linux-mm.kvack.org archive mirror
 help / color / mirror / Atom feed
* [PATCH v8 0/1] mm: fix initialization of struct page for holes in  memory layout
@ 2021-02-25 22:43 Mike Rapoport
  2021-02-25 22:43 ` [PATCH v8 1/1] mm/page_alloc.c: refactor " Mike Rapoport
  0 siblings, 1 reply; 6+ messages in thread
From: Mike Rapoport @ 2021-02-25 22:43 UTC (permalink / raw)
  To: Andrew Morton
  Cc: Andrea Arcangeli, Baoquan He, Borislav Petkov, Chris Wilson,
	David Hildenbrand, H. Peter Anvin, Ingo Molnar, Linus Torvalds,
	Łukasz Majczak, Mel Gorman, Michal Hocko, Mike Rapoport,
	Mike Rapoport, Qian Cai, Sarvela, Tomi P, Thomas Gleixner,
	Vlastimil Babka, linux-kernel, linux-mm, stable, x86

From: Mike Rapoport <rppt@linux.ibm.com>

Hi,

@Andrew, this is based on v5.11-mmotm-2021-02-18-18-29 with the previous
version reverted

Commit 73a6e474cb37 ("mm: memmap_init: iterate over memblock regions rather
that check each PFN") exposed several issues with the memory map
initialization and these patches fix those issues.

Initially there were crashes during compaction that Qian Cai reported back
in April [1]. It seemed back then that the problem was fixed, but a few
weeks ago Andrea Arcangeli hit the same bug [2] and there was an additional
discussion at [3].

I didn't appreciate variety of ways BIOSes can report memory in the first
megabyte, so previous versions of this set caused all kinds of troubles.

The last version that implicitly extended node/zone to cover the complete
section might also have unexpected side effects, so this time I'm trying to
move in forward in baby steps.

This is mostly a return to the fist version that simply merges
init_unavailable_pages() into memmap_init() so that the only effective
change would be more sensible zone/node links in unavailable struct pages.

For now, I've dropped the patch that tried to make ZONE_DMA to span pfn 0
because it didn't cause any issues for really long time and there are way
to many hidden mines around this.

I have an ugly workaround for "pfn 0" issue that IMHO is the safest way to
deal with it until it could be gradually fixed properly:

https://git.kernel.org/pub/scm/linux/kernel/git/rppt/linux.git/commit/?h=meminit/pfn0&id=90272f37151c6e1bc2610997310c51f4e984cf2f

v8:
* make comments and changelog more elaborate as per David, Linus and Vlastimil
* add Vlastimil's ack

v7: https://lore.kernel.org/lkml/20210224153950.20789-1-rppt@kernel.org
* add handling of section end that span beyond the populated zones

v6: https://lore.kernel.org/lkml/20210222105728.28636-1-rppt@kernel.org
* only interleave initialization of unavailable pages in memmap_init(), so
that it is essentially includes init_unavailable_pages().

v5: https://lore.kernel.org/lkml/20210208110820.6269-1-rppt@kernel.org
* extend node/zone spans to cover complete sections, this allows to interleave
  the initialization of unavailable pages with "normal" memory map init.
* drop modifications to x86 early setup

v4: https://lore.kernel.org/lkml/20210130221035.4169-1-rppt@kernel.org/
* make sure pages in the range 0 - start_pfn_of_lowest_zone are initialized
  even if an architecture hides them from the generic mm
* finally make pfn 0 on x86 to be a part of memory visible to the generic
  mm as reserved memory.

v3: https://lore.kernel.org/lkml/20210111194017.22696-1-rppt@kernel.org
* use architectural zone constraints to set zone links for struct pages
  corresponding to the holes
* drop implicit update of memblock.memory
* add a patch that sets pfn 0 to E820_TYPE_RAM on x86

v2: https://lore.kernel.org/lkml/20201209214304.6812-1-rppt@kernel.org/):
* added patch that adds all regions in memblock.reserved that do not
overlap with memblock.memory to memblock.memory in the beginning of
free_area_init()

[1] https://lore.kernel.org/lkml/8C537EB7-85EE-4DCF-943E-3CC0ED0DF56D@lca.pw
[2] https://lore.kernel.org/lkml/20201121194506.13464-1-aarcange@redhat.com
[3] https://lore.kernel.org/mm-commits/20201206005401.qKuAVgOXr%akpm@linux-foundation.org

Mike Rapoport (1):
  mm/page_alloc.c: refactor initialization of struct page for holes in
    memory layout

 mm/page_alloc.c | 147 +++++++++++++++++++++---------------------------
 1 file changed, 64 insertions(+), 83 deletions(-)

-- 
2.28.0

*** BLURB HERE ***

Mike Rapoport (1):
  mm/page_alloc.c: refactor initialization of struct page for holes in
    memory layout

 mm/page_alloc.c | 158 +++++++++++++++++++++++-------------------------
 1 file changed, 75 insertions(+), 83 deletions(-)

-- 
2.28.0



^ permalink raw reply	[flat|nested] 6+ messages in thread

* [PATCH v8 1/1] mm/page_alloc.c: refactor initialization of struct page for holes in memory layout
  2021-02-25 22:43 [PATCH v8 0/1] mm: fix initialization of struct page for holes in memory layout Mike Rapoport
@ 2021-02-25 22:43 ` Mike Rapoport
  2021-02-26  0:08   ` Andrew Morton
                     ` (2 more replies)
  0 siblings, 3 replies; 6+ messages in thread
From: Mike Rapoport @ 2021-02-25 22:43 UTC (permalink / raw)
  To: Andrew Morton
  Cc: Andrea Arcangeli, Baoquan He, Borislav Petkov, Chris Wilson,
	David Hildenbrand, H. Peter Anvin, Ingo Molnar, Linus Torvalds,
	Łukasz Majczak, Mel Gorman, Michal Hocko, Mike Rapoport,
	Mike Rapoport, Qian Cai, Sarvela, Tomi P, Thomas Gleixner,
	Vlastimil Babka, linux-kernel, linux-mm, stable, x86

From: Mike Rapoport <rppt@linux.ibm.com>

There could be struct pages that are not backed by actual physical memory.
This can happen when the actual memory bank is not a multiple of
SECTION_SIZE or when an architecture does not register memory holes
reserved by the firmware as memblock.memory.

Such pages are currently initialized using init_unavailable_mem() function
that iterates through PFNs in holes in memblock.memory and if there is a
struct page corresponding to a PFN, the fields of this page are set to
default values and it is marked as Reserved.

init_unavailable_mem() does not take into account zone and node the page
belongs to and sets both zone and node links in struct page to zero.

Before commit 73a6e474cb37 ("mm: memmap_init: iterate over memblock regions
rather that check each PFN") the holes inside a zone were re-initialized
during memmap_init() and got their zone/node links right. However, after
that commit nothing updates the struct pages representing such holes.

On a system that has firmware reserved holes in a zone above ZONE_DMA, for
instance in a configuration below:

	# grep -A1 E820 /proc/iomem
	7a17b000-7a216fff : Unknown E820 type
	7a217000-7bffffff : System RAM

unset zone link in struct page will trigger

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

in set_pfnblock_flags_mask() when called with a struct page from a range
other than E820_TYPE_RAM because there are pages in the range of ZONE_DMA32
but the unset zone link in struct page makes them appear as a part of
ZONE_DMA.

Interleave initialization of the unavailable pages with the normal
initialization of memory map, so that zone and node information will be
properly set on struct pages that are not backed by the actual memory.

With this change the pages for holes inside a zone will get proper
zone/node links and the pages that are not spanned by any node will get
links to the adjacent zone/node. The holes between nodes will be prepended
to the zone/node above the hole and the trailing pages in the last section
that will be appended to the zone/node below.

Fixes: 73a6e474cb37 ("mm: memmap_init: iterate over memblock regions rather that check each PFN")
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reported-by: Qian Cai <cai@lca.pw>
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
---
 mm/page_alloc.c | 158 +++++++++++++++++++++++-------------------------
 1 file changed, 75 insertions(+), 83 deletions(-)

diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 3e93f8b29bae..b6b8b9396c1e 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -6280,12 +6280,65 @@ static void __meminit zone_init_free_lists(struct zone *zone)
 	}
 }
 
+#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
+/*
+ * Only struct pages that correspond to ranges defined by memblock.memory
+ * are zeroed and initialized by going through __init_single_page() during
+ * memmap_init_zone().
+ *
+ * But, there could be struct pages that correspond to holes in
+ * memblock.memory. This can happen because of the following reasons:
+ * - physical memory bank size is not necessarily the exact multiple of the
+ *   arbitrary section size
+ * - early reserved memory may not be listed in memblock.memory
+ * - memory layouts defined with memmap= kernel parameter may not align
+ *   nicely with memmap sections
+ *
+ * Explicitly initialize those struct pages so that:
+ * - PG_Reserved is set
+ * - zone and node links point to zone and node that span the page if the
+ *   hole is in the middle of a zone
+ * - zone and node links point to adjacent zone/node if the hole falls on
+ *   the zone boundary; the pages in such holes will be prepended to the
+ *   zone/node above the hole except for the trailing pages in the last
+ *   section that will be appended to the zone/node below.
+ */
+static u64 __meminit init_unavailable_range(unsigned long spfn,
+					    unsigned long epfn,
+					    int zone, int node)
+{
+	unsigned long pfn;
+	u64 pgcnt = 0;
+
+	for (pfn = spfn; pfn < epfn; pfn++) {
+		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
+			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
+				+ pageblock_nr_pages - 1;
+			continue;
+		}
+		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
+		__SetPageReserved(pfn_to_page(pfn));
+		pgcnt++;
+	}
+
+	return pgcnt;
+}
+#else
+static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
+					 int zone, int node)
+{
+	return 0;
+}
+#endif
+
 void __meminit __weak memmap_init_zone(struct zone *zone)
 {
 	unsigned long zone_start_pfn = zone->zone_start_pfn;
 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
 	int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
+	static unsigned long hole_pfn = 0;
 	unsigned long start_pfn, end_pfn;
+	u64 pgcnt = 0;
 
 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
 		start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
@@ -6295,7 +6348,29 @@ void __meminit __weak memmap_init_zone(struct zone *zone)
 			memmap_init_range(end_pfn - start_pfn, nid,
 					zone_id, start_pfn, zone_end_pfn,
 					MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
+
+		if (hole_pfn < start_pfn)
+			pgcnt += init_unavailable_range(hole_pfn, start_pfn,
+							zone_id, nid);
+		hole_pfn = end_pfn;
 	}
+
+#ifdef CONFIG_SPARSEMEM
+	/*
+	 * Initialize the hole in the range [zone_end_pfn, section_end].
+	 * If zone boundary falls in the middle of a section, this hole
+	 * will be re-initialized during the call to this function for the
+	 * higher zone.
+	 */
+	end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
+	if (hole_pfn < end_pfn)
+		pgcnt += init_unavailable_range(hole_pfn, end_pfn,
+						zone_id, nid);
+#endif
+
+	if (pgcnt)
+		pr_info("  %s zone: %lld pages in unavailable ranges\n",
+			zone->name, pgcnt);
 }
 
 static int zone_batchsize(struct zone *zone)
@@ -7092,88 +7167,6 @@ void __init free_area_init_memoryless_node(int nid)
 	free_area_init_node(nid);
 }
 
-#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
-/*
- * Initialize all valid struct pages in the range [spfn, epfn) and mark them
- * PageReserved(). Return the number of struct pages that were initialized.
- */
-static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
-{
-	unsigned long pfn;
-	u64 pgcnt = 0;
-
-	for (pfn = spfn; pfn < epfn; pfn++) {
-		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
-			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
-				+ pageblock_nr_pages - 1;
-			continue;
-		}
-		/*
-		 * Use a fake node/zone (0) for now. Some of these pages
-		 * (in memblock.reserved but not in memblock.memory) will
-		 * get re-initialized via reserve_bootmem_region() later.
-		 */
-		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
-		__SetPageReserved(pfn_to_page(pfn));
-		pgcnt++;
-	}
-
-	return pgcnt;
-}
-
-/*
- * Only struct pages that are backed by physical memory are zeroed and
- * initialized by going through __init_single_page(). But, there are some
- * struct pages which are reserved in memblock allocator and their fields
- * may be accessed (for example page_to_pfn() on some configuration accesses
- * flags). We must explicitly initialize those struct pages.
- *
- * This function also addresses a similar issue where struct pages are left
- * uninitialized because the physical address range is not covered by
- * memblock.memory or memblock.reserved. That could happen when memblock
- * layout is manually configured via memmap=, or when the highest physical
- * address (max_pfn) does not end on a section boundary.
- */
-static void __init init_unavailable_mem(void)
-{
-	phys_addr_t start, end;
-	u64 i, pgcnt;
-	phys_addr_t next = 0;
-
-	/*
-	 * Loop through unavailable ranges not covered by memblock.memory.
-	 */
-	pgcnt = 0;
-	for_each_mem_range(i, &start, &end) {
-		if (next < start)
-			pgcnt += init_unavailable_range(PFN_DOWN(next),
-							PFN_UP(start));
-		next = end;
-	}
-
-	/*
-	 * Early sections always have a fully populated memmap for the whole
-	 * section - see pfn_valid(). If the last section has holes at the
-	 * end and that section is marked "online", the memmap will be
-	 * considered initialized. Make sure that memmap has a well defined
-	 * state.
-	 */
-	pgcnt += init_unavailable_range(PFN_DOWN(next),
-					round_up(max_pfn, PAGES_PER_SECTION));
-
-	/*
-	 * Struct pages that do not have backing memory. This could be because
-	 * firmware is using some of this memory, or for some other reasons.
-	 */
-	if (pgcnt)
-		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
-}
-#else
-static inline void __init init_unavailable_mem(void)
-{
-}
-#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
-
 #if MAX_NUMNODES > 1
 /*
  * Figure out the number of possible node ids.
@@ -7597,7 +7590,6 @@ void __init free_area_init(unsigned long *max_zone_pfn)
 	/* Initialise every node */
 	mminit_verify_pageflags_layout();
 	setup_nr_node_ids();
-	init_unavailable_mem();
 	for_each_online_node(nid) {
 		pg_data_t *pgdat = NODE_DATA(nid);
 		free_area_init_node(nid);
-- 
2.28.0



^ permalink raw reply related	[flat|nested] 6+ messages in thread

* Re: [PATCH v8 1/1] mm/page_alloc.c: refactor initialization of struct page for holes in memory layout
  2021-02-25 22:43 ` [PATCH v8 1/1] mm/page_alloc.c: refactor " Mike Rapoport
@ 2021-02-26  0:08   ` Andrew Morton
  2021-02-26  6:14     ` Mike Rapoport
  2021-02-26  6:42   ` Greg KH
  2021-02-26 11:07   ` David Hildenbrand
  2 siblings, 1 reply; 6+ messages in thread
From: Andrew Morton @ 2021-02-26  0:08 UTC (permalink / raw)
  To: Mike Rapoport
  Cc: Andrea Arcangeli, Baoquan He, Borislav Petkov, Chris Wilson,
	David Hildenbrand, H. Peter Anvin, Ingo Molnar, Linus Torvalds,
	Łukasz Majczak, Mel Gorman, Michal Hocko, Mike Rapoport,
	Qian Cai, Sarvela, Tomi P, Thomas Gleixner, Vlastimil Babka,
	linux-kernel, linux-mm, stable, x86

On Fri, 26 Feb 2021 00:43:51 +0200 Mike Rapoport <rppt@kernel.org> wrote:

> From: Mike Rapoport <rppt@linux.ibm.com>
> 
> There could be struct pages that are not backed by actual physical memory.
> This can happen when the actual memory bank is not a multiple of
> SECTION_SIZE or when an architecture does not register memory holes
> reserved by the firmware as memblock.memory.
> 
> Such pages are currently initialized using init_unavailable_mem() function
> that iterates through PFNs in holes in memblock.memory and if there is a
> struct page corresponding to a PFN, the fields of this page are set to
> default values and it is marked as Reserved.
> 
> init_unavailable_mem() does not take into account zone and node the page
> belongs to and sets both zone and node links in struct page to zero.
> 
> Before commit 73a6e474cb37 ("mm: memmap_init: iterate over memblock regions
> rather that check each PFN") the holes inside a zone were re-initialized
> during memmap_init() and got their zone/node links right. However, after
> that commit nothing updates the struct pages representing such holes.
> 
> On a system that has firmware reserved holes in a zone above ZONE_DMA, for
> instance in a configuration below:
> 
> 	# grep -A1 E820 /proc/iomem
> 	7a17b000-7a216fff : Unknown E820 type
> 	7a217000-7bffffff : System RAM
> 
> unset zone link in struct page will trigger
> 
> 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
> 
> in set_pfnblock_flags_mask() when called with a struct page from a range
> other than E820_TYPE_RAM because there are pages in the range of ZONE_DMA32
> but the unset zone link in struct page makes them appear as a part of
> ZONE_DMA.
> 
> Interleave initialization of the unavailable pages with the normal
> initialization of memory map, so that zone and node information will be
> properly set on struct pages that are not backed by the actual memory.
> 
> With this change the pages for holes inside a zone will get proper
> zone/node links and the pages that are not spanned by any node will get
> links to the adjacent zone/node. The holes between nodes will be prepended
> to the zone/node above the hole and the trailing pages in the last section
> that will be appended to the zone/node below.
> 
> ...
>
> +#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
> +/*
> + * Only struct pages that correspond to ranges defined by memblock.memory
> + * are zeroed and initialized by going through __init_single_page() during
> + * memmap_init_zone().
> + *
> + * But, there could be struct pages that correspond to holes in
> + * memblock.memory. This can happen because of the following reasons:
> + * - physical memory bank size is not necessarily the exact multiple of the
> + *   arbitrary section size
> + * - early reserved memory may not be listed in memblock.memory
> + * - memory layouts defined with memmap= kernel parameter may not align
> + *   nicely with memmap sections
> + *
> + * Explicitly initialize those struct pages so that:
> + * - PG_Reserved is set
> + * - zone and node links point to zone and node that span the page if the
> + *   hole is in the middle of a zone
> + * - zone and node links point to adjacent zone/node if the hole falls on
> + *   the zone boundary; the pages in such holes will be prepended to the
> + *   zone/node above the hole except for the trailing pages in the last
> + *   section that will be appended to the zone/node below.
> + */

The comment helps lot.

>  void __meminit __weak memmap_init_zone(struct zone *zone)
>  {
>  	unsigned long zone_start_pfn = zone->zone_start_pfn;
>  	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
>  	int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
> +	static unsigned long hole_pfn = 0;

static implies that pgdat->node_zones[] is alwyas sorted in ascending
pfn order.  Always true?

>  	unsigned long start_pfn, end_pfn;
> +	u64 pgcnt = 0;
>  
>  	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
>  		start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
> @@ -6295,7 +6348,29 @@ void __meminit __weak memmap_init_zone(struct zone *zone)
>  			memmap_init_range(end_pfn - start_pfn, nid,
>  					zone_id, start_pfn, zone_end_pfn,
>  					MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
> +
> +		if (hole_pfn < start_pfn)
> +			pgcnt += init_unavailable_range(hole_pfn, start_pfn,
> +							zone_id, nid);
> +		hole_pfn = end_pfn;
>  	}
> +
> +#ifdef CONFIG_SPARSEMEM
> +	/*
> +	 * Initialize the hole in the range [zone_end_pfn, section_end].
> +	 * If zone boundary falls in the middle of a section, this hole
> +	 * will be re-initialized during the call to this function for the
> +	 * higher zone.
> +	 */
> +	end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
> +	if (hole_pfn < end_pfn)
> +		pgcnt += init_unavailable_range(hole_pfn, end_pfn,
> +						zone_id, nid);
> +#endif
> +
> +	if (pgcnt)
> +		pr_info("  %s zone: %lld pages in unavailable ranges\n",
> +			zone->name, pgcnt);

I'll make that %llu




^ permalink raw reply	[flat|nested] 6+ messages in thread

* Re: [PATCH v8 1/1] mm/page_alloc.c: refactor initialization of struct page for holes in memory layout
  2021-02-26  0:08   ` Andrew Morton
@ 2021-02-26  6:14     ` Mike Rapoport
  0 siblings, 0 replies; 6+ messages in thread
From: Mike Rapoport @ 2021-02-26  6:14 UTC (permalink / raw)
  To: Andrew Morton
  Cc: Andrea Arcangeli, Baoquan He, Borislav Petkov, Chris Wilson,
	David Hildenbrand, H. Peter Anvin, Ingo Molnar, Linus Torvalds,
	Łukasz Majczak, Mel Gorman, Michal Hocko, Mike Rapoport,
	Qian Cai, Sarvela, Tomi P, Thomas Gleixner, Vlastimil Babka,
	linux-kernel, linux-mm, stable, x86

On Thu, Feb 25, 2021 at 04:08:51PM -0800, Andrew Morton wrote:
> On Fri, 26 Feb 2021 00:43:51 +0200 Mike Rapoport <rppt@kernel.org> wrote:
> 
> > From: Mike Rapoport <rppt@linux.ibm.com>
> 
> >  void __meminit __weak memmap_init_zone(struct zone *zone)
> >  {
> >  	unsigned long zone_start_pfn = zone->zone_start_pfn;
> >  	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
> >  	int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
> > +	static unsigned long hole_pfn = 0;
> 
> static implies that pgdat->node_zones[] is alwyas sorted in ascending
> pfn order.  Always true?

Yes.

-- 
Sincerely yours,
Mike.


^ permalink raw reply	[flat|nested] 6+ messages in thread

* Re: [PATCH v8 1/1] mm/page_alloc.c: refactor initialization of struct page for holes in memory layout
  2021-02-25 22:43 ` [PATCH v8 1/1] mm/page_alloc.c: refactor " Mike Rapoport
  2021-02-26  0:08   ` Andrew Morton
@ 2021-02-26  6:42   ` Greg KH
  2021-02-26 11:07   ` David Hildenbrand
  2 siblings, 0 replies; 6+ messages in thread
From: Greg KH @ 2021-02-26  6:42 UTC (permalink / raw)
  To: Mike Rapoport
  Cc: Andrew Morton, Andrea Arcangeli, Baoquan He, Borislav Petkov,
	Chris Wilson, David Hildenbrand, H. Peter Anvin, Ingo Molnar,
	Linus Torvalds, Łukasz Majczak, Mel Gorman, Michal Hocko,
	Mike Rapoport, Qian Cai, Sarvela, Tomi P, Thomas Gleixner,
	Vlastimil Babka, linux-kernel, linux-mm, stable, x86

On Fri, Feb 26, 2021 at 12:43:51AM +0200, Mike Rapoport wrote:
> From: Mike Rapoport <rppt@linux.ibm.com>
> 
> There could be struct pages that are not backed by actual physical memory.
> This can happen when the actual memory bank is not a multiple of
> SECTION_SIZE or when an architecture does not register memory holes
> reserved by the firmware as memblock.memory.
> 
> Such pages are currently initialized using init_unavailable_mem() function
> that iterates through PFNs in holes in memblock.memory and if there is a
> struct page corresponding to a PFN, the fields of this page are set to
> default values and it is marked as Reserved.
> 
> init_unavailable_mem() does not take into account zone and node the page
> belongs to and sets both zone and node links in struct page to zero.
> 
> Before commit 73a6e474cb37 ("mm: memmap_init: iterate over memblock regions
> rather that check each PFN") the holes inside a zone were re-initialized
> during memmap_init() and got their zone/node links right. However, after
> that commit nothing updates the struct pages representing such holes.
> 
> On a system that has firmware reserved holes in a zone above ZONE_DMA, for
> instance in a configuration below:
> 
> 	# grep -A1 E820 /proc/iomem
> 	7a17b000-7a216fff : Unknown E820 type
> 	7a217000-7bffffff : System RAM
> 
> unset zone link in struct page will trigger
> 
> 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
> 
> in set_pfnblock_flags_mask() when called with a struct page from a range
> other than E820_TYPE_RAM because there are pages in the range of ZONE_DMA32
> but the unset zone link in struct page makes them appear as a part of
> ZONE_DMA.
> 
> Interleave initialization of the unavailable pages with the normal
> initialization of memory map, so that zone and node information will be
> properly set on struct pages that are not backed by the actual memory.
> 
> With this change the pages for holes inside a zone will get proper
> zone/node links and the pages that are not spanned by any node will get
> links to the adjacent zone/node. The holes between nodes will be prepended
> to the zone/node above the hole and the trailing pages in the last section
> that will be appended to the zone/node below.
> 
> Fixes: 73a6e474cb37 ("mm: memmap_init: iterate over memblock regions rather that check each PFN")
> Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
> Reported-by: Qian Cai <cai@lca.pw>
> Reported-by: Andrea Arcangeli <aarcange@redhat.com>
> Reviewed-by: Baoquan He <bhe@redhat.com>
> Acked-by: Vlastimil Babka <vbabka@suse.cz>
> ---
>  mm/page_alloc.c | 158 +++++++++++++++++++++++-------------------------
>  1 file changed, 75 insertions(+), 83 deletions(-)

<formletter>

This is not the correct way to submit patches for inclusion in the
stable kernel tree.  Please read:
    https://www.kernel.org/doc/html/latest/process/stable-kernel-rules.html
for how to do this properly.

</formletter>


^ permalink raw reply	[flat|nested] 6+ messages in thread

* Re: [PATCH v8 1/1] mm/page_alloc.c: refactor initialization of struct page for holes in memory layout
  2021-02-25 22:43 ` [PATCH v8 1/1] mm/page_alloc.c: refactor " Mike Rapoport
  2021-02-26  0:08   ` Andrew Morton
  2021-02-26  6:42   ` Greg KH
@ 2021-02-26 11:07   ` David Hildenbrand
  2 siblings, 0 replies; 6+ messages in thread
From: David Hildenbrand @ 2021-02-26 11:07 UTC (permalink / raw)
  To: Mike Rapoport, Andrew Morton
  Cc: Andrea Arcangeli, Baoquan He, Borislav Petkov, Chris Wilson,
	H. Peter Anvin, Ingo Molnar, Linus Torvalds, Łukasz Majczak,
	Mel Gorman, Michal Hocko, Mike Rapoport, Qian Cai, Sarvela,
	Tomi P, Thomas Gleixner, Vlastimil Babka, linux-kernel, linux-mm,
	stable, x86

On 25.02.21 23:43, Mike Rapoport wrote:
> From: Mike Rapoport <rppt@linux.ibm.com>
> 
> There could be struct pages that are not backed by actual physical memory.
> This can happen when the actual memory bank is not a multiple of
> SECTION_SIZE or when an architecture does not register memory holes
> reserved by the firmware as memblock.memory.
> 
> Such pages are currently initialized using init_unavailable_mem() function
> that iterates through PFNs in holes in memblock.memory and if there is a
> struct page corresponding to a PFN, the fields of this page are set to
> default values and it is marked as Reserved.
> 
> init_unavailable_mem() does not take into account zone and node the page
> belongs to and sets both zone and node links in struct page to zero.
> 
> Before commit 73a6e474cb37 ("mm: memmap_init: iterate over memblock regions
> rather that check each PFN") the holes inside a zone were re-initialized
> during memmap_init() and got their zone/node links right. However, after
> that commit nothing updates the struct pages representing such holes.
> 
> On a system that has firmware reserved holes in a zone above ZONE_DMA, for
> instance in a configuration below:
> 
> 	# grep -A1 E820 /proc/iomem
> 	7a17b000-7a216fff : Unknown E820 type
> 	7a217000-7bffffff : System RAM
> 
> unset zone link in struct page will trigger
> 
> 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
> 
> in set_pfnblock_flags_mask() when called with a struct page from a range
> other than E820_TYPE_RAM because there are pages in the range of ZONE_DMA32
> but the unset zone link in struct page makes them appear as a part of
> ZONE_DMA.
> 
> Interleave initialization of the unavailable pages with the normal
> initialization of memory map, so that zone and node information will be
> properly set on struct pages that are not backed by the actual memory.
> 
> With this change the pages for holes inside a zone will get proper
> zone/node links and the pages that are not spanned by any node will get
> links to the adjacent zone/node. The holes between nodes will be prepended
> to the zone/node above the hole and the trailing pages in the last section
> that will be appended to the zone/node below.
> 
> Fixes: 73a6e474cb37 ("mm: memmap_init: iterate over memblock regions rather that check each PFN")
> Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
> Reported-by: Qian Cai <cai@lca.pw>
> Reported-by: Andrea Arcangeli <aarcange@redhat.com>
> Reviewed-by: Baoquan He <bhe@redhat.com>
> Acked-by: Vlastimil Babka <vbabka@suse.cz>
> ---

Reviewed-by: David Hildenbrand <david@redhat.com>

Thanks Mike!


-- 
Thanks,

David / dhildenb



^ permalink raw reply	[flat|nested] 6+ messages in thread

end of thread, other threads:[~2021-02-26 11:07 UTC | newest]

Thread overview: 6+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2021-02-25 22:43 [PATCH v8 0/1] mm: fix initialization of struct page for holes in memory layout Mike Rapoport
2021-02-25 22:43 ` [PATCH v8 1/1] mm/page_alloc.c: refactor " Mike Rapoport
2021-02-26  0:08   ` Andrew Morton
2021-02-26  6:14     ` Mike Rapoport
2021-02-26  6:42   ` Greg KH
2021-02-26 11:07   ` David Hildenbrand

This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).