All of lore.kernel.org
 help / color / mirror / Atom feed
From: Kees Cook <keescook@chromium.org>
To: James Bottomley <jejb@linux.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>,
	Mike Rapoport <rppt@kernel.org>,
	Alexander Viro <viro@zeniv.linux.org.uk>,
	Andy Lutomirski <luto@kernel.org>, Arnd Bergmann <arnd@arndb.de>,
	Borislav Petkov <bp@alien8.de>,
	Catalin Marinas <catalin.marinas@arm.com>,
	Christopher Lameter <cl@linux.com>,
	Dan Williams <dan.j.williams@intel.com>,
	Dave Hansen <dave.hansen@linux.intel.com>,
	David Hildenbrand <david@redhat.com>,
	Elena Reshetova <elena.reshetova@intel.com>,
	"H. Peter Anvin" <hpa@zytor.com>, Ingo Molnar <mingo@redhat.com>,
	"Kirill A. Shutemov" <kirill@shutemov.name>,
	Matthew Wilcox <willy@infradead.org>,
	Matthew Garrett <mjg59@srcf.ucam.org>,
	Mark Rutland <mark.rutland@arm.com>,
	Michal Hocko <mhocko@suse.com>,
	Mike Rapoport <rppt@linux.ibm.com>,
	Michael Kerrisk <mtk.manpages@gmail.com>,
	Palmer Dabbelt <palmer@dabbelt.com>,
	Paul Walmsley <paul.walmsley@sifive.com>,
	Peter Zijlstra <peterz@infradead.org>,
	"Rafael J. Wysocki" <rjw@rjwysocki.net>,
	Rick Edgecombe <rick.p.edgecombe@intel.com>,
	Roman Gushchin <guro@fb.com>, Shakeel Butt <shakeelb@google.com>,
	Shuah Khan <shuah@kernel.org>,
	Thomas Gleixner <tglx@linutronix.de>,
	Tycho Andersen <tycho@tycho.ws>, Will Deacon <will@kernel.org>,
	linux-api@vger.kernel.org, linux-arch@vger.kernel.org,
	linux-arm-kernel@lists.infradead.org,
	linux-fsdevel@vger.kernel.org, linux-mm@kvack.org,
	linux-kernel@vger.kernel.org, linux-kselftest@vger.kernel.org,
	linux-nvdimm@lists.01.org, linux-riscv@lists.infradead.org
Subject: Re: [PATCH v18 0/9] mm: introduce memfd_secret system call to create "secret" memory areas
Date: Fri, 7 May 2021 16:57:55 -0700	[thread overview]
Message-ID: <202105071620.E834B1FA92@keescook> (raw)
In-Reply-To: <9e1953a1412fad06a9f7988a280d2d9a74ab0464.camel@linux.ibm.com>

On Thu, May 06, 2021 at 11:47:47AM -0700, James Bottomley wrote:
> On Thu, 2021-05-06 at 10:33 -0700, Kees Cook wrote:
> > On Thu, May 06, 2021 at 08:26:41AM -0700, James Bottomley wrote:
> [...]
> > > > I think that a very complete description of the threats which
> > > > this feature addresses would be helpful.  
> > > 
> > > It's designed to protect against three different threats:
> > > 
> > >    1. Detection of user secret memory mismanagement
> > 
> > I would say "cross-process secret userspace memory exposures" (via a
> > number of common interfaces by blocking it at the GUP level).
> > 
> > >    2. significant protection against privilege escalation
> > 
> > I don't see how this series protects against privilege escalation.
> > (It protects against exfiltration.) Maybe you mean include this in
> > the first bullet point (i.e. "cross-process secret userspace memory
> > exposures, even in the face of privileged processes")?
> 
> It doesn't prevent privilege escalation from happening in the first
> place, but once the escalation has happened it protects against
> exfiltration by the newly minted root attacker.

So, after thinking a bit more about this, I don't think there is
protection here against privileged execution. This feature kind of helps
against cross-process read/write attempts, but it doesn't help with
sufficiently privileged (i.e. ptraced) execution, since we can just ask
the process itself to do the reading:

$ gdb ./memfd_secret
...
ready: 0x7ffff7ffb000
Breakpoint 1, ...
(gdb) compile code unsigned long addr = 0x7ffff7ffb000UL; printf("%016lx\n", *((unsigned long *)addr));
55555555555555555

And since process_vm_readv() requires PTRACE_ATTACH, there's very little
difference in effort between process_vm_readv() and the above.

So, what other paths through GUP exist that aren't covered by
PTRACE_ATTACH? And if none, then should this actually just be done by
setting the process undumpable? (This is already what things like gnupg
do.)

So, the user-space side of this doesn't seem to really help. The kernel
side protection is interesting for kernel read/write flaws, though, in
the sense that the process is likely not being attacked from "current",
so a kernel-side attack would need to either walk the page tables and
create new ones, or spawn a new userspace process to do the ptracing.

So, while I like the idea of this stuff, and I see how it provides
certain coverages, I'm curious to learn more about the threat model to
make sure it's actually providing meaningful hurdles to attacks.

-- 
Kees Cook

WARNING: multiple messages have this Message-ID (diff)
From: Kees Cook <keescook@chromium.org>
To: James Bottomley <jejb@linux.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>,
	Mike Rapoport <rppt@kernel.org>,
	Alexander Viro <viro@zeniv.linux.org.uk>,
	Andy Lutomirski <luto@kernel.org>, Arnd Bergmann <arnd@arndb.de>,
	Borislav Petkov <bp@alien8.de>,
	Catalin Marinas <catalin.marinas@arm.com>,
	Christopher Lameter <cl@linux.com>,
	Dan Williams <dan.j.williams@intel.com>,
	Dave Hansen <dave.hansen@linux.intel.com>,
	David Hildenbrand <david@redhat.com>,
	Elena Reshetova <elena.reshetova@intel.com>,
	"H. Peter Anvin" <hpa@zytor.com>, Ingo Molnar <mingo@redhat.com>,
	"Kirill A. Shutemov" <kirill@shutemov.name>,
	Matthew Wilcox <willy@infradead.org>,
	Matthew Garrett <mjg59@srcf.ucam.org>,
	Mark Rutland <mark.rutland@arm.com>,
	Michal Hocko <mhocko@suse.com>,
	Mike Rapoport <rppt@linux.ibm.com>,
	Michael Kerrisk <mtk.manpages@gmail.com>,
	Palmer Dabbelt <palmer@dabbelt.com>,
	Paul Walmsley <paul.walmsley@sifive.com>,
	Peter Zijlstra <peterz@infradead.org>,
	"Rafael J. Wysocki" <rjw@rjwysocki.net>,
	Rick Edgecombe <rick.p.edgecombe@intel.com>,
	Roman Gushchin <guro@fb.com>, Shakeel Butt <shakeelb@google.com>,
	Shuah Khan <shuah@kernel.org>,
	Thomas Gleixner <tglx@linutronix.de>,
	Tycho Andersen <tycho@tycho.ws>, Will Deacon <will@kernel.org>,
	linux-api@vger.kernel.org, linux-arch@vger.kernel.org,
	linux-arm-kernel@lists.infradead.org,
	linux-fsdevel@vger.kernel.org, linux-mm@kvack.org,
	linux-kernel@vger.kernel.org, linux-kselftest@vger.kernel.org,
	linux-nvdimm@lists.01.org, linux-riscv@lists.infradead.org
Subject: Re: [PATCH v18 0/9] mm: introduce memfd_secret system call to create "secret" memory areas
Date: Fri, 7 May 2021 16:57:55 -0700	[thread overview]
Message-ID: <202105071620.E834B1FA92@keescook> (raw)
In-Reply-To: <9e1953a1412fad06a9f7988a280d2d9a74ab0464.camel@linux.ibm.com>

On Thu, May 06, 2021 at 11:47:47AM -0700, James Bottomley wrote:
> On Thu, 2021-05-06 at 10:33 -0700, Kees Cook wrote:
> > On Thu, May 06, 2021 at 08:26:41AM -0700, James Bottomley wrote:
> [...]
> > > > I think that a very complete description of the threats which
> > > > this feature addresses would be helpful.  
> > > 
> > > It's designed to protect against three different threats:
> > > 
> > >    1. Detection of user secret memory mismanagement
> > 
> > I would say "cross-process secret userspace memory exposures" (via a
> > number of common interfaces by blocking it at the GUP level).
> > 
> > >    2. significant protection against privilege escalation
> > 
> > I don't see how this series protects against privilege escalation.
> > (It protects against exfiltration.) Maybe you mean include this in
> > the first bullet point (i.e. "cross-process secret userspace memory
> > exposures, even in the face of privileged processes")?
> 
> It doesn't prevent privilege escalation from happening in the first
> place, but once the escalation has happened it protects against
> exfiltration by the newly minted root attacker.

So, after thinking a bit more about this, I don't think there is
protection here against privileged execution. This feature kind of helps
against cross-process read/write attempts, but it doesn't help with
sufficiently privileged (i.e. ptraced) execution, since we can just ask
the process itself to do the reading:

$ gdb ./memfd_secret
...
ready: 0x7ffff7ffb000
Breakpoint 1, ...
(gdb) compile code unsigned long addr = 0x7ffff7ffb000UL; printf("%016lx\n", *((unsigned long *)addr));
55555555555555555

And since process_vm_readv() requires PTRACE_ATTACH, there's very little
difference in effort between process_vm_readv() and the above.

So, what other paths through GUP exist that aren't covered by
PTRACE_ATTACH? And if none, then should this actually just be done by
setting the process undumpable? (This is already what things like gnupg
do.)

So, the user-space side of this doesn't seem to really help. The kernel
side protection is interesting for kernel read/write flaws, though, in
the sense that the process is likely not being attacked from "current",
so a kernel-side attack would need to either walk the page tables and
create new ones, or spawn a new userspace process to do the ptracing.

So, while I like the idea of this stuff, and I see how it provides
certain coverages, I'm curious to learn more about the threat model to
make sure it's actually providing meaningful hurdles to attacks.

-- 
Kees Cook

_______________________________________________
linux-riscv mailing list
linux-riscv@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/linux-riscv

WARNING: multiple messages have this Message-ID (diff)
From: Kees Cook <keescook@chromium.org>
To: James Bottomley <jejb@linux.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>,
	Mike Rapoport <rppt@kernel.org>,
	Alexander Viro <viro@zeniv.linux.org.uk>,
	Andy Lutomirski <luto@kernel.org>, Arnd Bergmann <arnd@arndb.de>,
	Borislav Petkov <bp@alien8.de>,
	Catalin Marinas <catalin.marinas@arm.com>,
	Christopher Lameter <cl@linux.com>,
	Dave Hansen <dave.hansen@linux.intel.com>,
	David Hildenbrand <david@redhat.com>,
	Elena Reshetova <elena.reshetova@intel.com>,
	"H. Peter Anvin" <hpa@zytor.com>, Ingo Molnar <mingo@redhat.com>,
	"Kirill A. Shutemov" <kirill@shutemov.name>,
	Matthew Wilcox <willy@infradead.org>,
	Matthew Garrett <mjg59@srcf.ucam.org>,
	Mark Rutland <mark.rutland@arm.com>,
	Michal Hocko <mhocko@suse.com>,
	Mike Rapoport <rppt@linux.ibm.com>,
	Michael Kerrisk <mtk.manpages@gmail.com>,
	Palmer Dabbelt <palmer@dabbelt.com>,
	Paul Walmsley <paul.walmsley@sifive.com>,
	Peter Zijlstra <peterz@infradead.org>,
	"Rafael J. Wysocki" <rjw@rjwysocki.net>,
	Rick Edgecombe <rick.p.edgecombe@intel.com>,
	Roman Gushchin <guro@fb.com>, Shak eel Butt <shakeelb@google.com>,
	Shuah Khan <shuah@kernel.org>,
	Thomas Gleixner <tglx@linutronix.de>,
	Tycho Andersen <tycho@tycho.ws>, Will Deacon <will@kernel.org>,
	linux-api@vger.kernel.org, linux-arch@vger.kernel.org,
	linux-arm-kernel@lists.infradead.org,
	linux-fsdevel@vger.kernel.org, linux-mm@kvack.org,
	linux-kernel@vger.kernel.org, linux-kselftest@vger.kernel.org,
	linux-nvdimm@lists.01.org, linux-riscv@lists.infradead.org
Subject: Re: [PATCH v18 0/9] mm: introduce memfd_secret system call to create "secret" memory areas
Date: Fri, 7 May 2021 16:57:55 -0700	[thread overview]
Message-ID: <202105071620.E834B1FA92@keescook> (raw)
In-Reply-To: <9e1953a1412fad06a9f7988a280d2d9a74ab0464.camel@linux.ibm.com>

On Thu, May 06, 2021 at 11:47:47AM -0700, James Bottomley wrote:
> On Thu, 2021-05-06 at 10:33 -0700, Kees Cook wrote:
> > On Thu, May 06, 2021 at 08:26:41AM -0700, James Bottomley wrote:
> [...]
> > > > I think that a very complete description of the threats which
> > > > this feature addresses would be helpful.  
> > > 
> > > It's designed to protect against three different threats:
> > > 
> > >    1. Detection of user secret memory mismanagement
> > 
> > I would say "cross-process secret userspace memory exposures" (via a
> > number of common interfaces by blocking it at the GUP level).
> > 
> > >    2. significant protection against privilege escalation
> > 
> > I don't see how this series protects against privilege escalation.
> > (It protects against exfiltration.) Maybe you mean include this in
> > the first bullet point (i.e. "cross-process secret userspace memory
> > exposures, even in the face of privileged processes")?
> 
> It doesn't prevent privilege escalation from happening in the first
> place, but once the escalation has happened it protects against
> exfiltration by the newly minted root attacker.

So, after thinking a bit more about this, I don't think there is
protection here against privileged execution. This feature kind of helps
against cross-process read/write attempts, but it doesn't help with
sufficiently privileged (i.e. ptraced) execution, since we can just ask
the process itself to do the reading:

$ gdb ./memfd_secret
...
ready: 0x7ffff7ffb000
Breakpoint 1, ...
(gdb) compile code unsigned long addr = 0x7ffff7ffb000UL; printf("%016lx\n", *((unsigned long *)addr));
55555555555555555

And since process_vm_readv() requires PTRACE_ATTACH, there's very little
difference in effort between process_vm_readv() and the above.

So, what other paths through GUP exist that aren't covered by
PTRACE_ATTACH? And if none, then should this actually just be done by
setting the process undumpable? (This is already what things like gnupg
do.)

So, the user-space side of this doesn't seem to really help. The kernel
side protection is interesting for kernel read/write flaws, though, in
the sense that the process is likely not being attacked from "current",
so a kernel-side attack would need to either walk the page tables and
create new ones, or spawn a new userspace process to do the ptracing.

So, while I like the idea of this stuff, and I see how it provides
certain coverages, I'm curious to learn more about the threat model to
make sure it's actually providing meaningful hurdles to attacks.

-- 
Kees Cook
_______________________________________________
Linux-nvdimm mailing list -- linux-nvdimm@lists.01.org
To unsubscribe send an email to linux-nvdimm-leave@lists.01.org

WARNING: multiple messages have this Message-ID (diff)
From: Kees Cook <keescook@chromium.org>
To: James Bottomley <jejb@linux.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>,
	Mike Rapoport <rppt@kernel.org>,
	Alexander Viro <viro@zeniv.linux.org.uk>,
	Andy Lutomirski <luto@kernel.org>, Arnd Bergmann <arnd@arndb.de>,
	Borislav Petkov <bp@alien8.de>,
	Catalin Marinas <catalin.marinas@arm.com>,
	Christopher Lameter <cl@linux.com>,
	Dan Williams <dan.j.williams@intel.com>,
	Dave Hansen <dave.hansen@linux.intel.com>,
	David Hildenbrand <david@redhat.com>,
	Elena Reshetova <elena.reshetova@intel.com>,
	"H. Peter Anvin" <hpa@zytor.com>, Ingo Molnar <mingo@redhat.com>,
	"Kirill A. Shutemov" <kirill@shutemov.name>,
	Matthew Wilcox <willy@infradead.org>,
	Matthew Garrett <mjg59@srcf.ucam.org>,
	Mark Rutland <mark.rutland@arm.com>,
	Michal Hocko <mhocko@suse.com>,
	Mike Rapoport <rppt@linux.ibm.com>,
	Michael Kerrisk <mtk.manpages@gmail.com>,
	Palmer Dabbelt <palmer@dabbelt.com>,
	Paul Walmsley <paul.walmsley@sifive.com>,
	Peter Zijlstra <peterz@infradead.org>,
	"Rafael J. Wysocki" <rjw@rjwysocki.net>,
	Rick Edgecombe <rick.p.edgecombe@intel.com>,
	Roman Gushchin <guro@fb.com>, Shakeel Butt <shakeelb@google.com>,
	Shuah Khan <shuah@kernel.org>,
	Thomas Gleixner <tglx@linutronix.de>,
	Tycho Andersen <tycho@tycho.ws>, Will Deacon <will@kernel.org>,
	linux-api@vger.kernel.org, linux-arch@vger.kernel.org,
	linux-arm-kernel@lists.infradead.org,
	linux-fsdevel@vger.kernel.org, linux-mm@kvack.org,
	linux-kernel@vger.kernel.org, linux-kselftest@vger.kernel.org,
	linux-nvdimm@lists.01.org, linux-riscv@lists.infradead.org
Subject: Re: [PATCH v18 0/9] mm: introduce memfd_secret system call to create "secret" memory areas
Date: Fri, 7 May 2021 16:57:55 -0700	[thread overview]
Message-ID: <202105071620.E834B1FA92@keescook> (raw)
In-Reply-To: <9e1953a1412fad06a9f7988a280d2d9a74ab0464.camel@linux.ibm.com>

On Thu, May 06, 2021 at 11:47:47AM -0700, James Bottomley wrote:
> On Thu, 2021-05-06 at 10:33 -0700, Kees Cook wrote:
> > On Thu, May 06, 2021 at 08:26:41AM -0700, James Bottomley wrote:
> [...]
> > > > I think that a very complete description of the threats which
> > > > this feature addresses would be helpful.  
> > > 
> > > It's designed to protect against three different threats:
> > > 
> > >    1. Detection of user secret memory mismanagement
> > 
> > I would say "cross-process secret userspace memory exposures" (via a
> > number of common interfaces by blocking it at the GUP level).
> > 
> > >    2. significant protection against privilege escalation
> > 
> > I don't see how this series protects against privilege escalation.
> > (It protects against exfiltration.) Maybe you mean include this in
> > the first bullet point (i.e. "cross-process secret userspace memory
> > exposures, even in the face of privileged processes")?
> 
> It doesn't prevent privilege escalation from happening in the first
> place, but once the escalation has happened it protects against
> exfiltration by the newly minted root attacker.

So, after thinking a bit more about this, I don't think there is
protection here against privileged execution. This feature kind of helps
against cross-process read/write attempts, but it doesn't help with
sufficiently privileged (i.e. ptraced) execution, since we can just ask
the process itself to do the reading:

$ gdb ./memfd_secret
...
ready: 0x7ffff7ffb000
Breakpoint 1, ...
(gdb) compile code unsigned long addr = 0x7ffff7ffb000UL; printf("%016lx\n", *((unsigned long *)addr));
55555555555555555

And since process_vm_readv() requires PTRACE_ATTACH, there's very little
difference in effort between process_vm_readv() and the above.

So, what other paths through GUP exist that aren't covered by
PTRACE_ATTACH? And if none, then should this actually just be done by
setting the process undumpable? (This is already what things like gnupg
do.)

So, the user-space side of this doesn't seem to really help. The kernel
side protection is interesting for kernel read/write flaws, though, in
the sense that the process is likely not being attacked from "current",
so a kernel-side attack would need to either walk the page tables and
create new ones, or spawn a new userspace process to do the ptracing.

So, while I like the idea of this stuff, and I see how it provides
certain coverages, I'm curious to learn more about the threat model to
make sure it's actually providing meaningful hurdles to attacks.

-- 
Kees Cook

_______________________________________________
linux-arm-kernel mailing list
linux-arm-kernel@lists.infradead.org
http://lists.infradead.org/mailman/listinfo/linux-arm-kernel

  reply	other threads:[~2021-05-07 23:58 UTC|newest]

Thread overview: 84+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2021-03-03 16:22 [PATCH v18 0/9] mm: introduce memfd_secret system call to create "secret" memory areas Mike Rapoport
2021-03-03 16:22 ` Mike Rapoport
2021-03-03 16:22 ` Mike Rapoport
2021-03-03 16:22 ` Mike Rapoport
2021-03-03 16:22 ` [PATCH v18 1/9] mm: add definition of PMD_PAGE_ORDER Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22 ` [PATCH v18 2/9] mmap: make mlock_future_check() global Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22 ` [PATCH v18 3/9] riscv/Kconfig: make direct map manipulation options depend on MMU Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22 ` [PATCH v18 4/9] set_memory: allow set_direct_map_*_noflush() for multiple pages Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22 ` [PATCH v18 5/9] set_memory: allow querying whether set_direct_map_*() is actually enabled Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22 ` [PATCH v18 6/9] mm: introduce memfd_secret system call to create "secret" memory areas Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22 ` [PATCH v18 7/9] PM: hibernate: disable when there are active secretmem users Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22 ` [PATCH v18 8/9] arch, mm: wire up memfd_secret system call where relevant Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22 ` [PATCH v18 9/9] secretmem: test: add basic selftest for memfd_secret(2) Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-03-03 16:22   ` Mike Rapoport
2021-05-05 19:08 ` [PATCH v18 0/9] mm: introduce memfd_secret system call to create "secret" memory areas Andrew Morton
2021-05-05 19:08   ` Andrew Morton
2021-05-05 19:08   ` Andrew Morton
2021-05-05 19:08   ` Andrew Morton
2021-05-06 15:26   ` James Bottomley
2021-05-06 15:26     ` James Bottomley
2021-05-06 15:26     ` James Bottomley
2021-05-06 15:26     ` James Bottomley
2021-05-06 16:45     ` David Hildenbrand
2021-05-06 16:45       ` David Hildenbrand
2021-05-06 16:45       ` David Hildenbrand
2021-05-06 16:45       ` David Hildenbrand
2021-05-06 17:05       ` James Bottomley
2021-05-06 17:05         ` James Bottomley
2021-05-06 17:05         ` James Bottomley
2021-05-06 17:05         ` James Bottomley
2021-05-06 17:24         ` David Hildenbrand
2021-05-06 17:24           ` David Hildenbrand
2021-05-06 17:24           ` David Hildenbrand
2021-05-06 17:24           ` David Hildenbrand
2021-05-06 23:16         ` Nick Kossifidis
2021-05-06 23:16           ` Nick Kossifidis
2021-05-06 23:16           ` Nick Kossifidis
2021-05-06 23:16           ` Nick Kossifidis
2021-05-07  7:35           ` David Hildenbrand
2021-05-07  7:35             ` David Hildenbrand
2021-05-07  7:35             ` David Hildenbrand
2021-05-07  7:35             ` David Hildenbrand
2021-05-06 17:33     ` Kees Cook
2021-05-06 17:33       ` Kees Cook
2021-05-06 17:33       ` Kees Cook
2021-05-06 17:33       ` Kees Cook
2021-05-06 18:47       ` James Bottomley
2021-05-06 18:47         ` James Bottomley
2021-05-06 18:47         ` James Bottomley
2021-05-06 18:47         ` James Bottomley
2021-05-07 23:57         ` Kees Cook [this message]
2021-05-07 23:57           ` Kees Cook
2021-05-07 23:57           ` Kees Cook
2021-05-07 23:57           ` Kees Cook
2021-05-10 18:02         ` Mike Rapoport
2021-05-10 18:02           ` Mike Rapoport
2021-05-10 18:02           ` Mike Rapoport
2021-05-10 18:02           ` Mike Rapoport

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=202105071620.E834B1FA92@keescook \
    --to=keescook@chromium.org \
    --cc=akpm@linux-foundation.org \
    --cc=arnd@arndb.de \
    --cc=bp@alien8.de \
    --cc=catalin.marinas@arm.com \
    --cc=cl@linux.com \
    --cc=dan.j.williams@intel.com \
    --cc=dave.hansen@linux.intel.com \
    --cc=david@redhat.com \
    --cc=elena.reshetova@intel.com \
    --cc=guro@fb.com \
    --cc=hpa@zytor.com \
    --cc=jejb@linux.ibm.com \
    --cc=kirill@shutemov.name \
    --cc=linux-api@vger.kernel.org \
    --cc=linux-arch@vger.kernel.org \
    --cc=linux-arm-kernel@lists.infradead.org \
    --cc=linux-fsdevel@vger.kernel.org \
    --cc=linux-kernel@vger.kernel.org \
    --cc=linux-kselftest@vger.kernel.org \
    --cc=linux-mm@kvack.org \
    --cc=linux-nvdimm@lists.01.org \
    --cc=linux-riscv@lists.infradead.org \
    --cc=luto@kernel.org \
    --cc=mark.rutland@arm.com \
    --cc=mhocko@suse.com \
    --cc=mingo@redhat.com \
    --cc=mjg59@srcf.ucam.org \
    --cc=mtk.manpages@gmail.com \
    --cc=palmer@dabbelt.com \
    --cc=paul.walmsley@sifive.com \
    --cc=peterz@infradead.org \
    --cc=rick.p.edgecombe@intel.com \
    --cc=rjw@rjwysocki.net \
    --cc=rppt@kernel.org \
    --cc=rppt@linux.ibm.com \
    --cc=shakeelb@google.com \
    --cc=shuah@kernel.org \
    --cc=tglx@linutronix.de \
    --cc=tycho@tycho.ws \
    --cc=viro@zeniv.linux.org.uk \
    --cc=will@kernel.org \
    --cc=willy@infradead.org \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.