devicetree.vger.kernel.org archive mirror
 help / color / mirror / Atom feed
From: Miquel Raynal <miquel.raynal@bootlin.com>
To: Yifeng Zhao <yifeng.zhao@rock-chips.com>
Cc: richard@nod.at, vigneshr@ti.com, robh+dt@kernel.org,
	devicetree@vger.kernel.org, linux-mtd@lists.infradead.org,
	heiko@sntech.de, linux-rockchip@lists.infradead.org
Subject: Re: [PATCH v3 1/3] mtd: rawnand: rockchip: NFC drivers for RK3308, RK3188 and others
Date: Mon, 9 Mar 2020 12:16:45 +0100	[thread overview]
Message-ID: <20200309121645.1fca069d@xps13> (raw)
In-Reply-To: <20200303094736.7490-2-yifeng.zhao@rock-chips.com>

Hi Yifeng,

Yifeng Zhao <yifeng.zhao@rock-chips.com> wrote on Tue,  3 Mar 2020
17:47:34 +0800:

> This driver supports Rockchip NFC (NAND Flash Controller) found on RK3308,
> RK3368, RKPX30, RV1108 and other SOCs. The driver has been tested using
> 8-bit NAND interface on the ARM based RK3308 platform.
> 
> Support Rockchip NFC versions:
> - V6: ECC 16, 24, 40 and 60 bits per 1KB data. Found on RK3066, RK3368,
>       RK3229, RK3188, RK3288, RK3128, RKPX3SE, RKPx3, RKPX5, RK3036 and
>       RK3126.
> - V8: ECC 16 bits per 1KB data. Found on RV1108/7, RK3308.
> - V9: ECC 16, 40, 60 and 70 bits per 1KB data. Found on RK3326, RKPX30.
> 
> Support feature:
> - Read full page data by DMA.
> - Support HW ECC(one step is 1KB).
> - Support 2 - 32K page size.
> - Support 4 CS(depend on Soc)
> 
> Limitations:
> - Unsupport 512B ecc step.
> - Raw page read and write without ecc redundancy code. So could not support
>   raw data dump and restore.
> - Untested on some SOCs.
> - Unsupport subpage.
> - Unsupport randomizer.
> - The original bad block mask is not supported. It is recommended to use
>   the BBT(bad block table).
> 
> Signed-off-by: Yifeng Zhao <yifeng.zhao@rock-chips.com>
> ---
> 
> Changes in v3: None
> Changes in v2:
> - Fix compile error.
> - Include header files sorted by file name
> 
>  drivers/mtd/nand/raw/Kconfig         |    7 +
>  drivers/mtd/nand/raw/Makefile        |    1 +
>  drivers/mtd/nand/raw/rockchip_nand.c | 1229 ++++++++++++++++++++++++++
>  3 files changed, 1237 insertions(+)
>  create mode 100644 drivers/mtd/nand/raw/rockchip_nand.c
> 
> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
> index a80a46bb5b8b..8313b12a9d85 100644
> --- a/drivers/mtd/nand/raw/Kconfig
> +++ b/drivers/mtd/nand/raw/Kconfig
> @@ -433,6 +433,13 @@ config MTD_NAND_MESON
>  	  Enables support for NAND controller on Amlogic's Meson SoCs.
>  	  This controller is found on Meson SoCs.
>  
> +config MTD_NAND_ROCKCHIP
> +	tristate "Rockchip NAND controller"
> +	depends on ARCH_ROCKCHIP || COMPILE_TEST
> +	depends on HAS_IOMEM
> +	help
> +	  Enables support for NAND controller on Rockchip SoCs.
> +
>  config MTD_NAND_GPIO
>  	tristate "GPIO assisted NAND controller"
>  	depends on GPIOLIB || COMPILE_TEST
> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
> index 2d136b158fb7..8bafa59b8940 100644
> --- a/drivers/mtd/nand/raw/Makefile
> +++ b/drivers/mtd/nand/raw/Makefile
> @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_TEGRA)		+= tegra_nand.o
>  obj-$(CONFIG_MTD_NAND_STM32_FMC2)	+= stm32_fmc2_nand.o
>  obj-$(CONFIG_MTD_NAND_MESON)		+= meson_nand.o
>  obj-$(CONFIG_MTD_NAND_CADENCE)		+= cadence-nand-controller.o
> +obj-$(CONFIG_MTD_NAND_ROCKCHIP)		+= rockchip_nand.o
>  
>  nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
>  nand-objs += nand_onfi.o
> diff --git a/drivers/mtd/nand/raw/rockchip_nand.c b/drivers/mtd/nand/raw/rockchip_nand.c
> new file mode 100644
> index 000000000000..efeda609fbf2
> --- /dev/null
> +++ b/drivers/mtd/nand/raw/rockchip_nand.c
> @@ -0,0 +1,1229 @@
> +// SPDX-License-Identifier: GPL-2.0 OR MIT
> +/*
> + * Rockchip NAND Flash controller driver.
> + * Copyright (C) 2020 Rockchip Inc.
> + * Authors: Yifeng Zhao <yifeng.zhao@rock-chips.com>
> + */
> +
> +#include <linux/clk.h>
> +#include <linux/delay.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/dmaengine.h>
> +#include <linux/interrupt.h>
> +#include <linux/iopoll.h>
> +#include <linux/mtd/rawnand.h>
> +#include <linux/mtd/mtd.h>
> +#include <linux/module.h>
> +#include <linux/of.h>
> +#include <linux/of_device.h>
> +#include <linux/platform_device.h>
> +
> +/*
> + * NFC Page Data Layout:
> + *	1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
> + *	1024 Bytes Data + 4Bytes sys data + 28Bytes~124Bytes ecc +
> + *	......
> + * NAND Page Data Layout:
> + *	1024 * n Data + m Bytes oob
> + * Original Bad Block Mask Location:
> + *	first byte of oob(spare)
> + * nand_chip->oob_poi data layout:
> + *	4Bytes sys data + .... + 4Bytes sys data + ecc data
> + */
> +
> +/* NAND controller register definition */
> +#define	NFC_VERSION_9		0x56393030
> +#define	NFC_READ		(0)
> +#define	NFC_WRITE		(1)
> +#define	NFC_FMCTL		(0x00)
> +#define		FMCTL_CE_SEL_M		0xFF
> +#define		FMCTL_CE_SEL(x)		(1 << (x))
> +#define		FMCTL_WP		BIT(8)
> +#define		FMCTL_RDY		BIT(9)
> +#define	NFC_FMWAIT		(0x04)
> +#define	NFC_FLCTL_V6		(0x08)
> +#define	NFC_FLCTL_V9		(0x10)
> +#define		FLCTL_RST		BIT(0)
> +#define		FLCTL_WR		(1)	/* 0: read, 1: write */
> +#define		FLCTL_XFER_ST		BIT(2)
> +#define		FLCTL_XFER_EN		BIT(3)
> +#define		FLCTL_ACORRECT		BIT(10) /* auto correct error bits */
> +#define		FLCTL_XFER_READY	BIT(20)
> +#define		FLCTL_XFER_SECTOR	(22)
> +#define		FLCTL_TOG_FIX		BIT(29)
> +#define	NFC_BCHCTL_V6		(0x0C)
> +#define		BCHCTL_BANK_M	(7 << 5)
> +#define		BCHCTL_BANK	(5)
> +#define	NFC_BCHCTL_V9		(0x20)
> +#define	NFC_DMA_CFG_V6		(0x10)
> +#define	NFC_DMA_CFG_V9		(0x30)
> +#define		DMA_ST			BIT(0)
> +#define		DMA_WR			(1)	/* 0: write, 1: read */
> +#define		DMA_EN			BIT(2)
> +#define		DMA_AHB_SIZE		(3)	/* 0: 1, 1: 2, 2: 4 */
> +#define		DMA_BURST_SIZE		(6)	/* 0: 1, 3: 4, 5: 8, 7: 16 */
> +#define		DMA_INC_NUM		(9)	/* 1 - 16 */
> +#define	NFC_DMA_DATA_BUF_V6	(0x14)
> +#define	NFC_DMA_DATA_BUF_V9	(0x34)
> +#define	NFC_DMA_OOB_BUF_V6	(0x18)
> +#define	NFC_DMA_OOB_BUF_V9	(0x38)
> +#define	NFC_DMA_ST_V6		(0x1C)
> +#define	NFC_DMA_ST_V9		(0x3C)
> +#define	NFC_BCH_ST_V6		(0x20)
> +#define	NFC_BCH_ST_V9		(0x150)
> +#define		BCH_ST_ERR0_V6	BIT(2)
> +#define		BCH_ST_ERR1_V6	BIT(15)
> +#define		BCH_ST_ERR0_V9	BIT(2)
> +#define		BCH_ST_ERR1_V9	BIT(18)
> +#define		ECC_ERR_CNT0_V6(x) (((((x) & (0x1F << 3)) >> 3) \
> +				| (((x) & (1 << 27)) >> 22)) & 0x3F)
> +#define		ECC_ERR_CNT1_V6(x) (((((x) & (0x1F << 16)) >> 16) \
> +				| (((x) & (1 << 29)) >> 24)) & 0x3F)
> +#define		ECC_ERR_CNT0_V9(x) (((x) & (0x7F << 3)) >> 3)
> +#define		ECC_ERR_CNT1_V9(x) (((x) & (0x7F << 19)) >> 19)
> +#define	NFC_RANDMZ_V6		(0x150)
> +#define	NFC_RANDMZ_V9		(0x208)
> +#define	NFC_VER_V6		(0x160)
> +#define	NFC_VER_V9		(0x80)
> +#define	NFC_INTEN_V6		(0x16C)
> +#define	NFC_INTEN_V9		(0x120)
> +#define	NFC_INTCLR_V6		(0x170)
> +#define	NFC_INTCLR_V9		(0x124)
> +#define	NFC_INTST_V6		(0x174)
> +#define	NFC_INTST_V9		(0x128)
> +#define		INT_DMA			BIT(0)
> +#define	NFC_OOB0_V6		(0x200)
> +#define	NFC_OOB0_V9		(0x200)
> +#define	NFC_OOB1_V6		(0x230)
> +#define	NFC_OOB1_V9		(0x204)
> +#define	NFC_BANK		(0x800)
> +#define		BANK_DATA		(0x00)
> +#define		BANK_ADDR		(0x04)
> +#define		BANK_CMD		(0x08)
> +#define	NFC_SRAM0		(0x1000)
> +#define	NFC_SRAM1		(0x1400)
> +
> +#define	THIS_NAME		"rk-nand"
> +
> +#define	RK_TIMEOUT		(500000)
> +#define	RK_NAND_MAX_NSELS	(4) /* Some Soc only has 1 or 2 CSs */
> +#define	NFC_SYS_DATA_SIZE	(4) /* 4 bytes sys data in oob pre 1024 data */
> +#define	RK_DEFAULT_CLOCK_RATE	(150 * 1000 * 1000) /* 150 Mhz*/
> +#define	ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
> +
> +struct rk_nfc_nand_chip {
> +	struct list_head node;
> +	struct nand_chip nand;
> +
> +	u32 spare_per_sector;
> +	u32 oob_buf_per_sector;
> +
> +	int nsels;
> +	u8 sels[0];
> +	/* nothing after this field */
> +};
> +
> +struct rk_nfc_clk {
> +	int nfc_rate;
> +	struct clk *nfc_clk;
> +	struct clk *ahb_clk;
> +};
> +
> +struct rk_nfc {
> +	struct nand_controller controller;
> +	struct rk_nfc_clk clk;
> +
> +	struct device *dev;
> +	void __iomem *regs;
> +	int	nfc_version;
> +	int	max_ecc_strength;
> +	int	selected_bank;
> +	int	band_offset;
> +
> +	struct completion done;
> +	struct list_head chips;
> +
> +	u8 *buffer;
> +	u8 *page_buf;
> +	u32 *oob_buf;
> +
> +	unsigned long assigned_cs;
> +};
> +
> +static inline struct rk_nfc_nand_chip *to_rk_nand(struct nand_chip *nand)
> +{
> +	return container_of(nand, struct rk_nfc_nand_chip, nand);
> +}
> +
> +static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
> +{
> +	return (u8 *)p + i * chip->ecc.size;
> +}
> +
> +static inline u8 *oob_ptr(struct nand_chip *chip, int i)
> +{
> +	u8 *poi;
> +
> +	poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
> +
> +	return poi;
> +}
> +
> +static inline int rk_data_len(struct nand_chip *chip)
> +{
> +	struct rk_nfc_nand_chip *rk_nand = to_rk_nand(chip);
> +
> +	return chip->ecc.size + rk_nand->spare_per_sector;
> +}
> +
> +static inline u8 *rk_data_ptr(struct nand_chip *chip,  int i)
> +{
> +	struct rk_nfc *nfc = nand_get_controller_data(chip);
> +
> +	return nfc->buffer + i * rk_data_len(chip);
> +}
> +
> +static inline u8 *rk_oob_ptr(struct nand_chip *chip, int i)
> +{
> +	struct rk_nfc *nfc = nand_get_controller_data(chip);
> +
> +	return nfc->buffer + i * rk_data_len(chip) + chip->ecc.size;
> +}
> +
> +static inline void nfc_writel(struct rk_nfc *nfc, u32 val, u32 reg)
> +{
> +	writel(val, nfc->regs + reg);
> +}

I don't think these nfc_read/write{l,w,b} are useful...

> +
> +static inline void nfc_writew(struct rk_nfc *nfc, u16 val, u32 reg)
> +{
> +	writew(val, nfc->regs + reg);
> +}
> +
> +static inline void nfc_writeb(struct rk_nfc *nfc, u8 val, u32 reg)
> +{
> +	writeb(val, nfc->regs + reg);
> +}
> +
> +static inline u32 nfc_readl(struct rk_nfc *nfc, u32 reg)
> +{
> +	return readl_relaxed(nfc->regs + reg);
> +}
> +
> +static inline u16 nfc_readw(struct rk_nfc *nfc, u32 reg)
> +{
> +	return readw_relaxed(nfc->regs + reg);
> +}
> +
> +static inline u8 nfc_readb(struct rk_nfc *nfc, u32 reg)
> +{
> +	return readb_relaxed(nfc->regs + reg);
> +}
> +
> +static void rk_nfc_select_chip(struct nand_chip *nand, int chip)
> +{
> +	struct rk_nfc *nfc = nand_get_controller_data(nand);
> +	struct rk_nfc_nand_chip *rk_nand = to_rk_nand(nand);
> +	u32 val;
> +
> +	if (chip < 0) {
> +		nfc->selected_bank = -1;
> +		return;
> +	}
> +
> +	nfc->selected_bank = rk_nand->sels[chip];
> +	nfc->band_offset = NFC_BANK + nfc->selected_bank * 0x100;
> +
> +	val = nfc_readl(nfc, NFC_FMCTL);
> +	val &= ~FMCTL_CE_SEL_M;
> +	val |= FMCTL_CE_SEL(nfc->selected_bank);
> +
> +	nfc_writel(nfc, val, NFC_FMCTL);
> +}
> +
> +static int rk_nfc_dev_ready(struct nand_chip *nand)
> +{
> +	struct rk_nfc *nfc = nand_get_controller_data(nand);
> +
> +	if (nfc_readl(nfc, NFC_FMCTL) & FMCTL_RDY)
> +		return 1;
> +
> +	return 0;
> +}
> +
> +static void rk_nfc_cmd_ctrl(struct nand_chip *chip, int dat,
> +			     unsigned int ctrl)
> +{
> +	struct rk_nfc *nfc = nand_get_controller_data(chip);
> +	int reg_offset = nfc->band_offset;
> +
> +	if (ctrl & NAND_ALE)
> +		reg_offset += BANK_ADDR;
> +	else if (ctrl & NAND_CLE)
> +		reg_offset += BANK_CMD;
> +
> +	if (dat != NAND_CMD_NONE)
> +		nfc_writeb(nfc, dat & 0xFF, reg_offset);
> +}
> +
> +static inline void rk_nfc_wait_ioready(struct rk_nfc *nfc)
> +{
> +	int rc;
> +	u32 val;
> +
> +	rc = readl_poll_timeout_atomic(nfc->regs + NFC_FMCTL, val,
> +				       val & FMCTL_RDY, 10, RK_TIMEOUT);
> +	if (rc < 0)
> +		dev_err(nfc->dev, "data not ready\n");
> +}
> +
> +static inline u8 rk_nfc_read_byte(struct nand_chip *chip)
> +{
> +	struct rk_nfc *nfc = nand_get_controller_data(chip);
> +
> +	return nfc_readb(nfc, nfc->band_offset + BANK_DATA);
> +}
> +
> +static void rk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len)
> +{
> +	int i;
> +
> +	for (i = 0; i < len; i++)
> +		buf[i] = rk_nfc_read_byte(chip);
> +}
> +
> +static void rk_nfc_write_byte(struct nand_chip *chip, u8 byte)
> +{
> +	struct rk_nfc *nfc = nand_get_controller_data(chip);
> +
> +	nfc_writeb(nfc, byte, nfc->band_offset + BANK_DATA);
> +}
> +
> +static void rk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
> +{
> +	int i;
> +
> +	for (i = 0; i < len; i++)
> +		rk_nfc_write_byte(chip, buf[i]);
> +}
> +
> +static int rk_nfc_setup_data_interface(struct nand_chip *chip, int csline,
> +					const struct nand_data_interface *conf)
> +{
> +	struct rk_nfc *nfc = nand_get_controller_data(chip);
> +	const struct nand_sdr_timings *timings;
> +	u32 rate, tc2rw, trwpw, trw2c;
> +	u32 temp;
> +
> +	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
> +		return 0;
> +
> +	/* not onfi nand flash */
> +	if (!chip->parameters.onfi)
> +		return 0;
> +
> +	timings = nand_get_sdr_timings(conf);
> +	if (IS_ERR(timings))
> +		return -ENOTSUPP;
> +
> +	rate = clk_get_rate(nfc->clk.nfc_clk);
> +
> +	/* turn clock rate into KHZ */
> +	rate /= 1000;
> +
> +	tc2rw = trw2c = 1;

	tc2rw = 1;
	trw2c = 1;

> +
> +	trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
> +	trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
> +
> +	temp = timings->tREA_max / 1000;
> +	temp = DIV_ROUND_UP(temp * rate, 1000000);
> +
> +	if (trwpw < temp)
> +		trwpw = temp;
> +
> +	if (trwpw > 6) {

What is 6 ? Would deserve a define and an explanation!

> +		tc2rw++;
> +		trw2c++;
> +		trwpw -= 2;
> +	}
> +
> +	/*
> +	 * ACCON: access timing control register
> +	 * -------------------------------------
> +	 * 31:18: reserved
> +	 * 17:12: csrw, clock cycles from the falling edge of CSn to the
> +		 falling edge of RDn or WRn
> +	 * 11:11: reserved
> +	 * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
> +	 * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
> +		 rising edge of CSn
> +	 */
> +	temp = ACCTIMING(tc2rw, trwpw, trw2c);
> +	nfc_writel(nfc, temp, NFC_FMWAIT);
> +
> +	return 0;
> +}
> +

A comment here explaining what the next function does and why would be
nice.

> +static void rk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
> +{
> +	struct nand_chip *chip = mtd_to_nand(mtd);
> +	struct rk_nfc *nfc = nand_get_controller_data(chip);
> +	u32 i;
> +
> +	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
> +	swap(chip->oob_poi[0], chip->oob_poi[7]);
> +	for (i = 0; i < chip->ecc.steps; i++) {
> +		if (buf)
> +			memcpy(rk_data_ptr(chip, i), data_ptr(chip, buf, i),
> +			       chip->ecc.size);
> +
> +		memcpy(rk_oob_ptr(chip, i), oob_ptr(chip, i),
> +		       NFC_SYS_DATA_SIZE);
> +	}
> +}
> +
> +static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
> +				dma_addr_t dma_data, dma_addr_t dma_oob)
> +{
> +	u32 dma_reg, fl_reg, bch_reg;
> +
> +	dma_reg = DMA_ST | ((!rw) << DMA_WR)  | DMA_EN | (2 << DMA_AHB_SIZE) |
> +	      (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
> +
> +	fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
> +		 (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
> +
> +	if (nfc->nfc_version == 6) {

I would prefer using switch statements any time you check the version.
The version should be an enum.

You can also define a platform data structure for the register offsets
that have the same name, but not necessarily the same offset. Then you
can reference the right value directly.
eg.

	struct rk_nfc_plat_data {
		u32 nfc_bchctl_off;
		...
	};

	struct rk_nfc_plat_data rk_nfc_v6_plat_data = {
		nfc_bchctl_off = ...;
		...
	};

	bch_reg = readl(pdata->nfc_bchctl_off);

> +		bch_reg = nfc_readl(nfc, NFC_BCHCTL_V6);
> +		bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
> +			  (nfc->selected_bank << BCHCTL_BANK);
> +		nfc_writel(nfc, bch_reg, NFC_BCHCTL_V6);
> +
> +		nfc_writel(nfc, dma_reg, NFC_DMA_CFG_V6);
> +		nfc_writel(nfc, (u32)dma_data, NFC_DMA_DATA_BUF_V6);
> +		nfc_writel(nfc, (u32)dma_oob, NFC_DMA_OOB_BUF_V6);
> +		nfc_writel(nfc, fl_reg, NFC_FLCTL_V6);
> +		fl_reg |= FLCTL_XFER_ST;
> +		nfc_writel(nfc, fl_reg, NFC_FLCTL_V6);
> +	} else {
> +		nfc_writel(nfc, dma_reg, NFC_DMA_CFG_V9);
> +		nfc_writel(nfc, (u32)dma_data, NFC_DMA_DATA_BUF_V9);
> +		nfc_writel(nfc, (u32)dma_oob, NFC_DMA_OOB_BUF_V9);
> +		nfc_writel(nfc, fl_reg, NFC_FLCTL_V9);
> +		fl_reg |= FLCTL_XFER_ST;
> +		nfc_writel(nfc, fl_reg, NFC_FLCTL_V9);
> +	}
> +}
> +
> +static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
> +{
> +	u32 reg;
> +	int ret = 0;
> +	void __iomem *ptr;
> +
> +	if (nfc->nfc_version == 6)
> +		ptr = nfc->regs + NFC_FLCTL_V6;
> +	else
> +		ptr = nfc->regs + NFC_FLCTL_V9;
> +
> +	ret = readl_poll_timeout_atomic(ptr, reg,
> +					reg & FLCTL_XFER_READY,
> +					10, RK_TIMEOUT);
> +	if (ret)
> +		dev_err(nfc->dev, "timeout reg=%x\n", reg);
> +
> +	return ret;
> +}
> +
> +static int rk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
> +			      const u8 *buf, int page, int raw)
> +{
> +	struct rk_nfc *nfc = nand_get_controller_data(chip);
> +	struct nand_ecc_ctrl *ecc = &chip->ecc;
> +	u8 *oob;
> +	dma_addr_t dma_data, dma_oob;
> +	int oob_step = (ecc->bytes > 60) ? 128 : 64;
> +	int pages_per_blk = mtd->erasesize / mtd->writesize;
> +	u32 reg;
> +	int ret = 0, i;
> +
> +	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
> +
> +	if (!raw) {
> +		memcpy(nfc->page_buf, buf, mtd->writesize);
> +		memset(nfc->oob_buf, 0xff, oob_step * ecc->steps);
> +		/*
> +		 * The first 8 blocks is stored loader, the first
> +		 * 32 bits of oob need link to next page address
> +		 * in the same block for Bootrom.
> +		 * Swap the first oob with the seventh oob,
> +		 * and bad block mask save at seventh oob.
> +		 */
> +		swap(chip->oob_poi[0], chip->oob_poi[7]);
> +		for (i = 0; i < ecc->steps; i++) {
> +			oob = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
> +			reg = (oob[2] << 16) | (oob[3] << 24);
> +			if (!i && page < pages_per_blk * 8)
> +				reg |= (page & (pages_per_blk - 1)) * 4;
> +			else
> +				reg |= oob[0] | (oob[1] << 8);
> +
> +			if (nfc->nfc_version == 6)
> +				nfc->oob_buf[i * oob_step / 4] = reg;
> +			else
> +				nfc->oob_buf[i] = reg;
> +		}
> +
> +		dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
> +					  mtd->writesize, DMA_TO_DEVICE);
> +		dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
> +					 ecc->steps * oob_step,
> +					 DMA_TO_DEVICE);
> +
> +		init_completion(&nfc->done);
> +		if (nfc->nfc_version == 6)
> +			nfc_writel(nfc, INT_DMA, NFC_INTEN_V6);
> +		else
> +			nfc_writel(nfc, INT_DMA, NFC_INTEN_V9);
> +
> +		rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
> +				  dma_oob);
> +		ret = wait_for_completion_timeout(&nfc->done,
> +						  msecs_to_jiffies(100));
> +		if (!ret)
> +			ret = -ETIMEDOUT;
> +		ret = rk_nfc_wait_for_xfer_done(nfc);
> +
> +		dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
> +				 DMA_TO_DEVICE);
> +		dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
> +				 DMA_TO_DEVICE);
> +	} else {
> +		rk_nfc_write_buf(chip, buf, mtd->writesize + + mtd->oobsize);
> +	}
> +
> +	if (ret)
> +		return ret;
> +
> +	return nand_prog_page_end_op(chip);
> +}
> +
> +static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
> +				  int oob_on, int page)
> +{
> +	struct mtd_info *mtd = nand_to_mtd(chip);
> +	struct rk_nfc *nfc = nand_get_controller_data(chip);
> +
> +	rk_nfc_format_page(mtd, buf);
> +	return rk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);

I think you should avoid calling ->write_page. You will avoid an
indentation level in this function and clarify what write_page_raw do.
Same for read, and the _oob alternative. Also, I'm sure write_buf does
not need to be exported and you can just move the actual code in this
function.

> +}
> +
> +static int rk_nfc_write_oob_std(struct nand_chip *chip, int page)
> +{
> +	return rk_nfc_write_page_raw(chip, NULL, 1, page);
> +}
> +
> +static int rk_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
> +				u32 data_offs, u32 readlen,
> +				u8 *buf, int page, int raw)
> +{
> +	struct rk_nfc *nfc = nand_get_controller_data(chip);
> +	struct nand_ecc_ctrl *ecc = &chip->ecc;
> +	dma_addr_t dma_data, dma_oob;
> +	int oob_step = (ecc->bytes > 60) ? 128 : 64;
> +	int bitflips = 0;
> +	int ret, i, bch_st;
> +	u8 *oob;
> +	u32 tmp;
> +
> +	nand_read_page_op(chip, page, 0, NULL, 0);
> +	if (!raw) {
> +		dma_data = dma_map_single(nfc->dev, nfc->page_buf,
> +					  mtd->writesize,
> +					  DMA_FROM_DEVICE);
> +		dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
> +					 ecc->steps * oob_step,
> +					 DMA_FROM_DEVICE);
> +		init_completion(&nfc->done);
> +		if (nfc->nfc_version == 6)
> +			nfc_writel(nfc, INT_DMA, NFC_INTEN_V6);
> +		else
> +			nfc_writel(nfc, INT_DMA, NFC_INTEN_V9);
> +		rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
> +				  dma_oob);
> +		ret = wait_for_completion_timeout(&nfc->done,
> +						  msecs_to_jiffies(100));
> +		if (!ret)
> +			dev_warn(nfc->dev, "read ahb/dma done timeout\n");
> +		rk_nfc_wait_for_xfer_done(nfc);
> +		dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
> +				 DMA_FROM_DEVICE);
> +		dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
> +				 DMA_FROM_DEVICE);
> +
> +		for (i = 0; i < ecc->steps; i++) {
> +			oob = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
> +			if (nfc->nfc_version == 6)
> +				tmp = nfc->oob_buf[i * oob_step / 4];
> +			else
> +				tmp = nfc->oob_buf[i];
> +			*oob++ = (u8)tmp;
> +			*oob++ = (u8)(tmp >> 8);
> +			*oob++ = (u8)(tmp >> 16);
> +			*oob++ = (u8)(tmp >> 24);
> +		}
> +		swap(chip->oob_poi[0], chip->oob_poi[7]);
> +		if (nfc->nfc_version == 6) {
> +			for (i = 0; i < ecc->steps / 2; i++) {
> +				bch_st = nfc_readl(nfc, NFC_BCH_ST_V6 + i * 4);
> +				if (bch_st & BCH_ST_ERR0_V6 ||
> +				    bch_st & BCH_ST_ERR1_V6) {
> +					mtd->ecc_stats.failed++;
> +					bitflips = -1;
> +				} else {
> +					ret = ECC_ERR_CNT0_V6(bch_st);
> +					mtd->ecc_stats.corrected += ret;
> +					bitflips = max_t(u32, bitflips, ret);
> +
> +					ret = ECC_ERR_CNT1_V6(bch_st);
> +					mtd->ecc_stats.corrected += ret;
> +					bitflips = max_t(u32, bitflips, ret);
> +				}
> +			}
> +		} else {
> +			for (i = 0; i < ecc->steps / 2; i++) {
> +				bch_st = nfc_readl(nfc, NFC_BCH_ST_V9 + i * 4);
> +				if (bch_st & BCH_ST_ERR0_V9 ||
> +				    bch_st & BCH_ST_ERR0_V9) {
> +					mtd->ecc_stats.failed++;
> +					bitflips = -1;
> +				} else {
> +					ret = ECC_ERR_CNT0_V9(bch_st);
> +					mtd->ecc_stats.corrected += ret;
> +					bitflips = max_t(u32, bitflips, ret);
> +
looks strange, a switch would be better probably.

> +					ret = ECC_ERR_CNT1_V9(bch_st);
> +					mtd->ecc_stats.corrected += ret;
> +					bitflips = max_t(u32, bitflips, ret);
> +				}
> +			}
> +		}
> +		memcpy(buf, nfc->page_buf, mtd->writesize);
> +
> +		if (bitflips == -1)
> +			dev_err(nfc->dev, "read_page %x %x %x %x %x %x\n",
> +				page, bitflips, bch_st, ((u32 *)buf)[0],
> +				((u32 *)buf)[1], (u32)dma_data);
> +	} else {
> +		rk_nfc_read_buf(chip, buf, mtd->writesize + mtd->oobsize);
> +	}

space

> +	return bitflips;
> +}
> +
> +static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
> +				    int oob_on, int page)
> +{
> +	return rk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0);
> +}

What is the purpose of this indirection?

> +
> +static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on,
> +				   int pg)
> +{
> +	struct mtd_info *mtd = nand_to_mtd(chip);
> +
> +	return rk_nfc_read_page(mtd, chip, 0, mtd->writesize, p, pg, 0);
> +}
> +
> +static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
> +				 int page)
> +{
> +	struct mtd_info *mtd = nand_to_mtd(chip);
> +	struct rk_nfc *nfc = nand_get_controller_data(chip);
> +	int i, ret;
> +
> +	ret = rk_nfc_read_page(mtd, chip, 0, mtd->writesize, nfc->buffer,
> +				   page, 1);
> +	if (ret < 0)
> +		return ret;
> +
> +	for (i = 0; i < chip->ecc.steps; i++) {
> +		memcpy(oob_ptr(chip, i), rk_oob_ptr(chip, i),
> +		       NFC_SYS_DATA_SIZE);
> +
> +		if (buf)
> +			memcpy(data_ptr(chip, buf, i), rk_data_ptr(chip, i),
> +			       chip->ecc.size);
> +	}
> +	swap(chip->oob_poi[0], chip->oob_poi[7]);
> +
> +	return ret;
> +}
> +
> +static int rk_nfc_read_oob_std(struct nand_chip *chip, int page)
> +{
> +	return rk_nfc_read_page_raw(chip, NULL, 1, page);
> +}
> +
> +static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
> +{
> +	u32 val;
> +
> +	val = nfc_readl(nfc, NFC_VER_V9);
> +	if (val == NFC_VERSION_9) {
> +		nfc->nfc_version = 9;
> +		nfc->max_ecc_strength = 70;
> +	} else {
> +		nfc->nfc_version = 6;
> +		val = nfc_readl(nfc, NFC_VER_V6);
> +		if (val == 0x801)
> +			nfc->max_ecc_strength = 16;
> +		else
> +			nfc->max_ecc_strength = 60;
> +	}
> +
> +	/* disable flash wp */
> +	nfc_writel(nfc, FMCTL_WP,  NFC_FMCTL);
> +	/* config default timing */
> +	nfc_writel(nfc, 0x1081,  NFC_FMWAIT);
> +	/* disable randomizer and dma */
> +
> +	if (nfc->nfc_version == 6) {
> +		nfc_writel(nfc, 0, NFC_RANDMZ_V6);
> +		nfc_writel(nfc, 0, NFC_DMA_CFG_V6);
> +		nfc_writel(nfc, FLCTL_RST, NFC_FLCTL_V6);
> +	} else {
> +		nfc_writel(nfc, 0, NFC_RANDMZ_V9);
> +		nfc_writel(nfc, 0, NFC_DMA_CFG_V9);
> +		nfc_writel(nfc, FLCTL_RST, NFC_FLCTL_V9);
> +	}
> +}
> +
> +static irqreturn_t rk_nfc_irq(int irq, void *id)
> +{
> +	struct rk_nfc *nfc = id;
> +	u32 sta, ien;
> +
> +	if (nfc->nfc_version == 6) {
> +		sta = nfc_readl(nfc, NFC_INTST_V6);
> +		ien = nfc_readl(nfc, NFC_INTEN_V6);
> +	} else {
> +		sta = nfc_readl(nfc, NFC_INTST_V9);
> +		ien = nfc_readl(nfc, NFC_INTEN_V9);
> +	}
> +
> +	if (!(sta & ien))
> +		return IRQ_NONE;
> +	if (nfc->nfc_version == 6) {
> +		nfc_writel(nfc, sta, NFC_INTCLR_V6);
> +		nfc_writel(nfc, ~sta & ien, NFC_INTEN_V6);
> +	} else {
> +		nfc_writel(nfc, sta, NFC_INTCLR_V9);
> +		nfc_writel(nfc, ~sta & ien, NFC_INTEN_V9);
> +	}
> +	complete(&nfc->done);
> +
> +	return IRQ_HANDLED;
> +}
> +
> +static int rk_nfc_enable_clk(struct device *dev, struct rk_nfc_clk *clk)
> +{
> +	int ret;
> +
> +	ret = clk_prepare_enable(clk->nfc_clk);
> +	if (ret) {
> +		dev_err(dev, "failed to enable nfc clk\n");
> +		return ret;
> +	}
> +
> +	ret = clk_prepare_enable(clk->ahb_clk);
> +	if (ret) {
> +		dev_err(dev, "failed to enable ahb clk\n");
> +		clk_disable_unprepare(clk->nfc_clk);
> +		return ret;
> +	}
> +
> +	return 0;
> +}
> +
> +static void rk_nfc_disable_clk(struct rk_nfc_clk *clk)
> +{
> +	clk_disable_unprepare(clk->nfc_clk);
> +	clk_disable_unprepare(clk->ahb_clk);
> +}
> +
> +static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
> +				  struct mtd_oob_region *oob_region)
> +{
> +	struct nand_chip *chip = mtd_to_nand(mtd);
> +
> +	if (section >= chip->ecc.steps)
> +		return -ERANGE;
> +
> +	if (!section) {
> +		/* The first byte is bad block mask flag */
> +		oob_region->length = NFC_SYS_DATA_SIZE - 1;
> +		oob_region->offset = 1;
> +	} else {
> +		oob_region->length = NFC_SYS_DATA_SIZE;
> +		oob_region->offset = section * NFC_SYS_DATA_SIZE;
> +	}
> +
> +	return 0;
> +}
> +
> +static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
> +				 struct mtd_oob_region *oob_region)
> +{
> +	struct nand_chip *chip = mtd_to_nand(mtd);
> +
> +	if (section)
> +		return -ERANGE;
> +
> +	oob_region->offset = NFC_SYS_DATA_SIZE * chip->ecc.steps;
> +	oob_region->length = mtd->oobsize - oob_region->offset;
> +
> +	return 0;
> +}
> +
> +static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
> +	.free = rk_nfc_ooblayout_free,
> +	.ecc = rk_nfc_ooblayout_ecc,
> +};
> +
> +static int rk_nfc_hw_ecc_setup(struct mtd_info *mtd,
> +				 struct nand_ecc_ctrl *ecc,
> +				 uint32_t strength)
> +{
> +	struct nand_chip *nand = mtd_to_nand(mtd);
> +	struct rk_nfc *nfc = nand_get_controller_data(nand);
> +	u32 reg;
> +
> +	ecc->strength = strength;
> +	ecc->steps = mtd->writesize / ecc->size;
> +	ecc->bytes = DIV_ROUND_UP(ecc->strength * 14, 8);
> +	/* HW ECC always work with even numbers of ECC bytes */
> +	ecc->bytes = ALIGN(ecc->bytes, 2);
> +
> +	if (nfc->nfc_version == 6) {
> +		switch (ecc->strength) {
> +		case 60:
> +			reg = 0x00040010;
> +			break;
> +		case 40:
> +			reg = 0x00040000;
> +			break;
> +		case 24:
> +			reg = 0x00000010;
> +			break;
> +		case 16:
> +			reg = 0x00000000;
> +			break;
> +		default:
> +			return -EINVAL;
> +		}
> +		nfc_writel(nfc, reg, NFC_BCHCTL_V6);
> +	} else {
> +		switch (ecc->strength) {
> +		case 70:
> +			reg = 0x00000001;
> +			break;
> +		case 60:
> +			reg = 0x06000001;
> +			break;
> +		case 40:
> +			reg = 0x04000001;
> +			break;
> +		case 16:
> +			reg = 0x02000001;
> +			break;
> +		default:
> +			return -EINVAL;
> +		}
> +		nfc_writel(nfc, reg, NFC_BCHCTL_V9);
> +	}
> +
> +	return 0;
> +}
> +
> +static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
> +{
> +	struct nand_chip *nand = mtd_to_nand(mtd);
> +	struct rk_nfc *nfc = nand_get_controller_data(nand);
> +	struct nand_ecc_ctrl *ecc = &nand->ecc;
> +	static u8 strengths_v9[4] = {70, 60, 40, 16};
> +	static u8 strengths_v6[4] = {60, 40, 24, 16};
> +	u8 *strengths;
> +	u32 max_strength;
> +	int i;
> +
> +	/* support only ecc hw mode */
> +	if (ecc->mode != NAND_ECC_HW) {
> +		dev_err(dev, "ecc.mode not supported\n");
> +		return -EINVAL;

No, please support the absence of ECC (might be useful for
development/testing in some conditions) and having sofware ECC support.

> +	}
> +
> +	/* if optional dt settings not present */
> +	if (!ecc->size || !ecc->strength ||
> +	    ecc->strength > nfc->max_ecc_strength) {
> +		/* use datasheet requirements */
> +		ecc->strength = nand->base.eccreq.strength;
> +		ecc->size = nand->base.eccreq.step_size;
> +
> +		/*
> +		 * align eccstrength and eccsize
> +		 * this controller only supports 512 and 1024 sizes
> +		 */
> +		if (nand->ecc.size < 1024) {
> +			if (mtd->writesize > 512) {
> +				nand->ecc.size = 1024;
> +				nand->ecc.strength <<= 1;
> +			} else {
> +				dev_err(dev, "ecc.size not supported\n");
> +				return -EINVAL;
> +			}
> +		} else {
> +			nand->ecc.size = 1024;
> +		}
> +
> +		ecc->steps = mtd->writesize / ecc->size;
> +		max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 / 14;
> +		if (max_strength > nfc->max_ecc_strength)
> +			max_strength = nfc->max_ecc_strength;
> +
> +		strengths = strengths_v9;
> +		if (nfc->nfc_version == 6)
> +			strengths = strengths_v6;
> +
> +		for (i = 0; i < 4; i++) {
> +			if (max_strength >= strengths[i])
> +				break;
> +		}
> +
> +		if (i >= 4) {
> +			dev_err(nfc->dev, "unsupported strength\n");
> +			return -ENOTSUPP;
> +		}
> +
> +		ecc->strength = strengths[i];
> +	}
> +	rk_nfc_hw_ecc_setup(mtd, ecc, ecc->strength);
> +	dev_info(dev, "eccsize %d eccstrength %d\n",
> +		 nand->ecc.size, nand->ecc.strength);

space

> +	return 0;
> +}
> +
> +static int rk_nfc_attach_chip(struct nand_chip *chip)
> +{
> +	struct mtd_info *mtd = nand_to_mtd(chip);
> +	struct device *dev = mtd->dev.parent;
> +	struct rk_nfc *nfc = nand_get_controller_data(chip);
> +	struct rk_nfc_nand_chip *rk_nand = to_rk_nand(chip);
> +	struct nand_ecc_ctrl *ecc = &chip->ecc;
> +	int len;
> +	int ret;
> +
> +	if (chip->options & NAND_BUSWIDTH_16) {
> +		dev_err(dev, "16bits buswidth not supported");
> +		return -EINVAL;
> +	}
> +
> +	ret = rk_nfc_ecc_init(dev, mtd);
> +	if (ret)
> +		return ret;
> +	rk_nand->spare_per_sector = ecc->bytes + NFC_SYS_DATA_SIZE;
> +
> +	/* Check buffer first, avoid duplicate alloc buffer */
> +	if (nfc->buffer)
> +		return 0;
> +
> +	len = mtd->writesize + mtd->oobsize;
> +	nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL | GFP_DMA);
> +	if (!nfc->buffer)
> +		return  -ENOMEM;

                       ^

Avoid these extra spaces in all your return statements.

Please run scripts/checkpatch.pl --strict

> +
> +	nfc->page_buf = nfc->buffer;
> +	len = ecc->steps * 128;

                            ^
A definition of this would be great too

> +	nfc->oob_buf = devm_kzalloc(dev, len, GFP_KERNEL | GFP_DMA);
> +	if (!nfc->oob_buf) {
> +		devm_kfree(dev, nfc->buffer);
> +		nfc->buffer = NULL;
> +		nfc->oob_buf = NULL;
> +		return  -ENOMEM;
> +	}
> +
> +	return 0;
> +}
> +
> +static const struct nand_controller_ops rk_nfc_controller_ops = {
> +	.attach_chip = rk_nfc_attach_chip,
> +	.setup_data_interface = rk_nfc_setup_data_interface,
> +};
> +
> +static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
> +				  struct device_node *np)
> +{
> +	struct rk_nfc_nand_chip *chip;
> +	struct nand_chip *nand;
> +	struct mtd_info *mtd;
> +	int nsels;
> +	u32 tmp;
> +	int ret;
> +	int i;
> +
> +	if (!of_get_property(np, "reg", &nsels))
> +		return -ENODEV;
> +	nsels /= sizeof(u32);
> +	if (!nsels || nsels > RK_NAND_MAX_NSELS) {
> +		dev_err(dev, "invalid reg property size %d\n", nsels);
> +		return -EINVAL;
> +	}
> +
> +	chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
> +			    GFP_KERNEL);
> +	if (!chip)
> +		return -ENOMEM;
> +
> +	chip->nsels = nsels;
> +	for (i = 0; i < nsels; i++) {
> +		ret = of_property_read_u32_index(np, "reg", i, &tmp);
> +		if (ret) {
> +			dev_err(dev, "reg property failure : %d\n", ret);
> +			return ret;
> +		}
> +
> +		if (tmp >= RK_NAND_MAX_NSELS) {
> +			dev_err(dev, "invalid CS: %u\n", tmp);
> +			return -EINVAL;
> +		}
> +
> +		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
> +			dev_err(dev, "CS %u already assigned\n", tmp);
> +			return -EINVAL;
> +		}
> +
> +		chip->sels[i] = tmp;
> +	}
> +
> +	nand = &chip->nand;
> +	nand->controller = &nfc->controller;
> +
> +	nand_set_flash_node(nand, np);
> +	nand_set_controller_data(nand, nfc);
> +
> +	nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_NO_SUBPAGE_WRITE;
> +	nand->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
> +	nand->legacy.dev_ready = rk_nfc_dev_ready;
> +	nand->legacy.select_chip = rk_nfc_select_chip;
> +	nand->legacy.write_byte = rk_nfc_write_byte;
> +	nand->legacy.write_buf = rk_nfc_write_buf;
> +	nand->legacy.read_byte = rk_nfc_read_byte;
> +	nand->legacy.read_buf = rk_nfc_read_buf;
> +	nand->legacy.cmd_ctrl = rk_nfc_cmd_ctrl;

You should not implement any legacy hooks.

> +
> +	/* set default mode in case dt entry is missing */
> +	nand->ecc.mode = NAND_ECC_HW;
> +
> +	nand->ecc.write_page_raw = rk_nfc_write_page_raw;
> +	nand->ecc.write_page = rk_nfc_write_page_hwecc;
> +	nand->ecc.write_oob_raw = rk_nfc_write_oob_std;
> +	nand->ecc.write_oob = rk_nfc_write_oob_std;
> +
> +	nand->ecc.read_page_raw = rk_nfc_read_page_raw;
> +	nand->ecc.read_page = rk_nfc_read_page_hwecc;
> +	nand->ecc.read_oob_raw = rk_nfc_read_oob_std;
> +	nand->ecc.read_oob = rk_nfc_read_oob_std;
> +
> +	mtd = nand_to_mtd(nand);
> +	mtd->owner = THIS_MODULE;
> +	mtd->dev.parent = dev;
> +	mtd->name = THIS_NAME;
> +	mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
> +	rk_nfc_hw_init(nfc);
> +	ret = nand_scan(nand, nsels);
> +	if (ret)
> +		return ret;
> +	ret = mtd_device_register(mtd, NULL, 0);
> +	if (ret) {
> +		dev_err(dev, "mtd parse partition error\n");
> +		nand_release(nand);
> +		return ret;
> +	}
> +
> +	list_add_tail(&chip->node, &nfc->chips);
> +
> +	return 0;
> +}
> +
> +static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
> +{
> +	struct device_node *np = dev->of_node;
> +	struct device_node *nand_np;
> +	int ret = -EINVAL;
> +	int tmp;
> +
> +	for_each_child_of_node(np, nand_np) {
> +		tmp = rk_nfc_nand_chip_init(dev, nfc, nand_np);
> +		if (tmp) {
> +			of_node_put(nand_np);
> +			return ret;
> +		}
> +		/* At least one nand chip is initialized */
> +		ret = 0;
> +	}
> +	return ret;
> +}
> +
> +static const struct of_device_id rk_nfc_id_table[] = {
> +	{.compatible = "rockchip,nfc"},
> +	{}
> +};
> +MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
> +
> +static int rk_nfc_probe(struct platform_device *pdev)
> +{
> +	struct device *dev = &pdev->dev;
> +	struct rk_nfc *nfc;
> +	struct resource *res;
> +	int ret, irq;
> +
> +	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
> +	if (!nfc)
> +		return -ENOMEM;
> +
> +	nand_controller_init(&nfc->controller);
> +	INIT_LIST_HEAD(&nfc->chips);
> +	nfc->controller.ops = &rk_nfc_controller_ops;
> +	nfc->dev = dev;
> +
> +	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> +	nfc->regs = devm_ioremap_resource(dev, res);
> +	if (IS_ERR(nfc->regs)) {
> +		ret = PTR_ERR(nfc->regs);
> +		goto release_nfc;
> +	}
> +	nfc->clk.nfc_clk = devm_clk_get(dev, "clk_nfc");
> +	if (IS_ERR(nfc->clk.nfc_clk)) {
> +		dev_err(dev, "no clk\n");
> +		ret = PTR_ERR(nfc->clk.nfc_clk);
> +		goto release_nfc;
> +	}
> +	nfc->clk.ahb_clk = devm_clk_get(dev, "clk_ahb");
> +	if (IS_ERR(nfc->clk.ahb_clk)) {
> +		dev_err(dev, "no pad clk\n");
> +		ret = PTR_ERR(nfc->clk.ahb_clk);
> +		goto release_nfc;
> +	}
> +	if (of_property_read_u32(dev->of_node, "clock-rates",
> +	    &nfc->clk.nfc_rate))
> +		nfc->clk.nfc_rate = RK_DEFAULT_CLOCK_RATE;
> +	clk_set_rate(nfc->clk.nfc_clk, nfc->clk.nfc_rate);
> +
> +	ret = rk_nfc_enable_clk(dev, &nfc->clk);
> +	if (ret)
> +		goto release_nfc;
> +
> +	irq = platform_get_irq(pdev, 0);
> +	if (irq < 0) {
> +		dev_err(dev, "no nfc irq resource\n");
> +		ret = -EINVAL;
> +		goto clk_disable;
> +	}
> +
> +	if (nfc->nfc_version == 6)
> +		nfc_writel(nfc, 0, NFC_INTEN_V6);
> +	else
> +		nfc_writel(nfc, 0, NFC_INTEN_V9);
> +	ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
> +	if (ret) {
> +		dev_err(dev, "failed to request nfc irq\n");
> +		goto clk_disable;
> +	}
> +
> +	platform_set_drvdata(pdev, nfc);
> +
> +	ret = rk_nfc_nand_chips_init(dev, nfc);
> +	if (ret) {
> +		dev_err(dev, "failed to init nand chips\n");
> +		goto clk_disable;
> +	}
> +	return 0;
> +
> +clk_disable:
> +	rk_nfc_disable_clk(&nfc->clk);
> +release_nfc:
> +	return ret;
> +}
> +
> +static int rk_nfc_remove(struct platform_device *pdev)
> +{
> +	struct rk_nfc *nfc = platform_get_drvdata(pdev);
> +	struct rk_nfc_nand_chip *chip;
> +
> +	while (!list_empty(&nfc->chips)) {
> +		chip = list_first_entry(&nfc->chips, struct rk_nfc_nand_chip,
> +					node);
> +		nand_release(&chip->nand);
> +		list_del(&chip->node);
> +	}
> +
> +	rk_nfc_disable_clk(&nfc->clk);
> +
> +	return 0;
> +}
> +
> +#ifdef CONFIG_PM_SLEEP
> +static int rk_nfc_suspend(struct device *dev)
> +{
> +	struct rk_nfc *nfc = dev_get_drvdata(dev);
> +
> +	rk_nfc_disable_clk(&nfc->clk);
> +
> +	return 0;
> +}
> +
> +static int rk_nfc_resume(struct device *dev)
> +{
> +	struct rk_nfc *nfc = dev_get_drvdata(dev);
> +	struct rk_nfc_nand_chip *chip;
> +	struct nand_chip *nand;
> +	int ret;
> +	u32 i;
> +
> +	udelay(200);
> +
> +	ret = rk_nfc_enable_clk(dev, &nfc->clk);
> +	if (ret)
> +		return ret;
> +
> +	/* reset NAND chip if VCC was powered off */
> +	list_for_each_entry(chip, &nfc->chips, node) {
> +		nand = &chip->nand;
> +		for (i = 0; i < chip->nsels; i++)
> +			nand_reset(nand, i);
> +	}
> +
> +	return 0;
> +}
> +
> +static SIMPLE_DEV_PM_OPS(rk_nfc_pm_ops, rk_nfc_suspend, rk_nfc_resume);

I think you can define a dev_pm_ops stucture to contain a
SET_SYSTEM_SLEEP_PM_OPS(*suspend, *resume) and this way you can
entirely get rid of the #ifdef conditionals.

> +#endif
> +
> +static struct platform_driver rk_nfc_driver = {
> +	.probe  = rk_nfc_probe,
> +	.remove = rk_nfc_remove,
> +	.driver = {
> +		.name  = THIS_NAME,
> +		.of_match_table = rk_nfc_id_table,
> +#ifdef CONFIG_PM_SLEEP
> +		.pm = &rk_nfc_pm_ops,
> +#endif
> +	},
> +};
> +
> +module_platform_driver(rk_nfc_driver);
> +
> +MODULE_LICENSE("Dual MIT/GPL");
> +MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>");
> +MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
> +MODULE_ALIAS("platform:rockchip_nand");


Thanks,
Miquèl

  reply	other threads:[~2020-03-09 11:16 UTC|newest]

Thread overview: 8+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2020-03-03  9:47 [PATCH v3 0/3] Add Rockchip NFC drivers for RK3308 and others Yifeng Zhao
2020-03-03  9:47 ` [PATCH v3 1/3] mtd: rawnand: rockchip: NFC drivers for RK3308, RK3188 " Yifeng Zhao
2020-03-09 11:16   ` Miquel Raynal [this message]
2020-03-16  9:59     ` 赵仪峰
2020-03-16 10:06       ` Miquel Raynal
2020-03-03  9:47 ` [PATCH v3 2/3] dt-bindings: mtd: Describe Rockchip RK3xxx NAND flash controller Yifeng Zhao
2020-03-04 16:56   ` Rob Herring
2020-03-03  9:47 ` [PATCH v3 3/3] MAINTAINERS: add maintainers to rockchip nfc Yifeng Zhao

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20200309121645.1fca069d@xps13 \
    --to=miquel.raynal@bootlin.com \
    --cc=devicetree@vger.kernel.org \
    --cc=heiko@sntech.de \
    --cc=linux-mtd@lists.infradead.org \
    --cc=linux-rockchip@lists.infradead.org \
    --cc=richard@nod.at \
    --cc=robh+dt@kernel.org \
    --cc=vigneshr@ti.com \
    --cc=yifeng.zhao@rock-chips.com \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).