded
> > > > > > > 01:00.0-00:01.2 max latency 64 +2 -> latency exceeded
> > > > > >
> > > > > > [Nit: I don't think we should add 1 for the 02:04.0 -- 01:00.0 piece
> > > > > > because that's internal Switch routing, not a Link.  But even without
> > > > > > that extra microsecond, this path does exceed the acceptable latency
> > > > > > since 1 + 64 = 65us, and 04:00.0 can only tolerate 64us.]
> > > > >
> > > > > It does report L1 ASPM on both ends, so the links will be counted as
> > > > > such in the code.
> > > >
> > > > This is a bit of a tangent and we shouldn't get too wrapped up in it.
> > > > This is a confusing aspect of PCIe.  We're talking about this path:
> > > >
> > > >   00:01.2 --- [01:00.0 -- 02:04.0] --- 04:00.x multifunction Realtek
> > > >
> > > > This path only contains two Links.  The first one is
> > > > 00:01.2 --- 01:00.0, and the second one is 02:04.0 --- 04:00.x.
> > > >
> > > > 01:00.0 is a Switch Upstream Port and 02:04.0 is a Switch Downstream
> > > > Port.  The connection between them is not a Link; it is some internal
> > > > wiring of the Switch that is completely opaque to software.
> > > >
> > > > The ASPM information and knobs in 01:00.0 apply to the Link on its
> > > > upstream side, and the ASPM info and knobs in 02:04.0 apply to the
> > > > Link on its downstream side.
> > > >
> > > > The example in sec 5.4.1.2.2 contains three Links.  The L1 exit latency
> > > > for the Link is the max of the exit latencies at each end:
> > > >
> > > >   Link 1: max(32, 8) = 32us
> > > >   Link 2: max(8, 32) = 32us
> > > >   Link 3: max(32, 8) = 32us
> > > >
> > > > The total delay for a TLP starting at the downstream end of Link 3
> > > > is 32 + 2 = 32us.
> > > >
> > > > In the path to your 04:00.x Realtek device:
> > > >
> > > >   Link 1 (from 00:01.2 to 01:00.0): max(32, 32) = 32us
> > > >   Link 2 (from 02:04.0 to 04:00.x): max(32, 64) = 64us
> > > >
> > > > If L1 were enabled on both Links, the exit latency would be 64 + 1 =
> > > > 65us.
> > >
> > > So one line to be removed from the changelog, i assume... And yes, the
> > > code handles that - first disable is 01:00.0 <-> 00:01.2
> > >
> > > > > I also assume that it can power down individual ports... and enter
> > > > > rest state if no links are up.
> > > >
> > > > I don't think this is quite true -- a Link can't enter L1 unless the
> > > > Ports on both ends have L1 enabled, so I don't think it makes sense to
> > > > talk about an individual Port being in L1.
> > > >
> > > > > > > It correctly identifies the issue.
> > > > > > >
> > > > > > > For reference, pcie information:
> > > > > > > https://bugzilla.kernel.org/show_bug.cgi?id=209725
> > > > > >
> > > > > > The "lspci without my patches" [1] shows L1 enabled for the shared
> > > > > > Link from 00:01.2 --- 01:00.0 and for the Link to 03:00.0 (I211), but
> > > > > > not for the Link to 04:00.x (Realtek).
> > > > > >
> > > > > > Per my analysis above, that looks like it *should* be a safe
> > > > > > configuration.  03:00.0 can tolerate 64us, actual is <33us.  04:00.0
> > > > > > can tolerate 64us, actual should be <32us since only the shared Link
> > > > > > is in L1.
> > > > >
> > > > > See above.
> > > >
> > > > As I said above, if we enabled L1 only on the shared Link from 00:01.2
> > > > to 01:00.0, the exit latency should be acceptable.  In that case, a
> > > > TLP from 04:00.x would see only 32us of latency:
> > > >
> > > >   Link 1 (from 00:01.2 to 01:00.0): max(32, 32) = 32us
> > > >
> > > > and 04:00.x can tolerate 64us.
> > >
> > > But, again, you're completely ignoring the full link, ie 04:00.x would
> > > also have to power on.
> >
> > I think you're using "the full link" to refer to the entire path from
> > 00:01.2 to 04:00.x.  In PCIe, a "Link" directly connects two Ports.
> > It doesn't refer to the entire path.
> >
> > No, if L1 is disabled on 02:04.0 and 04:00.x (as Linux apparently does
> > by default), the Link between them never enters L1, so there is no
> > power-on for this Link.
> 
> It doesn't do it by default, my patch does

I'm relying on [1], your "lspci without my patches" attachment named
"lspci-5.9-mainline.txt", which shows:

  02:04.0 LnkCtl: ASPM Disabled
  04:00.0 LnkCtl: ASPM Disabled

so I assumed that was what Linux did by default.

> > > > > > However, the commit log at [2] shows L1 *enabled* for both
> > > > > > the shared Link from 00:01.2 --- 01:00.0 and the 02:04.0
> > > > > > --- 04:00.x Link, and that would definitely be a problem.
> > > > > >
> > > > > > Can you explain the differences between [1] and [2]?
> > > > >
> > > > > I don't understand which sections you're referring to.
> > > >
> > > > [1] is the "lspci without my patches" attachment of bugzilla #209725,
> > > > which is supposed to show the problem this patch solves.  We're
> > > > talking about the path to 04:00.x, and [1] show this:
> > > >
> > > >   01:00.2 L1+               # <-- my typo here, should be 00:01.2
> > > >   01:00.0 L1+
> > > >   02:04.0 L1-
> > > >   04:00.0 L1-
> > > >
> > > > AFAICT, that should be a legal configuration as far as 04:00.0 is
> > > > concerned, so it's not a reason for this patch.
> > >
> > > Actually, no, maximum path latency 64us
> > >
> > > 04:00.0 wakeup latency == 64us
> > >
> > > Again, as stated, it can't be behind any sleeping L1 links
> >
> > It would be pointless for a device to advertise L1 support if it could
> > never be used.  04:00.0 advertises that it can tolerate L1 latency of
> > 64us and that it can exit L1 in 64us or less.  So it *can* be behind a
> > Link in L1 as long as nothing else in the path adds more latency.
> 
> Yes, as long as nothing along the entire path adds latency - and I
> didn't make the component
> I can only say what it states, and we have to handle it.
> 
> > > > [2] is a previous posting of this same patch, and its commit log
> > > > includes information about the same path to 04:00.x, but the "LnkCtl
> > > > Before" column shows:
> > > >
> > > >   01:00.2 L1+               # <-- my typo here, should be 00:01.2
> > > >   01:00.0 L1+
> > > >   02:04.0 L1+
> > > >   04:00.0 L1+
> > > >
> > > > I don't know why [1] shows L1 disabled on the downstream Link, while
> > > > [2] shows L1 *enabled* on the same Link.
> > >
> > > From the data they look switched.
> > >
> > > > > > > Kai-Heng Feng has a machine that will not boot with ASPM without
> > > > > > > this patch, information is documented here:
> > > > > > > https://bugzilla.kernel.org/show_bug.cgi?id=209671
> > > > > >
> > > > > > I started working through this info, too, but there's not
> > > > > > enough information to tell what difference this patch
> > > > > > makes.  The attachments compare:
> > > > > >
> > > > > >   1) CONFIG_PCIEASPM_DEFAULT=y without the patch [3] and
> > > > > >   2) CONFIG_PCIEASPM_POWERSAVE=y *with* the patch [4]
> > > > > >
> > > > > > Obviously CONFIG_PCIEASPM_POWERSAVE=y will configure
> > > > > > things differently than CONFIG_PCIEASPM_DEFAULT=y, so we
> > > > > > can't tell what changes are due to the config change and
> > > > > > what are due to the patch.
> > > > > >
> > > > > > The lspci *with* the patch ([4]) shows L0s and L1 enabled
> > > > > > at almost every possible place.  Here are the Links, how
> > > > > > they're configured, and my analysis of the exit latencies
> > > > > > vs acceptable latencies:
> > > > > >
> > > > > >   00:01.1 --- 01:00.0      L1+ (                  L1 <64us vs unl)
> > > > > >   00:01.2 --- 02:00.0      L1+ (                  L1 <64us vs 64us)
> > > > > >   00:01.3 --- 03:00.0      L1+ (                  L1 <64us vs 64us)
> > > > > >   00:01.4 --- 04:00.0      L1+ (                  L1 <64us vs unl)
> > > > > >   00:08.1 --- 05:00.x L0s+ L1+ (L0s <64ns vs 4us, L1  <1us vs unl)
> > > > > >   00:08.2 --- 06:00.0 L0s+ L1+ (L0s <64ns vs 4us, L1  <1us vs unl)
> > > > > >
> > > > > > So I can't tell what change prevents the freeze.  I would
> > > > > > expect the patch would cause us to *disable* L0s or L1
> > > > > > somewhere.
> > > > > >
> > > > > > The only place [4] shows ASPM disabled is for 05:00.1.
> > > > > > The spec says we should program the same value in all
> > > > > > functions of a multi-function device.  This is a non-ARI
> > > > > > device, so "only capabilities enabled in all functions are
> > > > > > enabled for the component as a whole."  That would mean
> > > > > > that L0s and L1 are effectively disabled for 05:00.x even
> > > > > > though 05:00.0 claims they're enabled.  But the latencies
> > > > > > say ASPM L0s and L1 should be safe to be enabled.  This
> > > > > > looks like another bug that's probably unrelated.
> > > > >
> > > > > I don't think it's unrelated, i suspect it's how PCIe works with
> > > > > multiple links...  a device can cause some kind of head of queue
> > > > > stalling - i don't know how but it really looks like it.
> > > >
> > > > The text in quotes above is straight out of the spec (PCIe r5.0, sec
> > > > 7.5.3.7).  Either the device works that way or it's not compliant.
> > > >
> > > > The OS configures ASPM based on the requirements and capabilities
> > > > advertised by the device.  If a device has any head of queue stalling
> > > > or similar issues, those must be comprehended in the numbers
> > > > advertised by the device.  It's not up to the OS to speculate about
> > > > issues like that.
> > > >
> > > > > > The patch might be correct; I haven't actually analyzed
> > > > > > the code.  But the commit log doesn't make sense to me
> > > > > > yet.
> > > > >
> > > > > I personally don't think that all this PCI information is required,
> > > > > the linux kernel is currently doing it wrong according to the spec.
> > > >
> > > > We're trying to establish exactly *what* Linux is doing wrong.  So far
> > > > we don't have a good explanation of that.
> > >
> > > Yes we do, linux counts hops + max for "link" while what should be done is
> > > counting hops + max for path
> >
> > I think you're saying we need to include L1 exit latency even for
> > Links where L1 is disabled.  I don't think we should include those.
> 
> Nope, the code does not do that, it only adds the l1 latency on L1
> enabled hops
> 
> > > > Based on [1], in the path to 03:00.0, both Links have L1 enabled, with
> > > > an exit latency of <33us, and 03:00.0 can tolerate 64us.  That should
> > > > work fine.
> > > >
> > > > Also based on [1], in the path to 04:00.x, the upstream Link has L1
> > > > enabled and the downstream Link has L1 disabled, for an exit latency
> > > > of <32us, and 04:00.0 can tolerate 64us.  That should also work fine.
> > >
> > > Again, ignoring the exit latency for 04:00.0
> > >
> > > > (Alternately, disabling L1 on the upstream Link and enabling it on the
> > > > downstream Link should have an exit latency of <64us and 04:00.0 can
> > > > tolerate 64us, so that should work fine, too.)
> > >
> > > Then nothing else can have L1 aspm enabled
> >
> > Yes, as I said, we should be able to enable L1 on either of the Links
> > in the path to 04:00.x, but not both.
> 
> The code works backwards and disables the first hop that exceeds the
> latency requirements -
> we could argue that it should try to be smarter about it and try to
> disable a minimum amount of links
> while still retaining the minimum latency but... It is what it is and
> it works when patched.
> 
> > The original problem here is not with the Realtek device at 04:00.x
> > but with the I211 NIC at 03:00.0.  So we also need to figure out what
> > the connection is.  Does the same I211 performance problem occur if
> > you remove the Realtek device from the system?
> 
> It's mounted on the motherboard, so no I can't remove it.

If you're interested, you could probably unload the Realtek drivers,
remove the devices, and set the PCI_EXP_LNKCTL_LD (Link Disable) bit
in 02:04.0, e.g.,

  # RT=/sys/devices/pci0000:00/0000:00:01.2/0000:01:00.0/0000:02:04.0
  # echo 1 > $RT/0000:04:00.0/remove
  # echo 1 > $RT/0000:04:00.1/remove
  # echo 1 > $RT/0000:04:00.2/remove
  # echo 1 > $RT/0000:04:00.4/remove
  # echo 1 > $RT/0000:04:00.7/remove
  # setpci -s02:04.0 CAP_EXP+0x10.w=0x0010

That should take 04:00.x out of the picture.

> > 03:00.0 can tolerate 64us of latency, so even if L1 is enabled on both
> > Links leading to it, the path exit latency would be <33us, which
> > should be fine.
> 
> Yes, it "should be" but due to broken ASPM latency calculations we
> have some kind of
> side effect that triggers a racecondition/sideeffect/bug that causes
> it to misbehave.
> 
> Since fixing the latency calculation fixes it, I'll leave the rest to
> someone with a logic
> analyzer and a die-hard-fetish for pcie links - I can't debug it.
> 
> > > > > Also, since it's clearly doing the wrong thing, I'm worried that
> > > > > dists will take a kernel enable aspm and there will be alot of
> > > > > bugreports of non-booting systems or other weird issues... And the
> > > > > culprit was known all along.
> > > >
> > > > There's clearly a problem on your system, but I don't know yet whether
> > > > Linux is doing something wrong, a device in your system is designed
> > > > incorrectly, or a device is designed correctly but the instance in
> > > > your system is defective.
> > >
> > > According to the spec it is, there is a explanation of how to
> > > calculate the exit latency
> > > and when you implement that, which i did (before knowing the actual
> > > spec) then it works...
> > >
> > > > > It's been five months...
> > > >
> > > > I apologize for the delay.  ASPM is a subtle area of PCIe, the Linux
> > > > code is complicated, and we have a long history of issues with it.  I
> > > > want to fix the problem, but I want to make sure we do it in a way
> > > > that matches the spec so the fix applies to all systems.  I don't want
> > > > a magic fix that fixes your system in a way I don't quite understand.
> > >
> > > > Obviously *you* understand this, so hopefully it's just a matter of
> > > > pounding it through my thick skull :)
> > >
> > > I only understand what I've been forced to understand - and I do
> > > leverage the existing code without
> > > knowing what it does underneath, I only look at the links maximum
> > > latency and make sure that I keep
> > > the maximum latency along the path and not just link for link
> > >
> > > once you realise that the max allowed latency is buffer dependent -
> > > then this becomes obviously correct,
> > > and then the pcie spec showed it as being correct as well... so...
> > >
> > >
> > > > > > [1] https://bugzilla.kernel.org/attachment.cgi?id=293047
> > > > > > [2] https://lore.kernel.org/linux-pci/20201007132808.647589-1-ian.kumlien@gmail.com/
> > > > > > [3] https://bugzilla.kernel.org/attachment.cgi?id=292955
> > > > > > [4] https://bugzilla.kernel.org/attachment.cgi?id=292957
> > > > > >
> > > > > > > Signed-off-by: Ian Kumlien <ian.kumlien@gmail.com>
> > > > > > > Tested-by: Kai-Heng Feng <kai.heng.feng@canonical.com>
> > > > > > > ---
> > > > > > >  drivers/pci/pcie/aspm.c | 22 ++++++++++++++--------
> > > > > > >  1 file changed, 14 insertions(+), 8 deletions(-)
> > > > > > >
> > > > > > > diff --git a/drivers/pci/pcie/aspm.c b/drivers/pci/pcie/aspm.c
> > > > > > > index 253c30cc1967..c03ead0f1013 100644
> > > > > > > --- a/drivers/pci/pcie/aspm.c
> > > > > > > +++ b/drivers/pci/pcie/aspm.c
> > > > > > > @@ -434,7 +434,7 @@ static void pcie_get_aspm_reg(struct pci_dev *pdev,
> > > > > > >
> > > > > > >  static void pcie_aspm_check_latency(struct pci_dev *endpoint)
> > > > > > >  {
> > > > > > > -     u32 latency, l1_switch_latency = 0;
> > > > > > > +     u32 latency, l1_max_latency = 0, l1_switch_latency = 0;
> > > > > > >       struct aspm_latency *acceptable;
> > > > > > >       struct pcie_link_state *link;
> > > > > > >
> > > > > > > @@ -456,10 +456,14 @@ static void pcie_aspm_check_latency(struct pci_dev *endpoint)
> > > > > > >               if ((link->aspm_capable & ASPM_STATE_L0S_DW) &&
> > > > > > >                   (link->latency_dw.l0s > acceptable->l0s))
> > > > > > >                       link->aspm_capable &= ~ASPM_STATE_L0S_DW;
> > > > > > > +
> > > > > > >               /*
> > > > > > >                * Check L1 latency.
> > > > > > > -              * Every switch on the path to root complex need 1
> > > > > > > -              * more microsecond for L1. Spec doesn't mention L0s.
> > > > > > > +              *
> > > > > > > +              * PCIe r5.0, sec 5.4.1.2.2 states:
> > > > > > > +              * A Switch is required to initiate an L1 exit transition on its
> > > > > > > +              * Upstream Port Link after no more than 1 μs from the beginning of an
> > > > > > > +              * L1 exit transition on any of its Downstream Port Links.
> > > > > > >                *
> > > > > > >                * The exit latencies for L1 substates are not advertised
> > > > > > >                * by a device.  Since the spec also doesn't mention a way
> > > > > > > @@ -469,11 +473,13 @@ static void pcie_aspm_check_latency(struct pci_dev *endpoint)
> > > > > > >                * L1 exit latencies advertised by a device include L1
> > > > > > >                * substate latencies (and hence do not do any check).
> > > > > > >                */
> > > > > > > -             latency = max_t(u32, link->latency_up.l1, link->latency_dw.l1);
> > > > > > > -             if ((link->aspm_capable & ASPM_STATE_L1) &&
> > > > > > > -                 (latency + l1_switch_latency > acceptable->l1))
> > > > > > > -                     link->aspm_capable &= ~ASPM_STATE_L1;
> > > > > > > -             l1_switch_latency += 1000;
> > > > > > > +             if (link->aspm_capable & ASPM_STATE_L1) {
> > > > > > > +                     latency = max_t(u32, link->latency_up.l1, link->latency_dw.l1);
> > > > > > > +                     l1_max_latency = max_t(u32, latency, l1_max_latency);
> > > > > > > +                     if (l1_max_latency + l1_switch_latency > acceptable->l1)
> > > > > > > +                             link->aspm_capable &= ~ASPM_STATE_L1;
> > > > > > > +                     l1_switch_latency += 1000;
> > > > > > > +             }
> > > > > > >
> > > > > > >               link = link->parent;
> > > > > > >       }
> > > > > > > --
> > > > > > > 2.29.1
> > > > > > >

WARNING: multiple messages have this Message-ID (diff)
From: Bjorn Helgaas <helgaas@kernel.org>
To: intel-wired-lan@osuosl.org
Subject: [Intel-wired-lan] [PATCH 1/3] PCI/ASPM: Use the path max in L1 ASPM latency check
Date: Mon, 14 Dec 2020 13:19:55 -0600	[thread overview]
Message-ID: <20201214191955.GA228095@bjorn-Precision-5520> (raw)
In-Reply-To: <CAA85sZuG2TbTjOAJ1TRhCbsZ2HRhUzD48b+SQ9JuAmW9gUm_dA@mail.gmail.com>

On Mon, Dec 14, 2020 at 04:47:32PM +0100, Ian Kumlien wrote:
> On Mon, Dec 14, 2020 at 3:02 PM Bjorn Helgaas <helgaas@kernel.org> wrote:
> > On Mon, Dec 14, 2020 at 10:14:18AM +0100, Ian Kumlien wrote:
> > > On Mon, Dec 14, 2020 at 6:44 AM Bjorn Helgaas <helgaas@kernel.org> wrote:
> > > >
> > > > [+cc Jesse, Tony, David, Jakub, Heiner, lists in case there's an ASPM
> > > > issue with I211 or Realtek NICs.  Beginning of thread:
> > > > https://lore.kernel.org/r/20201024205548.1837770-1-ian.kumlien at gmail.com
> > > >
> > > > Short story: Ian has:
> > > >
> > > >   Root Port --- Switch --- I211 NIC
> > > >                        \-- multifunction Realtek NIC, etc
> > > >
> > > > and the I211 performance is poor with ASPM L1 enabled on both links
> > > > in the path to it.  The patch here disables ASPM on the upstream link
> > > > and fixes the performance, but AFAICT the devices in that path give us
> > > > no reason to disable L1.  If I understand the spec correctly, the
> > > > Realtek device should not be relevant to the I211 path.]
> > > >
> > > > On Sun, Dec 13, 2020 at 10:39:53PM +0100, Ian Kumlien wrote:
> > > > > On Sun, Dec 13, 2020 at 12:47 AM Bjorn Helgaas <helgaas@kernel.org> wrote:
> > > > > > On Sat, Oct 24, 2020 at 10:55:46PM +0200, Ian Kumlien wrote:
> > > > > > > Make pcie_aspm_check_latency comply with the PCIe spec, specifically:
> > > > > > > "5.4.1.2.2. Exit from the L1 State"
> > > > > > >
> > > > > > > Which makes it clear that each switch is required to
> > > > > > > initiate a transition within 1?s from receiving it,
> > > > > > > accumulating this latency and then we have to wait for the
> > > > > > > slowest link along the path before entering L0 state from
> > > > > > > L1.
> > > > > > > ...
> > > > > >
> > > > > > > On my specific system:
> > > > > > > 03:00.0 Ethernet controller: Intel Corporation I211 Gigabit Network Connection (rev 03)
> > > > > > > 04:00.0 Unassigned class [ff00]: Realtek Semiconductor Co., Ltd. Device 816e (rev 1a)
> > > > > > >
> > > > > > >             Exit latency       Acceptable latency
> > > > > > > Tree:       L1       L0s       L1       L0s
> > > > > > > ----------  -------  -----     -------  ------
> > > > > > > 00:01.2     <32 us   -
> > > > > > > | 01:00.0   <32 us   -
> > > > > > > |- 02:03.0  <32 us   -
> > > > > > > | \03:00.0  <16 us   <2us      <64 us   <512ns
> > > > > > > |
> > > > > > > \- 02:04.0  <32 us   -
> > > > > > >   \04:00.0  <64 us   unlimited <64 us   <512ns
> > > > > > >
> > > > > > > 04:00.0's latency is the same as the maximum it allows so as
> > > > > > > we walk the path the first switchs startup latency will pass
> > > > > > > the acceptable latency limit for the link, and as a
> > > > > > > side-effect it fixes my issues with 03:00.0.
> > > > > > >
> > > > > > > Without this patch, 03:00.0 misbehaves and only gives me ~40
> > > > > > > mbit/s over links with 6 or more hops. With this patch I'm
> > > > > > > back to a maximum of ~933 mbit/s.
> > > > > >
> > > > > > There are two paths here that share a Link:
> > > > > >
> > > > > >   00:01.2 --- 01:00.0 -- 02:03.0 --- 03:00.0 I211 NIC
> > > > > >   00:01.2 --- 01:00.0 -- 02:04.0 --- 04:00.x multifunction Realtek
> > > > > >
> > > > > > 1) The path to the I211 NIC includes four Ports and two Links (the
> > > > > >    connection between 01:00.0 and 02:03.0 is internal Switch routing,
> > > > > >    not a Link).
> > > > >
> > > > > >    The Ports advertise L1 exit latencies of <32us, <32us, <32us,
> > > > > >    <16us.  If both Links are in L1 and 03:00.0 initiates L1 exit@T,
> > > > > >    01:00.0 initiates L1 exit at T + 1.  A TLP from 03:00.0 may see up
> > > > > >    to 1 + 32 = 33us of L1 exit latency.
> > > > > >
> > > > > >    The NIC can tolerate up to 64us of L1 exit latency, so it is safe
> > > > > >    to enable L1 for both Links.
> > > > > >
> > > > > > 2) The path to the Realtek device is similar except that the Realtek
> > > > > >    L1 exit latency is <64us.  If both Links are in L1 and 04:00.x
> > > > > >    initiates L1 exit at T, 01:00.0 again initiates L1 exit at T + 1,
> > > > > >    but a TLP from 04:00.x may see up to 1 + 64 = 65us of L1 exit
> > > > > >    latency.
> > > > > >
> > > > > >    The Realtek device can only tolerate 64us of latency, so it is not
> > > > > >    safe to enable L1 for both Links.  It should be safe to enable L1
> > > > > >    on the shared link because the exit latency for that link would be
> > > > > >    <32us.
> > > > >
> > > > > 04:00.0:
> > > > > DevCap: MaxPayload 128 bytes, PhantFunc 0, Latency L0s <512ns, L1 <64us
> > > > > LnkCap: Port #0, Speed 5GT/s, Width x1, ASPM L0s L1, Exit Latency L0s
> > > > > unlimited, L1 <64us
> > > > >
> > > > > So maximum latency for the entire link has to be <64 us
> > > > > For the device to leave L1 ASPM takes <64us
> > > > >
> > > > > So the device itself is the slowest entry along the link, which
> > > > > means that nothing else along that path can have ASPM enabled
> > > >
> > > > Yes.  That's what I said above: "it is not safe to enable L1 for both
> > > > Links."  Unless I'm missing something, we agree on that.
> > > >
> > > > I also said that it should be safe to enable L1 on the shared Link
> > > > (from 00:01.2 to 01:00.0) because if the downstream Link is always in
> > > > L0, the exit latency of the shared Link should be <32us, and 04:00.x
> > > > can tolerate 64us.
> > >
> > > Exit latency of shared link would be max of link, ie 64 + L1-hops, not 32
> >
> > I don't think this is true.  The path from 00:01.2 to 04:00.x includes
> > two Links, and they are independent.  The exit latency for each Link
> > depends only on the Port at each end:
> 
> The full path is what is important, because that is the actual latency
> (which the current linux code doesn't do)

I think you're saying we need to include the 04:00.x exit latency of
64us even though L1 is not enabled for 04:00.x.  I disagree; the L1
exit latency of Ports where L1 is disabled is irrelevant.  

> >   Link 1 (depends on 00:01.2 and 01:00.0): max(32, 32) = 32us
> >   Link 2 (depends on 02:04.0 and 04:00.x): max(32, 64) = 64us
> >
> > If L1 is enabled for Link 1 and disabled for Link 2, Link 2 will
> > remain in L0 so it has no L1 exit latency, and the exit latency of
> > the entire path should be 32us.
> 
> My patch disables this so yes.
> 
> > > > > > > The original code path did:
> > > > > > > 04:00:0-02:04.0 max latency 64    -> ok
> > > > > > > 02:04.0-01:00.0 max latency 32 +1 -> ok
> > > > > > > 01:00.0-00:01.2 max latency 32 +2 -> ok
> > > > > > >
> > > > > > > And thus didn't see any L1 ASPM latency issues.
> > > > > > >
> > > > > > > The new code does:
> > > > > > > 04:00:0-02:04.0 max latency 64    -> ok
> > > > > > > 02:04.0-01:00.0 max latency 64 +1 -> latency exceeded
> > > > > > > 01:00.0-00:01.2 max latency 64 +2 -> latency exceeded
> > > > > >
> > > > > > [Nit: I don't think we should add 1 for the 02:04.0 -- 01:00.0 piece
> > > > > > because that's internal Switch routing, not a Link.  But even without
> > > > > > that extra microsecond, this path does exceed the acceptable latency
> > > > > > since 1 + 64 = 65us, and 04:00.0 can only tolerate 64us.]
> > > > >
> > > > > It does report L1 ASPM on both ends, so the links will be counted as
> > > > > such in the code.
> > > >
> > > > This is a bit of a tangent and we shouldn't get too wrapped up in it.
> > > > This is a confusing aspect of PCIe.  We're talking about this path:
> > > >
> > > >   00:01.2 --- [01:00.0 -- 02:04.0] --- 04:00.x multifunction Realtek
> > > >
> > > > This path only contains two Links.  The first one is
> > > > 00:01.2 --- 01:00.0, and the second one is 02:04.0 --- 04:00.x.
> > > >
> > > > 01:00.0 is a Switch Upstream Port and 02:04.0 is a Switch Downstream
> > > > Port.  The connection between them is not a Link; it is some internal
> > > > wiring of the Switch that is completely opaque to software.
> > > >
> > > > The ASPM information and knobs in 01:00.0 apply to the Link on its
> > > > upstream side, and the ASPM info and knobs in 02:04.0 apply to the
> > > > Link on its downstream side.
> > > >
> > > > The example in sec 5.4.1.2.2 contains three Links.  The L1 exit latency
> > > > for the Link is the max of the exit latencies at each end:
> > > >
> > > >   Link 1: max(32, 8) = 32us
> > > >   Link 2: max(8, 32) = 32us
> > > >   Link 3: max(32, 8) = 32us
> > > >
> > > > The total delay for a TLP starting at the downstream end of Link 3
> > > > is 32 + 2 = 32us.
> > > >
> > > > In the path to your 04:00.x Realtek device:
> > > >
> > > >   Link 1 (from 00:01.2 to 01:00.0): max(32, 32) = 32us
> > > >   Link 2 (from 02:04.0 to 04:00.x): max(32, 64) = 64us
> > > >
> > > > If L1 were enabled on both Links, the exit latency would be 64 + 1 =
> > > > 65us.
> > >
> > > So one line to be removed from the changelog, i assume... And yes, the
> > > code handles that - first disable is 01:00.0 <-> 00:01.2
> > >
> > > > > I also assume that it can power down individual ports... and enter
> > > > > rest state if no links are up.
> > > >
> > > > I don't think this is quite true -- a Link can't enter L1 unless the
> > > > Ports on both ends have L1 enabled, so I don't think it makes sense to
> > > > talk about an individual Port being in L1.
> > > >
> > > > > > > It correctly identifies the issue.
> > > > > > >
> > > > > > > For reference, pcie information:
> > > > > > > https://bugzilla.kernel.org/show_bug.cgi?id=209725
> > > > > >
> > > > > > The "lspci without my patches" [1] shows L1 enabled for the shared
> > > > > > Link from 00:01.2 --- 01:00.0 and for the Link to 03:00.0 (I211), but
> > > > > > not for the Link to 04:00.x (Realtek).
> > > > > >
> > > > > > Per my analysis above, that looks like it *should* be a safe
> > > > > > configuration.  03:00.0 can tolerate 64us, actual is <33us.  04:00.0
> > > > > > can tolerate 64us, actual should be <32us since only the shared Link
> > > > > > is in L1.
> > > > >
> > > > > See above.
> > > >
> > > > As I said above, if we enabled L1 only on the shared Link from 00:01.2
> > > > to 01:00.0, the exit latency should be acceptable.  In that case, a
> > > > TLP from 04:00.x would see only 32us of latency:
> > > >
> > > >   Link 1 (from 00:01.2 to 01:00.0): max(32, 32) = 32us
> > > >
> > > > and 04:00.x can tolerate 64us.
> > >
> > > But, again, you're completely ignoring the full link, ie 04:00.x would
> > > also have to power on.
> >
> > I think you're using "the full link" to refer to the entire path from
> > 00:01.2 to 04:00.x.  In PCIe, a "Link" directly connects two Ports.
> > It doesn't refer to the entire path.
> >
> > No, if L1 is disabled on 02:04.0 and 04:00.x (as Linux apparently does
> > by default), the Link between them never enters L1, so there is no
> > power-on for this Link.
> 
> It doesn't do it by default, my patch does

I'm relying on [1], your "lspci without my patches" attachment named
"lspci-5.9-mainline.txt", which shows:

  02:04.0 LnkCtl: ASPM Disabled
  04:00.0 LnkCtl: ASPM Disabled

so I assumed that was what Linux did by default.

> > > > > > However, the commit log at [2] shows L1 *enabled* for both
> > > > > > the shared Link from 00:01.2 --- 01:00.0 and the 02:04.0
> > > > > > --- 04:00.x Link, and that would definitely be a problem.
> > > > > >
> > > > > > Can you explain the differences between [1] and [2]?
> > > > >
> > > > > I don't understand which sections you're referring to.
> > > >
> > > > [1] is the "lspci without my patches" attachment of bugzilla #209725,
> > > > which is supposed to show the problem this patch solves.  We're
> > > > talking about the path to 04:00.x, and [1] show this:
> > > >
> > > >   01:00.2 L1+               # <-- my typo here, should be 00:01.2
> > > >   01:00.0 L1+
> > > >   02:04.0 L1-
> > > >   04:00.0 L1-
> > > >
> > > > AFAICT, that should be a legal configuration as far as 04:00.0 is
> > > > concerned, so it's not a reason for this patch.
> > >
> > > Actually, no, maximum path latency 64us
> > >
> > > 04:00.0 wakeup latency == 64us
> > >
> > > Again, as stated, it can't be behind any sleeping L1 links
> >
> > It would be pointless for a device to advertise L1 support if it could
> > never be used.  04:00.0 advertises that it can tolerate L1 latency of
> > 64us and that it can exit L1 in 64us or less.  So it *can* be behind a
> > Link in L1 as long as nothing else in the path adds more latency.
> 
> Yes, as long as nothing along the entire path adds latency - and I
> didn't make the component
> I can only say what it states, and we have to handle it.
> 
> > > > [2] is a previous posting of this same patch, and its commit log
> > > > includes information about the same path to 04:00.x, but the "LnkCtl
> > > > Before" column shows:
> > > >
> > > >   01:00.2 L1+               # <-- my typo here, should be 00:01.2
> > > >   01:00.0 L1+
> > > >   02:04.0 L1+
> > > >   04:00.0 L1+
> > > >
> > > > I don't know why [1] shows L1 disabled on the downstream Link, while
> > > > [2] shows L1 *enabled* on the same Link.
> > >
> > > From the data they look switched.
> > >
> > > > > > > Kai-Heng Feng has a machine that will not boot with ASPM without
> > > > > > > this patch, information is documented here:
> > > > > > > https://bugzilla.kernel.org/show_bug.cgi?id=209671
> > > > > >
> > > > > > I started working through this info, too, but there's not
> > > > > > enough information to tell what difference this patch
> > > > > > makes.  The attachments compare:
> > > > > >
> > > > > >   1) CONFIG_PCIEASPM_DEFAULT=y without the patch [3] and
> > > > > >   2) CONFIG_PCIEASPM_POWERSAVE=y *with* the patch [4]
> > > > > >
> > > > > > Obviously CONFIG_PCIEASPM_POWERSAVE=y will configure
> > > > > > things differently than CONFIG_PCIEASPM_DEFAULT=y, so we
> > > > > > can't tell what changes are due to the config change and
> > > > > > what are due to the patch.
> > > > > >
> > > > > > The lspci *with* the patch ([4]) shows L0s and L1 enabled
> > > > > > at almost every possible place.  Here are the Links, how
> > > > > > they're configured, and my analysis of the exit latencies
> > > > > > vs acceptable latencies:
> > > > > >
> > > > > >   00:01.1 --- 01:00.0      L1+ (                  L1 <64us vs unl)
> > > > > >   00:01.2 --- 02:00.0      L1+ (                  L1 <64us vs 64us)
> > > > > >   00:01.3 --- 03:00.0      L1+ (                  L1 <64us vs 64us)
> > > > > >   00:01.4 --- 04:00.0      L1+ (                  L1 <64us vs unl)
> > > > > >   00:08.1 --- 05:00.x L0s+ L1+ (L0s <64ns vs 4us, L1  <1us vs unl)
> > > > > >   00:08.2 --- 06:00.0 L0s+ L1+ (L0s <64ns vs 4us, L1  <1us vs unl)
> > > > > >
> > > > > > So I can't tell what change prevents the freeze.  I would
> > > > > > expect the patch would cause us to *disable* L0s or L1
> > > > > > somewhere.
> > > > > >
> > > > > > The only place [4] shows ASPM disabled is for 05:00.1.
> > > > > > The spec says we should program the same value in all
> > > > > > functions of a multi-function device.  This is a non-ARI
> > > > > > device, so "only capabilities enabled in all functions are
> > > > > > enabled for the component as a whole."  That would mean
> > > > > > that L0s and L1 are effectively disabled for 05:00.x even
> > > > > > though 05:00.0 claims they're enabled.  But the latencies
> > > > > > say ASPM L0s and L1 should be safe to be enabled.  This
> > > > > > looks like another bug that's probably unrelated.
> > > > >
> > > > > I don't think it's unrelated, i suspect it's how PCIe works with
> > > > > multiple links...  a device can cause some kind of head of queue
> > > > > stalling - i don't know how but it really looks like it.
> > > >
> > > > The text in quotes above is straight out of the spec (PCIe r5.0, sec
> > > > 7.5.3.7).  Either the device works that way or it's not compliant.
> > > >
> > > > The OS configures ASPM based on the requirements and capabilities
> > > > advertised by the device.  If a device has any head of queue stalling
> > > > or similar issues, those must be comprehended in the numbers
> > > > advertised by the device.  It's not up to the OS to speculate about
> > > > issues like that.
> > > >
> > > > > > The patch might be correct; I haven't actually analyzed
> > > > > > the code.  But the commit log doesn't make sense to me
> > > > > > yet.
> > > > >
> > > > > I personally don't think that all this PCI information is required,
> > > > > the linux kernel is currently doing it wrong according to the spec.
> > > >
> > > > We're trying to establish exactly *what* Linux is doing wrong.  So far
> > > > we don't have a good explanation of that.
> > >
> > > Yes we do, linux counts hops + max for "link" while what should be done is
> > > counting hops + max for path
> >
> > I think you're saying we need to include L1 exit latency even for
> > Links where L1 is disabled.  I don't think we should include those.
> 
> Nope, the code does not do that, it only adds the l1 latency on L1
> enabled hops
> 
> > > > Based on [1], in the path to 03:00.0, both Links have L1 enabled, with
> > > > an exit latency of <33us, and 03:00.0 can tolerate 64us.  That should
> > > > work fine.
> > > >
> > > > Also based on [1], in the path to 04:00.x, the upstream Link has L1
> > > > enabled and the downstream Link has L1 disabled, for an exit latency
> > > > of <32us, and 04:00.0 can tolerate 64us.  That should also work fine.
> > >
> > > Again, ignoring the exit latency for 04:00.0
> > >
> > > > (Alternately, disabling L1 on the upstream Link and enabling it on the
> > > > downstream Link should have an exit latency of <64us and 04:00.0 can
> > > > tolerate 64us, so that should work fine, too.)
> > >
> > > Then nothing else can have L1 aspm enabled
> >
> > Yes, as I said, we should be able to enable L1 on either of the Links
> > in the path to 04:00.x, but not both.
> 
> The code works backwards and disables the first hop that exceeds the
> latency requirements -
> we could argue that it should try to be smarter about it and try to
> disable a minimum amount of links
> while still retaining the minimum latency but... It is what it is and
> it works when patched.
> 
> > The original problem here is not with the Realtek device at 04:00.x
> > but with the I211 NIC at 03:00.0.  So we also need to figure out what
> > the connection is.  Does the same I211 performance problem occur if
> > you remove the Realtek device from the system?
> 
> It's mounted on the motherboard, so no I can't remove it.

If you're interested, you could probably unload the Realtek drivers,
remove the devices, and set the PCI_EXP_LNKCTL_LD (Link Disable) bit
in 02:04.0, e.g.,

  # RT=/sys/devices/pci0000:00/0000:00:01.2/0000:01:00.0/0000:02:04.0
  # echo 1 > $RT/0000:04:00.0/remove
  # echo 1 > $RT/0000:04:00.1/remove
  # echo 1 > $RT/0000:04:00.2/remove
  # echo 1 > $RT/0000:04:00.4/remove
  # echo 1 > $RT/0000:04:00.7/remove
  # setpci -s02:04.0 CAP_EXP+0x10.w=0x0010

That should take 04:00.x out of the picture.

> > 03:00.0 can tolerate 64us of latency, so even if L1 is enabled on both
> > Links leading to it, the path exit latency would be <33us, which
> > should be fine.
> 
> Yes, it "should be" but due to broken ASPM latency calculations we
> have some kind of
> side effect that triggers a racecondition/sideeffect/bug that causes
> it to misbehave.
> 
> Since fixing the latency calculation fixes it, I'll leave the rest to
> someone with a logic
> analyzer and a die-hard-fetish for pcie links - I can't debug it.
> 
> > > > > Also, since it's clearly doing the wrong thing, I'm worried that
> > > > > dists will take a kernel enable aspm and there will be alot of
> > > > > bugreports of non-booting systems or other weird issues... And the
> > > > > culprit was known all along.
> > > >
> > > > There's clearly a problem on your system, but I don't know yet whether
> > > > Linux is doing something wrong, a device in your system is designed
> > > > incorrectly, or a device is designed correctly but the instance in
> > > > your system is defective.
> > >
> > > According to the spec it is, there is a explanation of how to
> > > calculate the exit latency
> > > and when you implement that, which i did (before knowing the actual
> > > spec) then it works...
> > >
> > > > > It's been five months...
> > > >
> > > > I apologize for the delay.  ASPM is a subtle area of PCIe, the Linux
> > > > code is complicated, and we have a long history of issues with it.  I
> > > > want to fix the problem, but I want to make sure we do it in a way
> > > > that matches the spec so the fix applies to all systems.  I don't want
> > > > a magic fix that fixes your system in a way I don't quite understand.
> > >
> > > > Obviously *you* understand this, so hopefully it's just a matter of
> > > > pounding it through my thick skull :)
> > >
> > > I only understand what I've been forced to understand - and I do
> > > leverage the existing code without
> > > knowing what it does underneath, I only look at the links maximum
> > > latency and make sure that I keep
> > > the maximum latency along the path and not just link for link
> > >
> > > once you realise that the max allowed latency is buffer dependent -
> > > then this becomes obviously correct,
> > > and then the pcie spec showed it as being correct as well... so...
> > >
> > >
> > > > > > [1] https://bugzilla.kernel.org/attachment.cgi?id=293047
> > > > > > [2] https://lore.kernel.org/linux-pci/20201007132808.647589-1-ian.kumlien at gmail.com/
> > > > > > [3] https://bugzilla.kernel.org/attachment.cgi?id=292955
> > > > > > [4] https://bugzilla.kernel.org/attachment.cgi?id=292957
> > > > > >
> > > > > > > Signed-off-by: Ian Kumlien <ian.kumlien@gmail.com>
> > > > > > > Tested-by: Kai-Heng Feng <kai.heng.feng@canonical.com>
> > > > > > > ---
> > > > > > >  drivers/pci/pcie/aspm.c | 22 ++++++++++++++--------
> > > > > > >  1 file changed, 14 insertions(+), 8 deletions(-)
> > > > > > >
> > > > > > > diff --git a/drivers/pci/pcie/aspm.c b/drivers/pci/pcie/aspm.c
> > > > > > > index 253c30cc1967..c03ead0f1013 100644
> > > > > > > --- a/drivers/pci/pcie/aspm.c
> > > > > > > +++ b/drivers/pci/pcie/aspm.c
> > > > > > > @@ -434,7 +434,7 @@ static void pcie_get_aspm_reg(struct pci_dev *pdev,
> > > > > > >
> > > > > > >  static void pcie_aspm_check_latency(struct pci_dev *endpoint)
> > > > > > >  {
> > > > > > > -     u32 latency, l1_switch_latency = 0;
> > > > > > > +     u32 latency, l1_max_latency = 0, l1_switch_latency = 0;
> > > > > > >       struct aspm_latency *acceptable;
> > > > > > >       struct pcie_link_state *link;
> > > > > > >
> > > > > > > @@ -456,10 +456,14 @@ static void pcie_aspm_check_latency(struct pci_dev *endpoint)
> > > > > > >               if ((link->aspm_capable & ASPM_STATE_L0S_DW) &&
> > > > > > >                   (link->latency_dw.l0s > acceptable->l0s))
> > > > > > >                       link->aspm_capable &= ~ASPM_STATE_L0S_DW;
> > > > > > > +
> > > > > > >               /*
> > > > > > >                * Check L1 latency.
> > > > > > > -              * Every switch on the path to root complex need 1
> > > > > > > -              * more microsecond for L1. Spec doesn't mention L0s.
> > > > > > > +              *
> > > > > > > +              * PCIe r5.0, sec 5.4.1.2.2 states:
> > > > > > > +              * A Switch is required to initiate an L1 exit transition on its
> > > > > > > +              * Upstream Port Link after no more than 1 ?s from the beginning of an
> > > > > > > +              * L1 exit transition on any of its Downstream Port Links.
> > > > > > >                *
> > > > > > >                * The exit latencies for L1 substates are not advertised
> > > > > > >                * by a device.  Since the spec also doesn't mention a way
> > > > > > > @@ -469,11 +473,13 @@ static void pcie_aspm_check_latency(struct pci_dev *endpoint)
> > > > > > >                * L1 exit latencies advertised by a device include L1
> > > > > > >                * substate latencies (and hence do not do any check).
> > > > > > >                */
> > > > > > > -             latency = max_t(u32, link->latency_up.l1, link->latency_dw.l1);
> > > > > > > -             if ((link->aspm_capable & ASPM_STATE_L1) &&
> > > > > > > -                 (latency + l1_switch_latency > acceptable->l1))
> > > > > > > -                     link->aspm_capable &= ~ASPM_STATE_L1;
> > > > > > > -             l1_switch_latency += 1000;
> > > > > > > +             if (link->aspm_capable & ASPM_STATE_L1) {
> > > > > > > +                     latency = max_t(u32, link->latency_up.l1, link->latency_dw.l1);
> > > > > > > +                     l1_max_latency = max_t(u32, latency, l1_max_latency);
> > > > > > > +                     if (l1_max_latency + l1_switch_latency > acceptable->l1)
> > > > > > > +                             link->aspm_capable &= ~ASPM_STATE_L1;
> > > > > > > +                     l1_switch_latency += 1000;
> > > > > > > +             }
> > > > > > >
> > > > > > >               link = link->parent;
> > > > > > >       }
> > > > > > > --
> > > > > > > 2.29.1
> > > > > > >

  reply	other threads:[~2020-12-14 19:21 UTC|newest]

Thread overview: 54+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2020-10-07 13:28 [PATCH] Use maximum latency when determining L1 ASPM Ian Kumlien
2020-10-08  4:20 ` Kai-Heng Feng
2020-10-08 16:13 ` Bjorn Helgaas
2020-10-12 10:20   ` Ian Kumlien
2020-10-14  8:34     ` Kai-Heng Feng
2020-10-14 13:33       ` Ian Kumlien
2020-10-14 14:36         ` Bjorn Helgaas
2020-10-14 15:39           ` Ian Kumlien
2020-10-16 14:53             ` Ian Kumlien
2020-10-16 21:28         ` Bjorn Helgaas
2020-10-16 22:41           ` Ian Kumlien
2020-10-18 11:35             ` Ian Kumlien
2020-10-22 15:37               ` Bjorn Helgaas
2020-10-22 15:41                 ` Ian Kumlien
2020-10-22 18:30                   ` Bjorn Helgaas
2020-10-24 20:55                     ` [PATCH 1/3] PCI/ASPM: Use the path max in L1 ASPM latency check Ian Kumlien
2020-10-24 20:55                       ` [PATCH 2/3] PCI/ASPM: Fix L0s max " Ian Kumlien
2020-11-15 21:49                         ` Ian Kumlien
2020-10-24 20:55                       ` [PATCH 3/3] [RFC] PCI/ASPM: Print L1/L0s latency messages per endpoint Ian Kumlien
2020-11-15 21:49                       ` [PATCH 1/3] PCI/ASPM: Use the path max in L1 ASPM latency check Ian Kumlien
2020-12-07 11:04                         ` Ian Kumlien
2020-12-12 23:47                       ` Bjorn Helgaas
2020-12-13 21:39                         ` Ian Kumlien
2020-12-14  5:44                           ` Bjorn Helgaas
2020-12-14  5:44                             ` [Intel-wired-lan] " Bjorn Helgaas
2020-12-14  9:14                             ` Ian Kumlien
2020-12-14  9:14                               ` [Intel-wired-lan] " Ian Kumlien
2020-12-14 14:02                               ` Bjorn Helgaas
2020-12-14 14:02                                 ` [Intel-wired-lan] " Bjorn Helgaas
2020-12-14 15:47                                 ` Ian Kumlien
2020-12-14 15:47                                   ` [Intel-wired-lan] " Ian Kumlien
2020-12-14 19:19                                   ` Bjorn Helgaas [this message]
2020-12-14 19:19                                     ` Bjorn Helgaas
2020-12-14 22:56                                     ` Ian Kumlien
2020-12-14 22:56                                       ` [Intel-wired-lan] " Ian Kumlien
2020-12-15  0:40                                       ` Bjorn Helgaas
2020-12-15  0:40                                         ` [Intel-wired-lan] " Bjorn Helgaas
2020-12-15 13:09                                         ` Ian Kumlien
2020-12-15 13:09                                           ` [Intel-wired-lan] " Ian Kumlien
2020-12-16  0:08                                           ` Bjorn Helgaas
2020-12-16  0:08                                             ` [Intel-wired-lan] " Bjorn Helgaas
2020-12-16 11:20                                             ` Ian Kumlien
2020-12-16 11:20                                               ` [Intel-wired-lan] " Ian Kumlien
2020-12-16 23:21                                               ` Bjorn Helgaas
2020-12-16 23:21                                                 ` [Intel-wired-lan] " Bjorn Helgaas
2020-12-17 23:37                                                 ` Ian Kumlien
2020-12-17 23:37                                                   ` [Intel-wired-lan] " Ian Kumlien
2021-01-12 20:42                       ` Bjorn Helgaas
2021-01-28 12:41                         ` Ian Kumlien
2021-02-24 22:19                           ` Ian Kumlien
2021-02-25 22:03                             ` Bjorn Helgaas
2021-04-26 14:36                               ` Ian Kumlien
2021-04-28 21:15                                 ` Bjorn Helgaas
2021-05-15 11:52                                   ` Ian Kumlien

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20201214191955.GA228095@bjorn-Precision-5520 \
    --to=helgaas@kernel.org \
    --cc=alexander.duyck@gmail.com \
    --cc=anthony.l.nguyen@intel.com \
    --cc=davem@davemloft.net \
    --cc=hkallweit1@gmail.com \
    --cc=ian.kumlien@gmail.com \
    --cc=intel-wired-lan@lists.osuosl.org \
    --cc=jesse.brandeburg@intel.com \
    --cc=kai.heng.feng@canonical.com \
    --cc=kuba@kernel.org \
    --cc=linux-kernel@vger.kernel.org \
    --cc=linux-pci@vger.kernel.org \
    --cc=netdev@vger.kernel.org \
    --cc=puranjay12@gmail.com \
    --cc=refactormyself@gmail.com \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.