All of lore.kernel.org
 help / color / mirror / Atom feed
* [PATCH v2] mm: SLAB freelist randomization
@ 2016-04-25 20:39 ` Thomas Garnier
  0 siblings, 0 replies; 39+ messages in thread
From: Thomas Garnier @ 2016-04-25 20:39 UTC (permalink / raw)
  To: Christoph Lameter, Pekka Enberg, David Rientjes, Joonsoo Kim,
	Andrew Morton, Kees Cook
  Cc: gthelen, labbott, kernel-hardening, linux-kernel, linux-mm,
	Thomas Garnier

Provides an optional config (CONFIG_FREELIST_RANDOM) to randomize the
SLAB freelist. The list is randomized during initialization of a new set
of pages. The order on different freelist sizes is pre-computed at boot
for performance. Each kmem_cache has its own randomized freelist except
early on boot where global lists are used. This security feature reduces
the predictability of the kernel SLAB allocator against heap overflows
rendering attacks much less stable.

For example this attack against SLUB (also applicable against SLAB)
would be affected:
https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/

Also, since v4.6 the freelist was moved at the end of the SLAB. It means
a controllable heap is opened to new attacks not yet publicly discussed.
A kernel heap overflow can be transformed to multiple use-after-free.
This feature makes this type of attack harder too.

To generate entropy, we use get_random_bytes_arch because 0 bits of
entropy is available in the boot stage. In the worse case this function
will fallback to the get_random_bytes sub API. We also generate a shift
random number to shift pre-computed freelist for each new set of pages.

The config option name is not specific to the SLAB as this approach will
be extended to other allocators like SLUB.

Performance results highlighted no major changes:

slab_test 1 run on boot. Difference only seen on the 2048 size test
being the worse case scenario covered by freelist randomization. New
slab pages are constantly being created on the 10000 allocations.
Variance should be mainly due to getting new pages every few
allocations.

Before:

Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
10000 times kmalloc(8) -> 99 cycles kfree -> 112 cycles
10000 times kmalloc(16) -> 109 cycles kfree -> 140 cycles
10000 times kmalloc(32) -> 129 cycles kfree -> 137 cycles
10000 times kmalloc(64) -> 141 cycles kfree -> 141 cycles
10000 times kmalloc(128) -> 152 cycles kfree -> 148 cycles
10000 times kmalloc(256) -> 195 cycles kfree -> 167 cycles
10000 times kmalloc(512) -> 257 cycles kfree -> 199 cycles
10000 times kmalloc(1024) -> 393 cycles kfree -> 251 cycles
10000 times kmalloc(2048) -> 649 cycles kfree -> 228 cycles
10000 times kmalloc(4096) -> 806 cycles kfree -> 370 cycles
10000 times kmalloc(8192) -> 814 cycles kfree -> 411 cycles
10000 times kmalloc(16384) -> 892 cycles kfree -> 455 cycles
2. Kmalloc: alloc/free test
10000 times kmalloc(8)/kfree -> 121 cycles
10000 times kmalloc(16)/kfree -> 121 cycles
10000 times kmalloc(32)/kfree -> 121 cycles
10000 times kmalloc(64)/kfree -> 121 cycles
10000 times kmalloc(128)/kfree -> 121 cycles
10000 times kmalloc(256)/kfree -> 119 cycles
10000 times kmalloc(512)/kfree -> 119 cycles
10000 times kmalloc(1024)/kfree -> 119 cycles
10000 times kmalloc(2048)/kfree -> 119 cycles
10000 times kmalloc(4096)/kfree -> 121 cycles
10000 times kmalloc(8192)/kfree -> 119 cycles
10000 times kmalloc(16384)/kfree -> 119 cycles

After:

Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
10000 times kmalloc(8) -> 130 cycles kfree -> 86 cycles
10000 times kmalloc(16) -> 118 cycles kfree -> 86 cycles
10000 times kmalloc(32) -> 121 cycles kfree -> 85 cycles
10000 times kmalloc(64) -> 176 cycles kfree -> 102 cycles
10000 times kmalloc(128) -> 178 cycles kfree -> 100 cycles
10000 times kmalloc(256) -> 205 cycles kfree -> 109 cycles
10000 times kmalloc(512) -> 262 cycles kfree -> 136 cycles
10000 times kmalloc(1024) -> 342 cycles kfree -> 157 cycles
10000 times kmalloc(2048) -> 701 cycles kfree -> 238 cycles
10000 times kmalloc(4096) -> 803 cycles kfree -> 364 cycles
10000 times kmalloc(8192) -> 835 cycles kfree -> 404 cycles
10000 times kmalloc(16384) -> 896 cycles kfree -> 441 cycles
2. Kmalloc: alloc/free test
10000 times kmalloc(8)/kfree -> 121 cycles
10000 times kmalloc(16)/kfree -> 121 cycles
10000 times kmalloc(32)/kfree -> 123 cycles
10000 times kmalloc(64)/kfree -> 142 cycles
10000 times kmalloc(128)/kfree -> 121 cycles
10000 times kmalloc(256)/kfree -> 119 cycles
10000 times kmalloc(512)/kfree -> 119 cycles
10000 times kmalloc(1024)/kfree -> 119 cycles
10000 times kmalloc(2048)/kfree -> 119 cycles
10000 times kmalloc(4096)/kfree -> 119 cycles
10000 times kmalloc(8192)/kfree -> 119 cycles
10000 times kmalloc(16384)/kfree -> 119 cycles

Signed-off-by: Thomas Garnier <thgarnie@google.com>
---
Based on next-20160422
---
 include/linux/slab_def.h |   4 +
 init/Kconfig             |   9 ++
 mm/slab.c                | 213 ++++++++++++++++++++++++++++++++++++++++++++++-
 3 files changed, 224 insertions(+), 2 deletions(-)

diff --git a/include/linux/slab_def.h b/include/linux/slab_def.h
index 9edbbf3..182ec26 100644
--- a/include/linux/slab_def.h
+++ b/include/linux/slab_def.h
@@ -80,6 +80,10 @@ struct kmem_cache {
 	struct kasan_cache kasan_info;
 #endif
 
+#ifdef CONFIG_FREELIST_RANDOM
+	void *random_seq;
+#endif
+
 	struct kmem_cache_node *node[MAX_NUMNODES];
 };
 
diff --git a/init/Kconfig b/init/Kconfig
index 0c66640..73453d0 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -1742,6 +1742,15 @@ config SLOB
 
 endchoice
 
+config FREELIST_RANDOM
+	default n
+	depends on SLAB
+	bool "SLAB freelist randomization"
+	help
+	  Randomizes the freelist order used on creating new SLABs. This
+	  security feature reduces the predictability of the kernel slab
+	  allocator against heap overflows.
+
 config SLUB_CPU_PARTIAL
 	default y
 	depends on SLUB && SMP
diff --git a/mm/slab.c b/mm/slab.c
index b82ee6b..89eb617 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -116,6 +116,7 @@
 #include	<linux/kmemcheck.h>
 #include	<linux/memory.h>
 #include	<linux/prefetch.h>
+#include	<linux/log2.h>
 
 #include	<net/sock.h>
 
@@ -1230,6 +1231,100 @@ static void __init set_up_node(struct kmem_cache *cachep, int index)
 	}
 }
 
+#ifdef CONFIG_FREELIST_RANDOM
+static void freelist_randomize(struct rnd_state *state, freelist_idx_t *list,
+			size_t count)
+{
+	size_t i;
+	unsigned int rand;
+
+	for (i = 0; i < count; i++)
+		list[i] = i;
+
+	/* Fisher-Yates shuffle */
+	for (i = count - 1; i > 0; i--) {
+		rand = prandom_u32_state(state);
+		rand %= (i + 1);
+		swap(list[i], list[rand]);
+	}
+}
+
+/* Create a random sequence per cache */
+static void cache_random_seq_create(struct kmem_cache *cachep)
+{
+	unsigned int seed, count = cachep->num;
+	struct rnd_state state;
+
+	if (count < 2)
+		return;
+
+	cachep->random_seq = kcalloc(count, sizeof(freelist_idx_t), GFP_KERNEL);
+	BUG_ON(cachep->random_seq == NULL);
+
+	/* Get best entropy at this stage */
+	get_random_bytes_arch(&seed, sizeof(seed));
+	prandom_seed_state(&state, seed);
+
+	freelist_randomize(&state, cachep->random_seq, count);
+}
+
+/* Destroy the per-cache random freelist sequence */
+static void cache_random_seq_destroy(struct kmem_cache *cachep)
+{
+	kfree(cachep->random_seq);
+	cachep->random_seq = NULL;
+}
+
+/*
+ * Global static list are used when pre-computed cache list are not yet
+ * available. Lists of different sizes are created to optimize performance on
+ * SLABS with different object counts.
+ */
+static freelist_idx_t freelist_random_seq_2[2];
+static freelist_idx_t freelist_random_seq_4[4];
+static freelist_idx_t freelist_random_seq_8[8];
+static freelist_idx_t freelist_random_seq_16[16];
+static freelist_idx_t freelist_random_seq_32[32];
+static freelist_idx_t freelist_random_seq_64[64];
+static freelist_idx_t freelist_random_seq_128[128];
+static freelist_idx_t freelist_random_seq_256[256];
+const static struct m_list {
+	size_t count;
+	freelist_idx_t *list;
+} freelist_random_seqs[] = {
+	{ ARRAY_SIZE(freelist_random_seq_2), freelist_random_seq_2 },
+	{ ARRAY_SIZE(freelist_random_seq_4), freelist_random_seq_4 },
+	{ ARRAY_SIZE(freelist_random_seq_8), freelist_random_seq_8 },
+	{ ARRAY_SIZE(freelist_random_seq_16), freelist_random_seq_16 },
+	{ ARRAY_SIZE(freelist_random_seq_32), freelist_random_seq_32 },
+	{ ARRAY_SIZE(freelist_random_seq_64), freelist_random_seq_64 },
+	{ ARRAY_SIZE(freelist_random_seq_128), freelist_random_seq_128 },
+	{ ARRAY_SIZE(freelist_random_seq_256), freelist_random_seq_256 },
+};
+
+/* Pre-compute the global pre-computed lists early at boot */
+static void __init freelist_random_init(void)
+{
+	unsigned int seed;
+	size_t i;
+	struct rnd_state state;
+
+	/* Get best entropy available at this stage */
+	get_random_bytes_arch(&seed, sizeof(seed));
+	prandom_seed_state(&state, seed);
+
+	for (i = 0; i < ARRAY_SIZE(freelist_random_seqs); i++) {
+		freelist_randomize(&state, freelist_random_seqs[i].list,
+				freelist_random_seqs[i].count);
+	}
+}
+#else
+static inline void __init freelist_random_init(void) { }
+static inline void cache_random_seq_create(struct kmem_cache *cachep) { }
+static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
+#endif /* CONFIG_FREELIST_RANDOM */
+
+
 /*
  * Initialisation.  Called after the page allocator have been initialised and
  * before smp_init().
@@ -1256,6 +1351,8 @@ void __init kmem_cache_init(void)
 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
 		slab_max_order = SLAB_MAX_ORDER_HI;
 
+	freelist_random_init();
+
 	/* Bootstrap is tricky, because several objects are allocated
 	 * from caches that do not exist yet:
 	 * 1) initialize the kmem_cache cache: it contains the struct
@@ -2337,6 +2434,8 @@ void __kmem_cache_release(struct kmem_cache *cachep)
 	int i;
 	struct kmem_cache_node *n;
 
+	cache_random_seq_destroy(cachep);
+
 	free_percpu(cachep->cpu_cache);
 
 	/* NUMA: free the node structures */
@@ -2443,15 +2542,122 @@ static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
 #endif
 }
 
+#ifdef CONFIG_FREELIST_RANDOM
+/* Hold information during a freelist initialization */
+struct freelist_init_state {
+	unsigned int padding;
+	unsigned int pos;
+	unsigned int count;
+	unsigned int rand;
+	struct m_list freelist_random_seq;
+};
+
+/* Select the right pre-computed list and initialize state */
+static void freelist_state_initialize(struct freelist_init_state *state,
+				struct kmem_cache *cachep,
+				unsigned int count)
+{
+	unsigned int idx;
+	const unsigned int last_idx = ARRAY_SIZE(freelist_random_seqs) - 1;
+
+	memset(state, 0, sizeof(*state));
+	state->count = count;
+	state->pos = 0;
+
+	/* Use best entropy available to define a random shift */
+	get_random_bytes_arch(&state->rand, sizeof(state->rand));
+
+	if (cachep->random_seq) {
+		state->freelist_random_seq.list = cachep->random_seq;
+		state->freelist_random_seq.count = count;
+	} else {
+		/* count is always >= 2 */
+		idx = ilog2(count) - 1;
+		if (idx >= last_idx)
+			idx = last_idx;
+		else if (roundup_pow_of_two(idx + 1) != count)
+			idx++;
+		state->freelist_random_seq = freelist_random_seqs[idx];
+	}
+}
+
+/* Get the next entry on the list depending on the target list size */
+static freelist_idx_t get_next_entry(struct freelist_init_state *state)
+{
+	freelist_idx_t ret;
+
+	if (state->pos == state->freelist_random_seq.count) {
+		state->padding += state->pos;
+		state->pos = 0;
+	}
+
+	/* Randomize the entry using the random shift */
+	ret = state->freelist_random_seq.list[state->pos++];
+	ret = (ret + state->rand) % state->freelist_random_seq.count;
+	return ret;
+}
+
+static freelist_idx_t next_random_slot(struct freelist_init_state *state)
+{
+	freelist_idx_t entry;
+
+	do {
+		entry = get_next_entry(state);
+	} while ((entry + state->padding) >= state->count);
+
+	return entry + state->padding;
+}
+
+/*
+ * Shuffle the freelist initialization state based on pre-computed lists.
+ * return true if the list was successfully shuffled, false otherwise.
+ */
+static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
+{
+	unsigned int objfreelist, i, count = cachep->num;
+	struct freelist_init_state state;
+
+	if (count < 2)
+		return false;
+
+	objfreelist = 0;
+	freelist_state_initialize(&state, cachep, count);
+
+	/* Take the first random entry as the objfreelist */
+	if (OBJFREELIST_SLAB(cachep)) {
+		objfreelist = next_random_slot(&state);
+		page->freelist = index_to_obj(cachep, page, objfreelist) +
+						obj_offset(cachep);
+		count--;
+	}
+	for (i = 0; i < count; i++)
+		set_free_obj(page, i, next_random_slot(&state));
+
+	if (OBJFREELIST_SLAB(cachep))
+		set_free_obj(page, i, objfreelist);
+	return true;
+}
+#else
+static inline bool shuffle_freelist(struct kmem_cache *cachep,
+				struct page *page)
+{
+	return false;
+}
+#endif /* CONFIG_FREELIST_RANDOM */
+
 static void cache_init_objs(struct kmem_cache *cachep,
 			    struct page *page)
 {
 	int i;
 	void *objp;
+	bool shuffled;
 
 	cache_init_objs_debug(cachep, page);
 
-	if (OBJFREELIST_SLAB(cachep)) {
+	/* Try to randomize the freelist if enabled */
+	shuffled = shuffle_freelist(cachep, page);
+
+	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
 		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
 						obj_offset(cachep);
 	}
@@ -2465,7 +2671,8 @@ static void cache_init_objs(struct kmem_cache *cachep,
 			kasan_poison_object_data(cachep, objp);
 		}
 
-		set_free_obj(page, i, i);
+		if (!shuffled)
+			set_free_obj(page, i, i);
 	}
 }
 
@@ -3815,6 +4022,8 @@ static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
 	int shared = 0;
 	int batchcount = 0;
 
+	cache_random_seq_create(cachep);
+
 	if (!is_root_cache(cachep)) {
 		struct kmem_cache *root = memcg_root_cache(cachep);
 		limit = root->limit;
-- 
2.8.0.rc3.226.g39d4020

^ permalink raw reply related	[flat|nested] 39+ messages in thread
* [PATCH v2] mm: SLAB freelist randomization
@ 2016-04-18 17:14 ` Thomas Garnier
  0 siblings, 0 replies; 39+ messages in thread
From: Thomas Garnier @ 2016-04-18 17:14 UTC (permalink / raw)
  To: Christoph Lameter, Pekka Enberg, David Rientjes, Joonsoo Kim,
	Andrew Morton, Kees Cook
  Cc: gthelen, labbott, kernel-hardening, linux-kernel, linux-mm,
	Thomas Garnier

Provides an optional config (CONFIG_FREELIST_RANDOM) to randomize the
SLAB freelist. The list is randomized during initialization of a new set
of pages. The order on different freelist sizes is pre-computed at boot
for performance. This security feature reduces the predictability of the
kernel SLAB allocator against heap overflows rendering attacks much less
stable.

For example this attack against SLUB (also applicable against SLAB)
would be affected:
https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/

Also, since v4.6 the freelist was moved at the end of the SLAB. It means
a controllable heap is opened to new attacks not yet publicly discussed.
A kernel heap overflow can be transformed to multiple use-after-free.
This feature makes this type of attack harder too.

To generate entropy, we use get_random_bytes_arch because 0 bits of
entropy is available at that boot stage. In the worse case this function
will fallback to the get_random_bytes sub API.

The config option name is not specific to the SLAB as this approach will
be extended to other allocators like SLUB.

Performance results highlighted no major changes:

Netperf average on 10 runs:

threads,base,change
16,576943.10,585905.90 (101.55%)
32,564082.00,569741.20 (101.00%)
48,558334.30,561851.20 (100.63%)
64,552025.20,556448.30 (100.80%)
80,552294.40,551743.10 (99.90%)
96,552435.30,547529.20 (99.11%)
112,551320.60,550183.20 (99.79%)
128,549138.30,550542.70 (100.26%)
144,549344.50,544529.10 (99.12%)
160,550360.80,539929.30 (98.10%)

slab_test 1 run on boot. After is faster except for odd result on size
2048.

Before:

Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
10000 times kmalloc(8) -> 137 cycles kfree -> 126 cycles
10000 times kmalloc(16) -> 118 cycles kfree -> 119 cycles
10000 times kmalloc(32) -> 112 cycles kfree -> 119 cycles
10000 times kmalloc(64) -> 126 cycles kfree -> 123 cycles
10000 times kmalloc(128) -> 135 cycles kfree -> 131 cycles
10000 times kmalloc(256) -> 165 cycles kfree -> 104 cycles
10000 times kmalloc(512) -> 174 cycles kfree -> 126 cycles
10000 times kmalloc(1024) -> 242 cycles kfree -> 160 cycles
10000 times kmalloc(2048) -> 478 cycles kfree -> 239 cycles
10000 times kmalloc(4096) -> 747 cycles kfree -> 364 cycles
10000 times kmalloc(8192) -> 774 cycles kfree -> 404 cycles
10000 times kmalloc(16384) -> 849 cycles kfree -> 430 cycles
2. Kmalloc: alloc/free test
10000 times kmalloc(8)/kfree -> 118 cycles
10000 times kmalloc(16)/kfree -> 118 cycles
10000 times kmalloc(32)/kfree -> 118 cycles
10000 times kmalloc(64)/kfree -> 121 cycles
10000 times kmalloc(128)/kfree -> 118 cycles
10000 times kmalloc(256)/kfree -> 115 cycles
10000 times kmalloc(512)/kfree -> 115 cycles
10000 times kmalloc(1024)/kfree -> 115 cycles
10000 times kmalloc(2048)/kfree -> 115 cycles
10000 times kmalloc(4096)/kfree -> 115 cycles
10000 times kmalloc(8192)/kfree -> 115 cycles
10000 times kmalloc(16384)/kfree -> 115 cycles

After:

Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
10000 times kmalloc(8) -> 99 cycles kfree -> 84 cycles
10000 times kmalloc(16) -> 88 cycles kfree -> 83 cycles
10000 times kmalloc(32) -> 90 cycles kfree -> 81 cycles
10000 times kmalloc(64) -> 107 cycles kfree -> 97 cycles
10000 times kmalloc(128) -> 134 cycles kfree -> 89 cycles
10000 times kmalloc(256) -> 145 cycles kfree -> 97 cycles
10000 times kmalloc(512) -> 177 cycles kfree -> 116 cycles
10000 times kmalloc(1024) -> 223 cycles kfree -> 151 cycles
10000 times kmalloc(2048) -> 1429 cycles kfree -> 221 cycles
10000 times kmalloc(4096) -> 720 cycles kfree -> 348 cycles
10000 times kmalloc(8192) -> 788 cycles kfree -> 393 cycles
10000 times kmalloc(16384) -> 867 cycles kfree -> 433 cycles
2. Kmalloc: alloc/free test
10000 times kmalloc(8)/kfree -> 115 cycles
10000 times kmalloc(16)/kfree -> 115 cycles
10000 times kmalloc(32)/kfree -> 115 cycles
10000 times kmalloc(64)/kfree -> 120 cycles
10000 times kmalloc(128)/kfree -> 127 cycles
10000 times kmalloc(256)/kfree -> 119 cycles
10000 times kmalloc(512)/kfree -> 112 cycles
10000 times kmalloc(1024)/kfree -> 112 cycles
10000 times kmalloc(2048)/kfree -> 112 cycles
10000 times kmalloc(4096)/kfree -> 112 cycles
10000 times kmalloc(8192)/kfree -> 112 cycles
10000 times kmalloc(16384)/kfree -> 112 cycles

Signed-off-by: Thomas Garnier <thgarnie@google.com>
---
Based on next-20160418
---
 init/Kconfig |   9 ++++
 mm/slab.c    | 166 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-
 2 files changed, 174 insertions(+), 1 deletion(-)

diff --git a/init/Kconfig b/init/Kconfig
index 0dfd09d..ee35418 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -1742,6 +1742,15 @@ config SLOB
 
 endchoice
 
+config FREELIST_RANDOM
+	default n
+	depends on SLAB
+	bool "SLAB freelist randomization"
+	help
+	  Randomizes the freelist order used on creating new SLABs. This
+	  security feature reduces the predictability of the kernel slab
+	  allocator against heap overflows.
+
 config SLUB_CPU_PARTIAL
 	default y
 	depends on SLUB && SMP
diff --git a/mm/slab.c b/mm/slab.c
index b70aabf..8371d80 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -116,6 +116,7 @@
 #include	<linux/kmemcheck.h>
 #include	<linux/memory.h>
 #include	<linux/prefetch.h>
+#include	<linux/log2.h>
 
 #include	<net/sock.h>
 
@@ -1229,6 +1230,62 @@ static void __init set_up_node(struct kmem_cache *cachep, int index)
 	}
 }
 
+#ifdef CONFIG_FREELIST_RANDOM
+/*
+ * Master lists are pre-computed random lists
+ * Lists of different sizes are used to optimize performance on SLABS with
+ * different object counts.
+ */
+static freelist_idx_t master_list_2[2];
+static freelist_idx_t master_list_4[4];
+static freelist_idx_t master_list_8[8];
+static freelist_idx_t master_list_16[16];
+static freelist_idx_t master_list_32[32];
+static freelist_idx_t master_list_64[64];
+static freelist_idx_t master_list_128[128];
+static freelist_idx_t master_list_256[256];
+const static struct m_list {
+	size_t count;
+	freelist_idx_t *list;
+} master_lists[] = {
+	{ ARRAY_SIZE(master_list_2), master_list_2 },
+	{ ARRAY_SIZE(master_list_4), master_list_4 },
+	{ ARRAY_SIZE(master_list_8), master_list_8 },
+	{ ARRAY_SIZE(master_list_16), master_list_16 },
+	{ ARRAY_SIZE(master_list_32), master_list_32 },
+	{ ARRAY_SIZE(master_list_64), master_list_64 },
+	{ ARRAY_SIZE(master_list_128), master_list_128 },
+	{ ARRAY_SIZE(master_list_256), master_list_256 },
+};
+
+/* Pre-compute the Freelist master lists at boot */
+static void __init freelist_random_init(void)
+{
+	unsigned int seed;
+	size_t z, i, rand;
+	struct rnd_state slab_rand;
+
+	get_random_bytes_arch(&seed, sizeof(seed));
+	prandom_seed_state(&slab_rand, seed);
+
+	for (z = 0; z < ARRAY_SIZE(master_lists); z++) {
+		for (i = 0; i < master_lists[z].count; i++)
+			master_lists[z].list[i] = i;
+
+		/* Fisher-Yates shuffle */
+		for (i = master_lists[z].count - 1; i > 0; i--) {
+			rand = prandom_u32_state(&slab_rand);
+			rand %= (i + 1);
+			swap(master_lists[z].list[i],
+				master_lists[z].list[rand]);
+		}
+	}
+}
+#else
+static inline void __init freelist_random_init(void) { }
+#endif /* CONFIG_FREELIST_RANDOM */
+
+
 /*
  * Initialisation.  Called after the page allocator have been initialised and
  * before smp_init().
@@ -1255,6 +1312,8 @@ void __init kmem_cache_init(void)
 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
 		slab_max_order = SLAB_MAX_ORDER_HI;
 
+	freelist_random_init();
+
 	/* Bootstrap is tricky, because several objects are allocated
 	 * from caches that do not exist yet:
 	 * 1) initialize the kmem_cache cache: it contains the struct
@@ -2442,6 +2501,107 @@ static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
 #endif
 }
 
+#ifdef CONFIG_FREELIST_RANDOM
+/* Identify if the target freelist matches the pre-computed list */
+enum master_type {
+	match,
+	less,
+	more
+};
+
+/* Hold information during a freelist initialization */
+struct freelist_init_state {
+	unsigned int padding;
+	unsigned int pos;
+	unsigned int count;
+	struct m_list master_list;
+	unsigned int master_count;
+	enum master_type type;
+};
+
+/* Select the right pre-computed master list and initialize state */
+static void freelist_state_initialize(struct freelist_init_state *state,
+				      unsigned int count)
+{
+	unsigned int idx;
+	const unsigned int last_idx = ARRAY_SIZE(master_lists) - 1;
+
+	memset(state, 0, sizeof(*state));
+	state->count = count;
+	state->pos = 0;
+	/* count is always >= 2 */
+	idx = ilog2(count) - 1;
+	if (idx >= last_idx)
+		idx = last_idx;
+	else if (roundup_pow_of_two(idx + 1) != count)
+		idx++;
+	state->master_list = master_lists[idx];
+	if (state->master_list.count == state->count)
+		state->type = match;
+	else if (state->master_list.count > state->count)
+		state->type = more;
+	else
+		state->type = less;
+}
+
+/* Get the next entry on the master list depending on the target list size */
+static freelist_idx_t get_next_entry(struct freelist_init_state *state)
+{
+	if (state->type == less && state->pos == state->master_list.count) {
+		state->padding += state->pos;
+		state->pos = 0;
+	}
+	BUG_ON(state->pos >= state->master_list.count);
+	return state->master_list.list[state->pos++];
+}
+
+static freelist_idx_t next_random_slot(struct freelist_init_state *state)
+{
+	freelist_idx_t cur, entry;
+
+	entry = get_next_entry(state);
+
+	if (state->type != match) {
+		while ((entry + state->padding) >= state->count)
+			entry = get_next_entry(state);
+		cur = entry + state->padding;
+		BUG_ON(cur >= state->count);
+	} else {
+		cur = entry;
+	}
+
+	return cur;
+}
+
+/* Shuffle the freelist initialization state based on pre-computed lists */
+static void shuffle_freelist(struct kmem_cache *cachep, struct page *page,
+			     unsigned int count)
+{
+	unsigned int i;
+	struct freelist_init_state state;
+
+	if (count < 2) {
+		for (i = 0; i < count; i++)
+			set_free_obj(page, i, i);
+		return;
+	}
+
+	/* Last chunk is used already in this case */
+	if (OBJFREELIST_SLAB(cachep))
+		count--;
+
+	freelist_state_initialize(&state, count);
+	for (i = 0; i < count; i++)
+		set_free_obj(page, i, next_random_slot(&state));
+
+	if (OBJFREELIST_SLAB(cachep))
+		set_free_obj(page, i, i);
+}
+#else
+static inline void shuffle_freelist(struct kmem_cache *cachep,
+				    struct page *page, unsigned int count) { }
+#endif /* CONFIG_FREELIST_RANDOM */
+
 static void cache_init_objs(struct kmem_cache *cachep,
 			    struct page *page)
 {
@@ -2464,8 +2624,12 @@ static void cache_init_objs(struct kmem_cache *cachep,
 			kasan_poison_object_data(cachep, objp);
 		}
 
-		set_free_obj(page, i, i);
+		/* If enabled, initialization is done in shuffle_freelist */
+		if (!config_enabled(CONFIG_FREELIST_RANDOM))
+			set_free_obj(page, i, i);
 	}
+
+	shuffle_freelist(cachep, page, cachep->num);
 }
 
 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
-- 
2.8.0.rc3.226.g39d4020

^ permalink raw reply related	[flat|nested] 39+ messages in thread
* [PATCH v2] mm: SLAB freelist randomization
@ 2016-04-18 17:00 ` Thomas Garnier
  0 siblings, 0 replies; 39+ messages in thread
From: Thomas Garnier @ 2016-04-18 17:00 UTC (permalink / raw)
  To: Christoph Lameter, Pekka Enberg, David Rientjes, Joonsoo Kim,
	Andrew Morton, Kees Cook
  Cc: gthelen, labbott, kernel-hardening, linux-kernel, linux-mm,
	Thomas Garnier

Provides an optional config (CONFIG_FREELIST_RANDOM) to randomize the
SLAB freelist. The list is randomized during initialization of a new set
of pages. The order on different freelist sizes is pre-computed at boot
for performance. This security feature reduces the predictability of the
kernel SLAB allocator against heap overflows rendering attacks much less
stable.

For example this attack against SLUB (also applicable against SLAB)
would be affected:
https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/

Also, since v4.6 the freelist was moved at the end of the SLAB. It means
a controllable heap is opened to new attacks not yet publicly discussed.
A kernel heap overflow can be transformed to multiple use-after-free.
This feature makes this type of attack harder too.

To generate entropy, we use get_random_bytes_arch because 0 bits of
entropy is available at that boot stage. In the worse case this function
will fallback to the get_random_bytes sub API.

The config option name is not specific to the SLAB as this approach will
be extended to other allocators like SLUB.

Performance results highlighted no major changes:

Netperf average on 10 runs:

threads,base,change
16,576943.10,585905.90 (101.55%)
32,564082.00,569741.20 (101.00%)
48,558334.30,561851.20 (100.63%)
64,552025.20,556448.30 (100.80%)
80,552294.40,551743.10 (99.90%)
96,552435.30,547529.20 (99.11%)
112,551320.60,550183.20 (99.79%)
128,549138.30,550542.70 (100.26%)
144,549344.50,544529.10 (99.12%)
160,550360.80,539929.30 (98.10%)

slab_test 1 run on boot. After is faster except for odd result on size
2048.

Before:

Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
10000 times kmalloc(8) -> 137 cycles kfree -> 126 cycles
10000 times kmalloc(16) -> 118 cycles kfree -> 119 cycles
10000 times kmalloc(32) -> 112 cycles kfree -> 119 cycles
10000 times kmalloc(64) -> 126 cycles kfree -> 123 cycles
10000 times kmalloc(128) -> 135 cycles kfree -> 131 cycles
10000 times kmalloc(256) -> 165 cycles kfree -> 104 cycles
10000 times kmalloc(512) -> 174 cycles kfree -> 126 cycles
10000 times kmalloc(1024) -> 242 cycles kfree -> 160 cycles
10000 times kmalloc(2048) -> 478 cycles kfree -> 239 cycles
10000 times kmalloc(4096) -> 747 cycles kfree -> 364 cycles
10000 times kmalloc(8192) -> 774 cycles kfree -> 404 cycles
10000 times kmalloc(16384) -> 849 cycles kfree -> 430 cycles
2. Kmalloc: alloc/free test
10000 times kmalloc(8)/kfree -> 118 cycles
10000 times kmalloc(16)/kfree -> 118 cycles
10000 times kmalloc(32)/kfree -> 118 cycles
10000 times kmalloc(64)/kfree -> 121 cycles
10000 times kmalloc(128)/kfree -> 118 cycles
10000 times kmalloc(256)/kfree -> 115 cycles
10000 times kmalloc(512)/kfree -> 115 cycles
10000 times kmalloc(1024)/kfree -> 115 cycles
10000 times kmalloc(2048)/kfree -> 115 cycles
10000 times kmalloc(4096)/kfree -> 115 cycles
10000 times kmalloc(8192)/kfree -> 115 cycles
10000 times kmalloc(16384)/kfree -> 115 cycles

After:

Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
10000 times kmalloc(8) -> 99 cycles kfree -> 84 cycles
10000 times kmalloc(16) -> 88 cycles kfree -> 83 cycles
10000 times kmalloc(32) -> 90 cycles kfree -> 81 cycles
10000 times kmalloc(64) -> 107 cycles kfree -> 97 cycles
10000 times kmalloc(128) -> 134 cycles kfree -> 89 cycles
10000 times kmalloc(256) -> 145 cycles kfree -> 97 cycles
10000 times kmalloc(512) -> 177 cycles kfree -> 116 cycles
10000 times kmalloc(1024) -> 223 cycles kfree -> 151 cycles
10000 times kmalloc(2048) -> 1429 cycles kfree -> 221 cycles
10000 times kmalloc(4096) -> 720 cycles kfree -> 348 cycles
10000 times kmalloc(8192) -> 788 cycles kfree -> 393 cycles
10000 times kmalloc(16384) -> 867 cycles kfree -> 433 cycles
2. Kmalloc: alloc/free test
10000 times kmalloc(8)/kfree -> 115 cycles
10000 times kmalloc(16)/kfree -> 115 cycles
10000 times kmalloc(32)/kfree -> 115 cycles
10000 times kmalloc(64)/kfree -> 120 cycles
10000 times kmalloc(128)/kfree -> 127 cycles
10000 times kmalloc(256)/kfree -> 119 cycles
10000 times kmalloc(512)/kfree -> 112 cycles
10000 times kmalloc(1024)/kfree -> 112 cycles
10000 times kmalloc(2048)/kfree -> 112 cycles
10000 times kmalloc(4096)/kfree -> 112 cycles
10000 times kmalloc(8192)/kfree -> 112 cycles
10000 times kmalloc(16384)/kfree -> 112 cycles

Signed-off-by: Thomas Garnier <thgarnie@google.com>
---
Based on next-20160418
---
 init/Kconfig |   9 ++++
 mm/slab.c    | 166 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-
 2 files changed, 174 insertions(+), 1 deletion(-)

diff --git a/init/Kconfig b/init/Kconfig
index 0dfd09d..ee35418 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -1742,6 +1742,15 @@ config SLOB
 
 endchoice
 
+config FREELIST_RANDOM
+	default n
+	depends on SLAB
+	bool "SLAB freelist randomization"
+	help
+	  Randomizes the freelist order used on creating new SLABs. This
+	  security feature reduces the predictability of the kernel slab
+	  allocator against heap overflows.
+
 config SLUB_CPU_PARTIAL
 	default y
 	depends on SLUB && SMP
diff --git a/mm/slab.c b/mm/slab.c
index b70aabf..8371d80 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -116,6 +116,7 @@
 #include	<linux/kmemcheck.h>
 #include	<linux/memory.h>
 #include	<linux/prefetch.h>
+#include	<linux/log2.h>
 
 #include	<net/sock.h>
 
@@ -1229,6 +1230,62 @@ static void __init set_up_node(struct kmem_cache *cachep, int index)
 	}
 }
 
+#ifdef CONFIG_FREELIST_RANDOM
+/*
+ * Master lists are pre-computed random lists
+ * Lists of different sizes are used to optimize performance on SLABS with
+ * different object counts.
+ */
+static freelist_idx_t master_list_2[2];
+static freelist_idx_t master_list_4[4];
+static freelist_idx_t master_list_8[8];
+static freelist_idx_t master_list_16[16];
+static freelist_idx_t master_list_32[32];
+static freelist_idx_t master_list_64[64];
+static freelist_idx_t master_list_128[128];
+static freelist_idx_t master_list_256[256];
+const static struct m_list {
+	size_t count;
+	freelist_idx_t *list;
+} master_lists[] = {
+	{ ARRAY_SIZE(master_list_2), master_list_2 },
+	{ ARRAY_SIZE(master_list_4), master_list_4 },
+	{ ARRAY_SIZE(master_list_8), master_list_8 },
+	{ ARRAY_SIZE(master_list_16), master_list_16 },
+	{ ARRAY_SIZE(master_list_32), master_list_32 },
+	{ ARRAY_SIZE(master_list_64), master_list_64 },
+	{ ARRAY_SIZE(master_list_128), master_list_128 },
+	{ ARRAY_SIZE(master_list_256), master_list_256 },
+};
+
+/* Pre-compute the Freelist master lists at boot */
+static void __init freelist_random_init(void)
+{
+	unsigned int seed;
+	size_t z, i, rand;
+	struct rnd_state slab_rand;
+
+	get_random_bytes_arch(&seed, sizeof(seed));
+	prandom_seed_state(&slab_rand, seed);
+
+	for (z = 0; z < ARRAY_SIZE(master_lists); z++) {
+		for (i = 0; i < master_lists[z].count; i++)
+			master_lists[z].list[i] = i;
+
+		/* Fisher-Yates shuffle */
+		for (i = master_lists[z].count - 1; i > 0; i--) {
+			rand = prandom_u32_state(&slab_rand);
+			rand %= (i + 1);
+			swap(master_lists[z].list[i],
+				master_lists[z].list[rand]);
+		}
+	}
+}
+#else
+static inline void __init freelist_random_init(void) { }
+#endif /* CONFIG_FREELIST_RANDOM */
+
+
 /*
  * Initialisation.  Called after the page allocator have been initialised and
  * before smp_init().
@@ -1255,6 +1312,8 @@ void __init kmem_cache_init(void)
 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
 		slab_max_order = SLAB_MAX_ORDER_HI;
 
+	freelist_random_init();
+
 	/* Bootstrap is tricky, because several objects are allocated
 	 * from caches that do not exist yet:
 	 * 1) initialize the kmem_cache cache: it contains the struct
@@ -2442,6 +2501,107 @@ static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
 #endif
 }
 
+#ifdef CONFIG_FREELIST_RANDOM
+/* Identify if the target freelist matches the pre-computed list */
+enum master_type {
+	match,
+	less,
+	more
+};
+
+/* Hold information during a freelist initialization */
+struct freelist_init_state {
+	unsigned int padding;
+	unsigned int pos;
+	unsigned int count;
+	struct m_list master_list;
+	unsigned int master_count;
+	enum master_type type;
+};
+
+/* Select the right pre-computed master list and initialize state */
+static void freelist_state_initialize(struct freelist_init_state *state,
+				      unsigned int count)
+{
+	unsigned int idx;
+	const unsigned int last_idx = ARRAY_SIZE(master_lists) - 1;
+
+	memset(state, 0, sizeof(*state));
+	state->count = count;
+	state->pos = 0;
+	/* count is always >= 2 */
+	idx = ilog2(count) - 1;
+	if (idx >= last_idx)
+		idx = last_idx;
+	else if (roundup_pow_of_two(idx + 1) != count)
+		idx++;
+	state->master_list = master_lists[idx];
+	if (state->master_list.count == state->count)
+		state->type = match;
+	else if (state->master_list.count > state->count)
+		state->type = more;
+	else
+		state->type = less;
+}
+
+/* Get the next entry on the master list depending on the target list size */
+static freelist_idx_t get_next_entry(struct freelist_init_state *state)
+{
+	if (state->type == less && state->pos == state->master_list.count) {
+		state->padding += state->pos;
+		state->pos = 0;
+	}
+	BUG_ON(state->pos >= state->master_list.count);
+	return state->master_list.list[state->pos++];
+}
+
+static freelist_idx_t next_random_slot(struct freelist_init_state *state)
+{
+	freelist_idx_t cur, entry;
+
+	entry = get_next_entry(state);
+
+	if (state->type != match) {
+		while ((entry + state->padding) >= state->count)
+			entry = get_next_entry(state);
+		cur = entry + state->padding;
+		BUG_ON(cur >= state->count);
+	} else {
+		cur = entry;
+	}
+
+	return cur;
+}
+
+/* Shuffle the freelist initialization state based on pre-computed lists */
+static void shuffle_freelist(struct kmem_cache *cachep, struct page *page,
+			     unsigned int count)
+{
+	unsigned int i;
+	struct freelist_init_state state;
+
+	if (count < 2) {
+		for (i = 0; i < count; i++)
+			set_free_obj(page, i, i);
+		return;
+	}
+
+	/* Last chunk is used already in this case */
+	if (OBJFREELIST_SLAB(cachep))
+		count--;
+
+	freelist_state_initialize(&state, count);
+	for (i = 0; i < count; i++)
+		set_free_obj(page, i, next_random_slot(&state));
+
+	if (OBJFREELIST_SLAB(cachep))
+		set_free_obj(page, i, i);
+}
+#else
+static inline void shuffle_freelist(struct kmem_cache *cachep,
+				    struct page *page, unsigned int count) { }
+#endif /* CONFIG_FREELIST_RANDOM */
+
 static void cache_init_objs(struct kmem_cache *cachep,
 			    struct page *page)
 {
@@ -2464,8 +2624,12 @@ static void cache_init_objs(struct kmem_cache *cachep,
 			kasan_poison_object_data(cachep, objp);
 		}
 
-		set_free_obj(page, i, i);
+		/* If enabled, initialization is done in shuffle_freelist */
+		if (!config_enabled(CONFIG_FREELIST_RANDOM))
+			set_free_obj(page, i, i);
 	}
+
+	shuffle_freelist(cachep, page, cachep->num);
 }
 
 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
-- 
2.8.0.rc3.226.g39d4020

^ permalink raw reply related	[flat|nested] 39+ messages in thread

end of thread, other threads:[~2016-04-26 14:19 UTC | newest]

Thread overview: 39+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2016-04-25 20:39 [PATCH v2] mm: SLAB freelist randomization Thomas Garnier
2016-04-25 20:39 ` [kernel-hardening] " Thomas Garnier
2016-04-25 20:39 ` Thomas Garnier
2016-04-25 21:10 ` Andrew Morton
2016-04-25 21:10   ` [kernel-hardening] " Andrew Morton
2016-04-25 21:10   ` Andrew Morton
2016-04-25 21:13   ` Thomas Garnier
2016-04-25 21:13     ` [kernel-hardening] " Thomas Garnier
2016-04-25 21:13     ` Thomas Garnier
2016-04-25 21:14     ` Thomas Garnier
2016-04-25 21:14       ` [kernel-hardening] " Thomas Garnier
2016-04-25 21:14       ` Thomas Garnier
2016-04-25 21:38       ` Andrew Morton
2016-04-25 21:38         ` [kernel-hardening] " Andrew Morton
2016-04-25 21:38         ` Andrew Morton
2016-04-25 21:43         ` Thomas Garnier
2016-04-25 21:43           ` [kernel-hardening] " Thomas Garnier
2016-04-25 21:43           ` Thomas Garnier
2016-04-26  0:40 ` Joonsoo Kim
2016-04-26  0:40   ` [kernel-hardening] " Joonsoo Kim
2016-04-26  0:40   ` Joonsoo Kim
2016-04-26  1:58   ` Thomas Garnier
2016-04-26  1:58     ` [kernel-hardening] " Thomas Garnier
2016-04-26  1:58     ` Thomas Garnier
2016-04-26 14:19 ` Christoph Lameter
2016-04-26 14:19   ` [kernel-hardening] " Christoph Lameter
2016-04-26 14:19   ` Christoph Lameter
  -- strict thread matches above, loose matches on Subject: below --
2016-04-18 17:14 Thomas Garnier
2016-04-18 17:14 ` Thomas Garnier
2016-04-19  7:15 ` Joonsoo Kim
2016-04-19  7:15   ` Joonsoo Kim
2016-04-19 16:44   ` Thomas Garnier
2016-04-19 16:44     ` Thomas Garnier
2016-04-20  8:08     ` Joonsoo Kim
2016-04-20  8:08       ` Joonsoo Kim
2016-04-20 14:47       ` Thomas Garnier
2016-04-20 14:47         ` Thomas Garnier
2016-04-18 17:00 Thomas Garnier
2016-04-18 17:00 ` Thomas Garnier

This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.