linux-kernel.vger.kernel.org archive mirror
 help / color / mirror / Atom feed
* [LINUX PATCH v13] rawnand: pl353: Add basic driver for arm pl353 smc nand interface
@ 2019-02-09  6:37 Naga Sureshkumar Relli
  2019-03-04  9:43 ` Miquel Raynal
  2019-03-26 13:27 ` Helmut Grohne
  0 siblings, 2 replies; 8+ messages in thread
From: Naga Sureshkumar Relli @ 2019-02-09  6:37 UTC (permalink / raw)
  To: bbrezillon, miquel.raynal, richard, dwmw2, computersforpeace,
	marek.vasut
  Cc: linux-mtd, linux-kernel, michals, nagasureshkumarrelli,
	Naga Sureshkumar Relli

Add driver for arm pl353 static memory controller nand interface with
HW ECC support. This controller is used in Xilinx Zynq SoC for
interfacing the NAND flash memory.

Signed-off-by: Naga Sureshkumar Relli <naga.sureshkumar.relli@xilinx.com>
---
xilinx zynq TRM link:
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

ARM pl353 smc TRM link:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0380g/DDI0380G_smc_pl350_series_r2p1_trm.pdf

Tested Micron MT29F2G08ABAEAWP (On-die capable) and AMD/Spansion S34ML01G1.

SMC memory controller driver is at drivers/memory/pl353-smc.c

Changes in v13:
 - Rebased the driver to mtd/next
Changes in v12:
 - Rebased the driver on top of v4.19 nand tree
 - Removed nand_scan_ident() and nand_scan_tail(), and added nand_controller_ops
   with ->attach_chip() and used nand_scan() instead.
 - Renamed pl353_nand_info structure to pl353_nand_controller
 - Renamed nand_base and nandaddr in pl353_nand_controller to 'regs' and 'buf_addr'
 - Added new API pl353_wait_for_ecc_done() to wait for ecc done and call it from
   pl353_nand_write_page_hwecc() and pl353_nand_read_page_hwecc()
 - Defined new macro for max ECC blocks
 - Added return value check for ecc.calculate()
 - Renamed pl353_nand_cmd_function() to pl353_nand_exec_op_cmd()
 - Added x16 bus-width support
 - The dependent driver pl353-smc is already reviewed and hence dropped the
   smc driver
Changes in v11:
 - Removed Documentation patch and added the required info in driver as
   per Boris comments.
 - Removed unwanted variables from pl353_nand_info as per Miquel comments
 - Removed IO_ADDR_R/W.
 - Replaced onhot() with hweight32()
 - Defined macros for static values in function pl353_nand_correct_data()
 - Removed all unnecessary delays
 - Used nand_wait_ready() where ever is required
 - Modifed the pl353_setup_data_interface() logic as per Miquel comments.
 - Taken array instead of 7 values in pl353_setup_data_interface() and pass
   it to smc driver.
 - Added check to collect the return value of mtd_device_register().
Changes in 10:
 - Typos correction like nand to NAND and soc to SOC etc..
 - Defined macros for the values in pl353_nand_calculate_hwecc()
 - Modifed ecc_status from int to char in pl353_nand_calculate_hwecc()
 - Changed the return type form int to bool to the function
   onehot()
 - Removed udelay(1000) in pl353_cmd_function, as it is not required
 - Dropped ecc->hwctl = NULL in pl353_ecc_init()
 - Added an error message in pl353_ecc_init(), when there is no matching
   oobsize
 - Changed the variable from xnand to xnfc
 - Added logic to get mtd->name from DT, if it is specified in DT
Changes in v9:
 - Addressed the below comments given by Miquel
 - instead of using pl353_nand_write32, use directly writel_relaxed
 - Fixed check patch warnings
 - Renamed write_buf/read_buf to write_data_op/read_data_op
 - use BIT macro instead of 1 << nr
 - Use NAND_ROW_ADDR_3 flag
 - Use nand_wait_ready()
 - Removed swecc functions
 - Use address cycles as per size, instead of reading it from Parameter page
 - Instead of writing too many patterns, use optional property
Changes in v8:
 - Added exec_op() implementation
 - Fixed the below v7 review comments
 - removed mtd_info from pl353_nand_info struct
 - Corrected ecc layout offsets
 - Added on-die ecc support
Changes in v7:
 - Currently not implemented the memclk rate adjustments. I will
   look into this later and once the basic driver is accepted.
 - Fixed GPL licence ident
Changes in v6:
 - Fixed the checkpatch.pl reported warnings
 - Using the address cycles information from the onfi param page
   earlier it is hardcoded to 5 in driver
Changes in v5:
 - Configure the nand timing parameters as per the onfi spec Changes in v4:
 - Updated the driver to sync with pl353_smc driver APIs
Changes in v3:
 - implemented the proper error codes
 - further breakdown this patch to multiple sets
 - added the controller and driver details to Documentation section
 - updated the licenece to GPLv2
 - reorganized the pl353_nand_ecc_init function
Changes in v2:
 - use "depends on" rather than "select" option in kconfig
 - remove unused variable parts
---
 drivers/mtd/nand/raw/Kconfig      |    8 +
 drivers/mtd/nand/raw/Makefile     |    1 +
 drivers/mtd/nand/raw/pl353_nand.c | 1380 +++++++++++++++++++++++++++++++++++++
 3 files changed, 1389 insertions(+)
 create mode 100644 drivers/mtd/nand/raw/pl353_nand.c

diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 1a55d3e..bc6c0a0 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -541,4 +541,12 @@ config MTD_NAND_TEGRA
 	  is supported. Extra OOB bytes when using HW ECC are currently
 	  not supported.
 
+config MTD_NAND_PL353
+	tristate "ARM Pl353 NAND flash driver"
+	depends on MTD_NAND && ARM
+	depends on PL353_SMC
+	help
+	  Enables support for PrimeCell Static Memory Controller PL353.
+
+
 endif # MTD_NAND
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index 57159b3..9d3c48d 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_BRCMNAND)		+= brcmnand/
 obj-$(CONFIG_MTD_NAND_QCOM)		+= qcom_nandc.o
 obj-$(CONFIG_MTD_NAND_MTK)		+= mtk_ecc.o mtk_nand.o
 obj-$(CONFIG_MTD_NAND_TEGRA)		+= tegra_nand.o
+obj-$(CONFIG_MTD_NAND_PL353)		+= pl353_nand.o
 
 nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
 nand-objs += nand_onfi.o
diff --git a/drivers/mtd/nand/raw/pl353_nand.c b/drivers/mtd/nand/raw/pl353_nand.c
new file mode 100644
index 0000000..1dbaae5
--- /dev/null
+++ b/drivers/mtd/nand/raw/pl353_nand.c
@@ -0,0 +1,1380 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * ARM PL353 NAND flash controller driver
+ *
+ * Copyright (C) 2017 Xilinx, Inc
+ * Author: Punnaiah chowdary kalluri <punnaiah@xilinx.com>
+ * Author: Naga Sureshkumar Relli <nagasure@xilinx.com>
+ *
+ */
+
+#include <linux/err.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/irq.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/of_platform.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/pl353-smc.h>
+#include <linux/clk.h>
+
+#define PL353_NAND_DRIVER_NAME "pl353-nand"
+
+/* NAND flash driver defines */
+#define PL353_NAND_CMD_PHASE	1	/* End command valid in command phase */
+#define PL353_NAND_DATA_PHASE	2	/* End command valid in data phase */
+#define PL353_NAND_ECC_SIZE	512	/* Size of data for ECC operation */
+
+/* Flash memory controller operating parameters */
+
+#define PL353_NAND_ECC_CONFIG	(BIT(4)  |	/* ECC read at end of page */ \
+				 (0 << 5))	/* No Jumping */
+
+/* AXI Address definitions */
+#define START_CMD_SHIFT		3
+#define END_CMD_SHIFT		11
+#define END_CMD_VALID_SHIFT	20
+#define ADDR_CYCLES_SHIFT	21
+#define CLEAR_CS_SHIFT		21
+#define ECC_LAST_SHIFT		10
+#define COMMAND_PHASE		(0 << 19)
+#define DATA_PHASE		BIT(19)
+
+#define PL353_NAND_ECC_LAST	BIT(ECC_LAST_SHIFT)	/* Set ECC_Last */
+#define PL353_NAND_CLEAR_CS	BIT(CLEAR_CS_SHIFT)	/* Clear chip select */
+
+#define PL353_NAND_ECC_BUSY_TIMEOUT	(1 * HZ)
+#define PL353_NAND_DEV_BUSY_TIMEOUT	(1 * HZ)
+#define PL353_NAND_LAST_TRANSFER_LENGTH	4
+#define PL353_NAND_ECC_VALID_SHIFT	24
+#define PL353_NAND_ECC_VALID_MASK	0x40
+#define PL353_ECC_BITS_BYTEOFF_MASK	0x1FF
+#define PL353_ECC_BITS_BITOFF_MASK	0x7
+#define PL353_ECC_BIT_MASK		0xFFF
+#define PL353_TREA_MAX_VALUE		1
+#define PL353_MAX_ECC_CHUNKS		4
+#define PL353_MAX_ECC_BYTES		3
+
+struct pl353_nfc_op {
+	u32 cmnds[4];
+	u32 end_cmd;
+	u32 addrs;
+	u32 naddrs;
+	u32 addr5;
+	u32 addr6;
+	unsigned int data_instr_idx;
+	unsigned int rdy_timeout_ms;
+	unsigned int rdy_delay_ns;
+	unsigned int cle_ale_delay_ns;
+	const struct nand_op_instr *data_instr;
+};
+
+/**
+ * struct pl353_nand_controller - Defines the NAND flash controller driver
+ *				  instance
+ * @chip:		NAND chip information structure
+ * @dev:		Parent device (used to print error messages)
+ * @regs:		Virtual address of the NAND flash device
+ * @buf_addr:		Virtual address of the NAND flash device for
+ *			data read/writes
+ * @addr_cycles:	Address cycles
+ * @mclk:		Memory controller clock
+ * @buswidth:		Bus width 8 or 16
+ */
+struct pl353_nand_controller {
+	struct nand_controller controller;
+	struct nand_chip chip;
+	struct device *dev;
+	void __iomem *regs;
+	void __iomem *buf_addr;
+	u8 addr_cycles;
+	struct clk *mclk;
+	u32 buswidth;
+};
+
+static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
+				     struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section >= chip->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = (section * chip->ecc.bytes);
+	oobregion->length = chip->ecc.bytes;
+
+	return 0;
+}
+
+static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
+				      struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section >= chip->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = (section * chip->ecc.bytes) + 8;
+	oobregion->length = 8;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops = {
+	.ecc = pl353_ecc_ooblayout16_ecc,
+	.free = pl353_ecc_ooblayout16_free,
+};
+
+static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section,
+				     struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section >= chip->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = (section * chip->ecc.bytes) + 52;
+	oobregion->length = chip->ecc.bytes;
+
+	return 0;
+}
+
+static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section,
+				      struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section)
+		return -ERANGE;
+
+	if (section >= chip->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = (section * chip->ecc.bytes) + 2;
+	oobregion->length = 50;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops = {
+	.ecc = pl353_ecc_ooblayout64_ecc,
+	.free = pl353_ecc_ooblayout64_free,
+};
+
+/* Generic flash bbt decriptors */
+static u8 bbt_pattern[] = { 'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = { '1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs = 4,
+	.len = 4,
+	.veroffs = 20,
+	.maxblocks = 4,
+	.pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs = 4,
+	.len = 4,
+	.veroffs = 20,
+	.maxblocks = 4,
+	.pattern = mirror_pattern
+};
+
+static void pl353_nfc_force_byte_access(struct nand_chip *chip,
+					bool force_8bit)
+{
+	struct pl353_nand_controller *xnfc =
+		container_of(chip, struct pl353_nand_controller, chip);
+
+	if (!(chip->options & NAND_BUSWIDTH_16))
+		return;
+
+	if (force_8bit)
+		pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_8);
+	else
+		pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
+}
+
+/**
+ * pl353_nand_read_data_op - read chip data into buffer
+ * @chip:	Pointer to the NAND chip info structure
+ * @in:		Pointer to the buffer to store read data
+ * @len:	Number of bytes to read
+ * @force_8bit:	Force 8-bit bus access
+ * Return:	Always return zero
+ */
+static int pl353_nand_read_data_op(struct nand_chip *chip,
+				   u8 *in,
+				   unsigned int len, bool force_8bit)
+{
+	int i;
+	struct pl353_nand_controller *xnfc =
+		container_of(chip, struct pl353_nand_controller, chip);
+
+	if (force_8bit)
+		pl353_nfc_force_byte_access(chip, true);
+
+	if ((IS_ALIGNED((uint32_t)in, sizeof(uint32_t)) &&
+	     IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) {
+		u32 *ptr = (u32 *)in;
+
+		len /= 4;
+		for (i = 0; i < len; i++)
+			ptr[i] = readl(xnfc->buf_addr);
+	} else {
+		for (i = 0; i < len; i++)
+			in[i] = readb(xnfc->buf_addr);
+	}
+	if (force_8bit)
+		pl353_nfc_force_byte_access(chip, false);
+
+	return 0;
+}
+
+/**
+ * pl353_nand_write_buf - write buffer to chip
+ * @mtd:	Pointer to the mtd info structure
+ * @buf:	Pointer to the buffer to store write data
+ * @len:	Number of bytes to write
+ * @force_8bit:	Force 8-bit bus access
+ */
+static void pl353_nand_write_data_op(struct nand_chip *chip, const u8 *buf,
+				     int len, bool force_8bit)
+{
+	int i;
+	struct pl353_nand_controller *xnfc =
+		container_of(chip, struct pl353_nand_controller, chip);
+
+	if (force_8bit)
+		pl353_nfc_force_byte_access(chip, true);
+
+	if ((IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
+	     IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) {
+		u32 *ptr = (u32 *)buf;
+
+		len /= 4;
+		for (i = 0; i < len; i++)
+			writel(ptr[i], xnfc->buf_addr);
+	} else {
+		for (i = 0; i < len; i++)
+			writeb(buf[i], xnfc->buf_addr);
+	}
+	if (force_8bit)
+		pl353_nfc_force_byte_access(chip, false);
+}
+
+static int pl353_wait_for_ecc_done(void)
+{
+	unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
+
+	do {
+		if (pl353_smc_ecc_is_busy())
+			cpu_relax();
+		else
+			break;
+	} while (!time_after_eq(jiffies, timeout));
+
+	if (time_after_eq(jiffies, timeout)) {
+		pr_err("%s timed out\n", __func__);
+		return -ETIMEDOUT;
+	}
+
+	return 0;
+}
+
+/**
+ * pl353_nand_calculate_hwecc - Calculate Hardware ECC
+ * @mtd:	Pointer to the mtd_info structure
+ * @data:	Pointer to the page data
+ * @ecc:	Pointer to the ECC buffer where ECC data needs to be stored
+ *
+ * This function retrieves the Hardware ECC data from the controller and returns
+ * ECC data back to the MTD subsystem.
+ * It operates on a number of 512 byte blocks of NAND memory and can be
+ * programmed to store the ECC codes after the data in memory. For writes,
+ * the ECC is written to the spare area of the page. For reads, the result of
+ * a block ECC check are made available to the device driver.
+ *
+ * ------------------------------------------------------------------------
+ * |               n * 512 blocks                  | extra  | ecc    |     |
+ * |                                               | block  | codes  |     |
+ * ------------------------------------------------------------------------
+ *
+ * The ECC calculation uses a simple Hamming code, using 1-bit correction 2-bit
+ * detection. It starts when a valid read or write command with a 512 byte
+ * aligned address is detected on the memory interface.
+ *
+ * Return:	0 on success or error value on failure
+ */
+static int pl353_nand_calculate_hwecc(struct nand_chip *chip,
+				      const u8 *data, u8 *ecc)
+{
+	u32 ecc_value;
+	u8 chunk, ecc_byte, ecc_status;
+
+	for (chunk = 0; chunk < PL353_MAX_ECC_CHUNKS; chunk++) {
+		/* Read ECC value for each block */
+		ecc_value = pl353_smc_get_ecc_val(chunk);
+		ecc_status = (ecc_value >> PL353_NAND_ECC_VALID_SHIFT);
+
+		/* ECC value valid */
+		if (ecc_status & PL353_NAND_ECC_VALID_MASK) {
+			for (ecc_byte = 0; ecc_byte < PL353_MAX_ECC_BYTES;
+			     ecc_byte++) {
+				/* Copy ECC bytes to MTD buffer */
+				*ecc = ~ecc_value & 0xFF;
+				ecc_value = ecc_value >> 8;
+				ecc++;
+			}
+		} else {
+			pr_warn("%s status failed\n", __func__);
+			return -1;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * pl353_nand_correct_data - ECC correction function
+ * @mtd:	Pointer to the mtd_info structure
+ * @buf:	Pointer to the page data
+ * @read_ecc:	Pointer to the ECC value read from spare data area
+ * @calc_ecc:	Pointer to the calculated ECC value
+ *
+ * This function corrects the ECC single bit errors & detects 2-bit errors.
+ *
+ * Return:	0 if no ECC errors found
+ *		1 if single bit error found and corrected.
+ *		-1 if multiple uncorrectable ECC errors found.
+ */
+static int pl353_nand_correct_data(struct nand_chip *chip, unsigned char *buf,
+				   unsigned char *read_ecc,
+				   unsigned char *calc_ecc)
+{
+	unsigned char bit_addr;
+	unsigned int byte_addr;
+	unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
+	unsigned short calc_ecc_lower, calc_ecc_upper;
+
+	read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) &
+			  PL353_ECC_BIT_MASK;
+	read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) &
+			  PL353_ECC_BIT_MASK;
+
+	calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) &
+			  PL353_ECC_BIT_MASK;
+	calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) &
+			  PL353_ECC_BIT_MASK;
+
+	ecc_odd = read_ecc_lower ^ calc_ecc_lower;
+	ecc_even = read_ecc_upper ^ calc_ecc_upper;
+
+	/* no error */
+	if (!ecc_odd && !ecc_even)
+		return 0;
+
+	if (ecc_odd == (~ecc_even & PL353_ECC_BIT_MASK)) {
+		/* bits [11:3] of error code is byte offset */
+		byte_addr = (ecc_odd >> 3) & PL353_ECC_BITS_BYTEOFF_MASK;
+		/* bits [2:0] of error code is bit offset */
+		bit_addr = ecc_odd & PL353_ECC_BITS_BITOFF_MASK;
+		/* Toggling error bit */
+		buf[byte_addr] ^= (BIT(bit_addr));
+		return 1;
+	}
+
+	/* one error in parity */
+	if (hweight32(ecc_odd | ecc_even) == 1)
+		return 1;
+
+	/* Uncorrectable error */
+	return -1;
+}
+
+static void pl353_prepare_cmd(struct nand_chip *chip,
+			      int page, int column, int start_cmd, int end_cmd,
+			      bool read)
+{
+	unsigned long data_phase_addr;
+	u32 end_cmd_valid = 0;
+	unsigned long cmd_phase_addr = 0, cmd_phase_data = 0;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	struct pl353_nand_controller *xnfc =
+		container_of(chip, struct pl353_nand_controller, chip);
+
+	end_cmd_valid = read ? 1 : 0;
+
+	cmd_phase_addr = (unsigned long __force)xnfc->regs +
+			 ((xnfc->addr_cycles
+			 << ADDR_CYCLES_SHIFT) |
+			 (end_cmd_valid << END_CMD_VALID_SHIFT) |
+			 (COMMAND_PHASE) |
+			 (end_cmd << END_CMD_SHIFT) |
+			 (start_cmd << START_CMD_SHIFT));
+
+	/* Get the data phase address */
+	data_phase_addr = (unsigned long __force)xnfc->regs +
+			  ((0x0 << CLEAR_CS_SHIFT) |
+			  (0 << END_CMD_VALID_SHIFT) |
+			  (DATA_PHASE) |
+			  (end_cmd << END_CMD_SHIFT) |
+			  (0x0 << ECC_LAST_SHIFT));
+
+	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
+
+	if (chip->options & NAND_BUSWIDTH_16)
+		column /= 2;
+	cmd_phase_data = column;
+	if (mtd->writesize > PL353_NAND_ECC_SIZE) {
+		cmd_phase_data |= page << 16;
+		/* Another address cycle for devices > 128MiB */
+		if (chip->options & NAND_ROW_ADDR_3) {
+			writel_relaxed(cmd_phase_data,
+				       (void __iomem * __force)cmd_phase_addr);
+			cmd_phase_data = (page >> 16);
+		}
+	} else {
+		cmd_phase_data |= page << 8;
+	}
+
+	writel_relaxed(cmd_phase_data, (void __iomem * __force)cmd_phase_addr);
+}
+
+/**
+ * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function
+ * @mtd:	Pointer to the mtd_info structure
+ * @chip:	Pointer to the nand_chip structure
+ * @page:	Page number to read
+ *
+ * Return:	Always return zero
+ */
+static int pl353_nand_read_oob(struct nand_chip *chip,
+			       int page)
+{
+	unsigned long data_phase_addr;
+	u8 *p;
+	struct pl353_nand_controller *xnfc =
+		container_of(chip, struct pl353_nand_controller, chip);
+	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	chip->pagebuf = -1;
+	if (mtd->writesize < PL353_NAND_ECC_SIZE)
+		return 0;
+
+	pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_READ0,
+			  NAND_CMD_READSTART, 1);
+
+	nand_wait_ready(chip);
+
+	p = chip->oob_poi;
+	pl353_nand_read_data_op(chip, p,
+				(mtd->oobsize -
+				PL353_NAND_LAST_TRANSFER_LENGTH), false);
+	p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
+	data_phase_addr -= nand_offset;
+	data_phase_addr |= PL353_NAND_CLEAR_CS;
+	data_phase_addr += nand_offset;
+	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
+	pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
+				false);
+
+	return 0;
+}
+
+/**
+ * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write function
+ * @mtd:	Pointer to the mtd info structure
+ * @chip:	Pointer to the NAND chip info structure
+ * @page:	Page number to write
+ *
+ * Return:	Zero on success and EIO on failure
+ */
+static int pl353_nand_write_oob(struct nand_chip *chip,
+				int page)
+{
+	const u8 *buf = chip->oob_poi;
+	unsigned long data_phase_addr;
+	struct pl353_nand_controller *xnfc =
+		container_of(chip, struct pl353_nand_controller, chip);
+	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u32 addrcycles = 0;
+
+	chip->pagebuf = -1;
+	addrcycles = xnfc->addr_cycles;
+	pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_SEQIN,
+			  NAND_CMD_PAGEPROG, 0);
+
+	pl353_nand_write_data_op(chip, buf,
+				 (mtd->oobsize -
+				 PL353_NAND_LAST_TRANSFER_LENGTH), false);
+	buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
+	data_phase_addr -= nand_offset;
+	data_phase_addr |= PL353_NAND_CLEAR_CS;
+	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+	data_phase_addr += nand_offset;
+	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
+	pl353_nand_write_data_op(chip, buf, PL353_NAND_LAST_TRANSFER_LENGTH,
+				 false);
+	nand_wait_ready(chip);
+
+	return 0;
+}
+
+/**
+ * pl353_nand_read_page_raw - [Intern] read raw page data without ecc
+ * @mtd:		Pointer to the mtd info structure
+ * @chip:		Pointer to the NAND chip info structure
+ * @buf:		Pointer to the data buffer
+ * @oob_required:	Caller requires OOB data read to chip->oob_poi
+ * @page:		Page number to read
+ *
+ * Return:	Always return zero
+ */
+static int pl353_nand_read_page_raw(struct nand_chip *chip,
+				    u8 *buf, int oob_required, int page)
+{
+	unsigned long data_phase_addr;
+	u8 *p;
+	struct pl353_nand_controller *xnfc =
+		container_of(chip, struct pl353_nand_controller, chip);
+	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0,
+			  NAND_CMD_READSTART, 1);
+	nand_wait_ready(chip);
+	pl353_nand_read_data_op(chip, buf, mtd->writesize, false);
+	p = chip->oob_poi;
+	pl353_nand_read_data_op(chip, p,
+				(mtd->oobsize -
+				PL353_NAND_LAST_TRANSFER_LENGTH), false);
+	p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
+	data_phase_addr -= nand_offset;
+	data_phase_addr |= PL353_NAND_CLEAR_CS;
+	data_phase_addr += nand_offset;
+	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
+
+	pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
+				false);
+
+	return 0;
+}
+
+/**
+ * pl353_nand_write_page_raw - [Intern] raw page write function
+ * @mtd:		Pointer to the mtd info structure
+ * @chip:		Pointer to the NAND chip info structure
+ * @buf:		Pointer to the data buffer
+ * @oob_required:	Caller requires OOB data read to chip->oob_poi
+ * @page:		Page number to write
+ *
+ * Return:	Always return zero
+ */
+static int pl353_nand_write_page_raw(struct nand_chip *chip,
+				     const u8 *buf, int oob_required,
+				     int page)
+{
+	unsigned long data_phase_addr;
+	u8 *p;
+	struct pl353_nand_controller *xnfc =
+		container_of(chip, struct pl353_nand_controller, chip);
+	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN,
+			  NAND_CMD_PAGEPROG, 0);
+	pl353_nand_write_data_op(chip, buf, mtd->writesize, false);
+	p = chip->oob_poi;
+	pl353_nand_write_data_op(chip, p,
+				 (mtd->oobsize -
+				 PL353_NAND_LAST_TRANSFER_LENGTH), false);
+	p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
+	data_phase_addr -= nand_offset;
+	data_phase_addr |= PL353_NAND_CLEAR_CS;
+	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+	data_phase_addr += nand_offset;
+	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
+	pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
+				 false);
+
+	return 0;
+}
+
+/**
+ * nand_write_page_hwecc - Hardware ECC based page write function
+ * @mtd:		Pointer to the mtd info structure
+ * @chip:		Pointer to the NAND chip info structure
+ * @buf:		Pointer to the data buffer
+ * @oob_required:	Caller requires OOB data read to chip->oob_poi
+ * @page:		Page number to write
+ *
+ * This functions writes data and hardware generated ECC values in to the page.
+ *
+ * Return:	Always return zero
+ */
+static int pl353_nand_write_page_hwecc(struct nand_chip *chip,
+				       const u8 *buf, int oob_required,
+				       int page)
+{
+	int eccsize = chip->ecc.size;
+	int eccsteps = chip->ecc.steps;
+	u8 *ecc_calc = chip->ecc.calc_buf;
+	u8 *oob_ptr;
+	const u8 *p = buf;
+	u32 ret;
+	unsigned long data_phase_addr;
+	struct pl353_nand_controller *xnfc =
+		container_of(chip, struct pl353_nand_controller, chip);
+	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN,
+			  NAND_CMD_PAGEPROG, 0);
+
+	for ( ; (eccsteps - 1); eccsteps--) {
+		pl353_nand_write_data_op(chip, p, eccsize, false);
+		p += eccsize;
+	}
+	pl353_nand_write_data_op(chip, p,
+				 (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH),
+				 false);
+	p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+	/* Set ECC Last bit to 1 */
+	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
+	data_phase_addr -= nand_offset;
+	data_phase_addr |= PL353_NAND_ECC_LAST;
+	data_phase_addr += nand_offset;
+	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
+	pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
+				 false);
+
+	/* Wait till the ECC operation is complete or timeout */
+	ret = pl353_wait_for_ecc_done();
+	if (ret)
+		dev_err(xnfc->dev, "ECC Timeout\n");
+	p = buf;
+	ret = chip->ecc.calculate(chip, p, &ecc_calc[0]);
+	if (ret)
+		return ret;
+
+	/* Wait for ECC to be calculated and read the error values */
+	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
+					 0, chip->ecc.total);
+	if (ret)
+		return ret;
+	/* Clear ECC last bit */
+	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
+	data_phase_addr -= nand_offset;
+	data_phase_addr &= ~PL353_NAND_ECC_LAST;
+	data_phase_addr += nand_offset;
+	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
+
+	/* Write the spare area with ECC bytes */
+	oob_ptr = chip->oob_poi;
+	pl353_nand_write_data_op(chip, oob_ptr,
+				 (mtd->oobsize -
+				 PL353_NAND_LAST_TRANSFER_LENGTH), false);
+
+	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
+	data_phase_addr -= nand_offset;
+	data_phase_addr |= PL353_NAND_CLEAR_CS;
+	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+	data_phase_addr += nand_offset;
+	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
+	oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+	pl353_nand_write_data_op(chip, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH,
+				 false);
+	nand_wait_ready(chip);
+
+	return 0;
+}
+
+/**
+ * pl353_nand_read_page_hwecc - Hardware ECC based page read function
+ * @mtd:		Pointer to the mtd info structure
+ * @chip:		Pointer to the NAND chip info structure
+ * @buf:		Pointer to the buffer to store read data
+ * @oob_required:	Caller requires OOB data read to chip->oob_poi
+ * @page:		Page number to read
+ *
+ * This functions reads data and checks the data integrity by comparing
+ * hardware generated ECC values and read ECC values from spare area.
+ * There is a limitation in SMC controller, that we must set ECC LAST on
+ * last data phase access, to tell ECC block not to expect any data further.
+ * Ex:  When number of ECC STEPS are 4, then till 3 we will write to flash
+ * using SMC with HW ECC enabled. And for the last ECC STEP, we will subtract
+ * 4bytes from page size, and will initiate a transfer. And the remaining 4 as
+ * one more transfer with ECC_LAST bit set in NAND data phase register to
+ * notify ECC block not to expect any more data. The last block should be align
+ * with end of 512 byte block. Because of this limitation, we are not using
+ * core routines.
+ *
+ * Return:	0 always and updates ECC operation status in to MTD structure
+ */
+static int pl353_nand_read_page_hwecc(struct nand_chip *chip,
+				      u8 *buf, int oob_required, int page)
+{
+	int i, stat, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	u8 *p = buf;
+	u8 *ecc_calc = chip->ecc.calc_buf;
+	u8 *ecc = chip->ecc.code_buf;
+	unsigned int max_bitflips = 0;
+	u8 *oob_ptr;
+	u32 ret;
+	unsigned long data_phase_addr;
+	struct pl353_nand_controller *xnfc =
+		container_of(chip, struct pl353_nand_controller, chip);
+	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0,
+			  NAND_CMD_READSTART, 1);
+	nand_wait_ready(chip);
+
+	for ( ; (eccsteps - 1); eccsteps--) {
+		pl353_nand_read_data_op(chip, p, eccsize, false);
+		p += eccsize;
+	}
+	pl353_nand_read_data_op(chip, p,
+				(eccsize - PL353_NAND_LAST_TRANSFER_LENGTH),
+				false);
+	p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+	/* Set ECC Last bit to 1 */
+	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
+	data_phase_addr -= nand_offset;
+	data_phase_addr |= PL353_NAND_ECC_LAST;
+	data_phase_addr += nand_offset;
+	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
+	pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
+				false);
+
+	/* Wait till the ECC operation is complete or timeout */
+	ret = pl353_wait_for_ecc_done();
+	if (ret)
+		dev_err(xnfc->dev, "ECC Timeout\n");
+
+	/* Read the calculated ECC value */
+	p = buf;
+	ret = chip->ecc.calculate(chip, p, &ecc_calc[0]);
+	if (ret)
+		return ret;
+
+	/* Clear ECC last bit */
+	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
+	data_phase_addr -= nand_offset;
+	data_phase_addr &= ~PL353_NAND_ECC_LAST;
+	data_phase_addr += nand_offset;
+	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
+
+	/* Read the stored ECC value */
+	oob_ptr = chip->oob_poi;
+	pl353_nand_read_data_op(chip, oob_ptr,
+				(mtd->oobsize -
+				PL353_NAND_LAST_TRANSFER_LENGTH), false);
+
+	/* de-assert chip select */
+	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
+	data_phase_addr -= nand_offset;
+	data_phase_addr |= PL353_NAND_CLEAR_CS;
+	data_phase_addr += nand_offset;
+	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
+
+	oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+	pl353_nand_read_data_op(chip, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH,
+				false);
+
+	ret = mtd_ooblayout_get_eccbytes(mtd, ecc, chip->oob_poi, 0,
+					 chip->ecc.total);
+	if (ret)
+		return ret;
+
+	eccsteps = chip->ecc.steps;
+	p = buf;
+
+	/* Check ECC error for all blocks and correct if it is correctable */
+	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		stat = chip->ecc.correct(chip, p, &ecc[i], &ecc_calc[i]);
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+	}
+
+	return max_bitflips;
+}
+
+/* NAND framework ->exec_op() hooks and related helpers */
+static void pl353_nfc_parse_instructions(struct nand_chip *chip,
+					 const struct nand_subop *subop,
+					 struct pl353_nfc_op *nfc_op)
+{
+	const struct nand_op_instr *instr = NULL;
+	unsigned int op_id, offset, naddrs;
+	int i;
+	const u8 *addrs;
+
+	memset(nfc_op, 0, sizeof(struct pl353_nfc_op));
+	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
+		instr = &subop->instrs[op_id];
+
+		switch (instr->type) {
+		case NAND_OP_CMD_INSTR:
+			if (op_id)
+				nfc_op->cmnds[1] = instr->ctx.cmd.opcode;
+			else
+				nfc_op->cmnds[0] = instr->ctx.cmd.opcode;
+			nfc_op->cle_ale_delay_ns = instr->delay_ns;
+			break;
+
+		case NAND_OP_ADDR_INSTR:
+			offset = nand_subop_get_addr_start_off(subop, op_id);
+			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+			addrs = &instr->ctx.addr.addrs[offset];
+			nfc_op->addrs = instr->ctx.addr.addrs[offset];
+			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) {
+				nfc_op->addrs |= instr->ctx.addr.addrs[i] <<
+						 (8 * i);
+			}
+
+			if (naddrs >= 5)
+				nfc_op->addr5 = addrs[4];
+			if (naddrs >= 6)
+				nfc_op->addr6 = addrs[5];
+			nfc_op->naddrs = nand_subop_get_num_addr_cyc(subop,
+								     op_id);
+			nfc_op->cle_ale_delay_ns = instr->delay_ns;
+			break;
+
+		case NAND_OP_DATA_IN_INSTR:
+			nfc_op->data_instr = instr;
+			nfc_op->data_instr_idx = op_id;
+			break;
+
+		case NAND_OP_DATA_OUT_INSTR:
+			nfc_op->data_instr = instr;
+			nfc_op->data_instr_idx = op_id;
+			break;
+
+		case NAND_OP_WAITRDY_INSTR:
+			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
+			nfc_op->rdy_delay_ns = instr->delay_ns;
+			break;
+		}
+	}
+}
+
+static void cond_delay(unsigned int ns)
+{
+	if (!ns)
+		return;
+
+	if (ns < 10000)
+		ndelay(ns);
+	else
+		udelay(DIV_ROUND_UP(ns, 1000));
+}
+
+/**
+ * pl353_nand_exec_op_cmd - Send command to NAND device
+ * @chip:	Pointer to the NAND chip info structure
+ * @subop:	Pointer to array of instructions
+ * Return:	Always return zero
+ */
+static int pl353_nand_exec_op_cmd(struct nand_chip *chip,
+				  const struct nand_subop *subop)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const struct nand_op_instr *instr;
+	struct pl353_nfc_op nfc_op = {};
+	struct pl353_nand_controller *xnfc =
+		container_of(chip, struct pl353_nand_controller, chip);
+	unsigned long cmd_phase_data = 0, end_cmd_valid = 0;
+	unsigned long cmd_phase_addr, data_phase_addr, end_cmd;
+	unsigned int op_id, len, offset;
+	bool reading;
+
+	pl353_nfc_parse_instructions(chip, subop, &nfc_op);
+	instr = nfc_op.data_instr;
+	op_id = nfc_op.data_instr_idx;
+
+	offset = nand_subop_get_data_start_off(subop, op_id);
+
+	pl353_smc_clr_nand_int();
+	/* Get the command phase address */
+	if (nfc_op.cmnds[1] != 0) {
+		if (nfc_op.cmnds[0] == NAND_CMD_SEQIN)
+			end_cmd_valid = 0;
+		else
+			end_cmd_valid = 1;
+		end_cmd = nfc_op.cmnds[1];
+	}  else {
+		end_cmd = 0x0;
+	}
+
+	/*
+	 * The SMC defines two phases of commands when transferring data to or
+	 * from NAND flash.
+	 * Command phase: Commands and optional address information are written
+	 * to the NAND flash.The command and address can be associated with
+	 * either a data phase operation to write to or read from the array,
+	 * or a status/ID register transfer.
+	 * Data phase: Data is either written to or read from the NAND flash.
+	 * This data can be either data transferred to or from the array,
+	 * or status/ID register information.
+	 */
+	cmd_phase_addr = (unsigned long __force)xnfc->regs +
+			 ((nfc_op.naddrs << ADDR_CYCLES_SHIFT) |
+			 (end_cmd_valid << END_CMD_VALID_SHIFT) |
+			 (COMMAND_PHASE) |
+			 (end_cmd << END_CMD_SHIFT) |
+			 (nfc_op.cmnds[0] << START_CMD_SHIFT));
+
+	/* Get the data phase address */
+	end_cmd_valid = 0;
+
+	data_phase_addr = (unsigned long __force)xnfc->regs +
+			  ((0x0 << CLEAR_CS_SHIFT) |
+			  (end_cmd_valid << END_CMD_VALID_SHIFT) |
+			  (DATA_PHASE) |
+			  (end_cmd << END_CMD_SHIFT) |
+			  (0x0 << ECC_LAST_SHIFT));
+	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
+
+	/* Command phase AXI Read & Write */
+	if (nfc_op.naddrs >= 5) {
+		if (mtd->writesize > PL353_NAND_ECC_SIZE) {
+			cmd_phase_data = nfc_op.addrs;
+			/* Another address cycle for devices > 128MiB */
+			if (chip->options & NAND_ROW_ADDR_3) {
+				writel_relaxed(cmd_phase_data,
+					       (void __iomem * __force)
+					       cmd_phase_addr);
+				cmd_phase_data = nfc_op.addr5;
+				if (nfc_op.naddrs >= 6)
+					cmd_phase_data |= (nfc_op.addr6 << 8);
+			}
+		}
+	}  else {
+		if (nfc_op.addrs != -1) {
+			int column = nfc_op.addrs;
+			/*
+			 * Change read/write column, read id etc
+			 * Adjust columns for 16 bit bus width
+			 */
+			if ((chip->options & NAND_BUSWIDTH_16) &&
+			    (nfc_op.cmnds[0] == NAND_CMD_READ0 ||
+				nfc_op.cmnds[0] == NAND_CMD_SEQIN ||
+				nfc_op.cmnds[0] == NAND_CMD_RNDOUT ||
+				nfc_op.cmnds[0] == NAND_CMD_RNDIN)) {
+				column >>= 1;
+			}
+			cmd_phase_data = column;
+		}
+	}
+	writel_relaxed(cmd_phase_data, (void __iomem * __force)cmd_phase_addr);
+
+	if (!nfc_op.data_instr) {
+		if (nfc_op.rdy_timeout_ms)
+			nand_wait_ready(chip);
+		return 0;
+	}
+
+	reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
+	if (!reading) {
+		len = nand_subop_get_data_len(subop, op_id);
+		pl353_nand_write_data_op(chip, instr->ctx.data.buf.out,
+					 len, instr->ctx.data.force_8bit);
+		if (nfc_op.rdy_timeout_ms)
+			nand_wait_ready(chip);
+		cond_delay(nfc_op.rdy_delay_ns);
+	}
+	if (reading) {
+		len = nand_subop_get_data_len(subop, op_id);
+		cond_delay(nfc_op.rdy_delay_ns);
+		if (nfc_op.rdy_timeout_ms)
+			nand_wait_ready(chip);
+		pl353_nand_read_data_op(chip, instr->ctx.data.buf.in, len,
+					instr->ctx.data.force_8bit);
+	}
+
+	return 0;
+}
+
+static const struct nand_op_parser pl353_nfc_op_parser = NAND_OP_PARSER
+	(NAND_OP_PARSER_PATTERN
+		(pl353_nand_exec_op_cmd,
+		NAND_OP_PARSER_PAT_CMD_ELEM(true),
+		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
+		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
+	NAND_OP_PARSER_PATTERN
+		(pl353_nand_exec_op_cmd,
+		NAND_OP_PARSER_PAT_CMD_ELEM(false),
+		NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
+		NAND_OP_PARSER_PAT_CMD_ELEM(false),
+		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false),
+		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
+	NAND_OP_PARSER_PATTERN
+		(pl353_nand_exec_op_cmd,
+		NAND_OP_PARSER_PAT_CMD_ELEM(false),
+		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
+		NAND_OP_PARSER_PAT_CMD_ELEM(true),
+		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+	NAND_OP_PARSER_PATTERN
+		(pl353_nand_exec_op_cmd,
+		NAND_OP_PARSER_PAT_CMD_ELEM(false),
+		NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8),
+		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048),
+		NAND_OP_PARSER_PAT_CMD_ELEM(true),
+		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+	NAND_OP_PARSER_PATTERN
+		(pl353_nand_exec_op_cmd,
+		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
+	);
+
+static int pl353_nfc_exec_op(struct nand_chip *chip,
+			     const struct nand_operation *op,
+			     bool check_only)
+{
+	return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser,
+					      op, check_only);
+}
+
+/**
+ * pl353_nand_device_ready - Check device ready/busy line
+ * @mtd:	Pointer to the mtd_info structure
+ *
+ * Return:	0 on busy or 1 on ready state
+ */
+static int pl353_nand_device_ready(struct nand_chip *chip)
+{
+	if (pl353_smc_get_nand_int_status_raw()) {
+		pl353_smc_clr_nand_int();
+		return 1;
+	}
+
+	return 0;
+}
+
+/**
+ * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode
+ * @mtd:	Pointer to the mtd_info structure
+ * @ecc:	Pointer to ECC control structure
+ * @ecc_mode:	ondie ecc status
+ *
+ * This function initializes the ecc block and functional pointers as per the
+ * ecc mode
+ *
+ * Return:	0 on success or negative errno.
+ */
+static int pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
+			       int ecc_mode)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct pl353_nand_controller *xnfc =
+		container_of(chip, struct pl353_nand_controller, chip);
+	int err = 0;
+
+	ecc->write_page_raw = pl353_nand_write_page_raw;
+	ecc->read_page_raw = pl353_nand_read_page_raw;
+	ecc->read_oob = pl353_nand_read_oob;
+	ecc->write_oob = pl353_nand_write_oob;
+
+	if (ecc_mode == NAND_ECC_ON_DIE) {
+		pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS);
+		/*
+		 * On-Die ECC spare bytes offset 8 is used for ECC codes
+		 * Use the BBT pattern descriptors
+		 */
+		chip->bbt_td = &bbt_main_descr;
+		chip->bbt_md = &bbt_mirror_descr;
+	} else {
+		ecc->mode = NAND_ECC_HW;
+		/* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
+		ecc->bytes = 3;
+		ecc->strength = 1;
+		ecc->calculate = pl353_nand_calculate_hwecc;
+		ecc->correct = pl353_nand_correct_data;
+		ecc->read_page = pl353_nand_read_page_hwecc;
+		ecc->size = PL353_NAND_ECC_SIZE;
+		ecc->read_page = pl353_nand_read_page_hwecc;
+		ecc->write_page = pl353_nand_write_page_hwecc;
+		pl353_smc_set_ecc_pg_size(mtd->writesize);
+		switch (mtd->writesize) {
+		case SZ_512:
+		case SZ_1K:
+		case SZ_2K:
+			pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB);
+			break;
+		default:
+			ecc->calculate = nand_calculate_ecc;
+			ecc->correct = nand_correct_data;
+			ecc->size = 256;
+			break;
+		}
+
+		if (mtd->oobsize == 16) {
+			mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout16_ops);
+		} else if (mtd->oobsize == 64) {
+			mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout64_ops);
+		} else {
+			err = -ENXIO;
+			dev_err(xnfc->dev, "Unsupported oob Layout\n");
+		}
+	}
+
+	return err;
+}
+
+static int pl353_nfc_setup_data_interface(struct nand_chip *chip, int csline,
+					  const struct nand_data_interface
+					  *conf)
+{
+	struct pl353_nand_controller *xnfc =
+		container_of(chip, struct pl353_nand_controller, chip);
+	const struct nand_sdr_timings *sdr;
+	u32 timings[7], mckperiodps;
+
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	sdr = nand_get_sdr_timings(conf);
+	if (IS_ERR(sdr))
+		return PTR_ERR(sdr);
+
+	/*
+	 * SDR timings are given in pico-seconds while NFC timings must be
+	 * expressed in NAND controller clock cycles.
+	 */
+	mckperiodps = NSEC_PER_SEC / clk_get_rate(xnfc->mclk);
+	mckperiodps *= 1000;
+	if (sdr->tRC_min <= 20000)
+		/*
+		 * PL353 SMC needs one extra read cycle in SDR Mode 5
+		 * This is not written anywhere in the datasheet but
+		 * the results observed during testing.
+		 */
+		timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps) + 1;
+	else
+		timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps);
+
+	timings[1] = DIV_ROUND_UP(sdr->tWC_min, mckperiodps);
+	/*
+	 * For all SDR modes, PL353 SMC needs tREA max value as 1,
+	 * Results observed during testing.
+	 */
+	timings[2] = PL353_TREA_MAX_VALUE;
+	timings[3] = DIV_ROUND_UP(sdr->tWP_min, mckperiodps);
+	timings[4] = DIV_ROUND_UP(sdr->tCLR_min, mckperiodps);
+	timings[5] = DIV_ROUND_UP(sdr->tAR_min, mckperiodps);
+	timings[6] = DIV_ROUND_UP(sdr->tRR_min, mckperiodps);
+	pl353_smc_set_cycles(timings);
+
+	return 0;
+}
+
+static int pl353_nand_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct pl353_nand_controller *xnfc =
+		container_of(chip, struct pl353_nand_controller, chip);
+	u32 ret;
+
+	if (chip->options & NAND_BUSWIDTH_16)
+		pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
+
+	if (mtd->writesize <= SZ_512)
+		xnfc->addr_cycles = 1;
+	else
+		xnfc->addr_cycles = 2;
+
+	if (chip->options & NAND_ROW_ADDR_3)
+		xnfc->addr_cycles += 3;
+	else
+		xnfc->addr_cycles += 2;
+
+	ret = pl353_nand_ecc_init(mtd, &chip->ecc, chip->ecc.mode);
+	if (ret) {
+		dev_err(xnfc->dev, "ECC init failed\n");
+		return ret;
+	}
+
+	if (!mtd->name) {
+		/*
+		 * If the new bindings are used and the bootloader has not been
+		 * updated to pass a new mtdparts parameter on the cmdline, you
+		 * should define the following property in your NAND node, ie:
+		 *
+		 *	label = "pl353-nand";
+		 *
+		 * This way, mtd->name will be set by the core when
+		 * nand_set_flash_node() is called.
+		 */
+		mtd->name = devm_kasprintf(xnfc->dev, GFP_KERNEL,
+					   "%s", PL353_NAND_DRIVER_NAME);
+		if (!mtd->name) {
+			dev_err(xnfc->dev, "Failed to allocate mtd->name\n");
+			return -ENOMEM;
+		}
+	}
+
+	return 0;
+}
+
+static const struct nand_controller_ops pl353_nand_controller_ops = {
+	.attach_chip = pl353_nand_attach_chip,
+	.exec_op = pl353_nfc_exec_op,
+	.setup_data_interface = pl353_nfc_setup_data_interface,
+};
+
+/**
+ * pl353_nand_probe - Probe method for the NAND driver
+ * @pdev:	Pointer to the platform_device structure
+ *
+ * This function initializes the driver data structures and the hardware.
+ * The NAND driver has dependency with the pl353_smc memory controller
+ * driver for initializing the NAND timing parameters, bus width, ECC modes,
+ * control and status information.
+ *
+ * Return:	0 on success or error value on failure
+ */
+static int pl353_nand_probe(struct platform_device *pdev)
+{
+	struct pl353_nand_controller *xnfc;
+	struct mtd_info *mtd;
+	struct nand_chip *chip;
+	struct resource *res;
+	struct device_node *np, *dn;
+	u32 ret, val;
+
+	xnfc = devm_kzalloc(&pdev->dev, sizeof(*xnfc), GFP_KERNEL);
+	if (!xnfc)
+		return -ENOMEM;
+	xnfc->dev = &pdev->dev;
+
+	nand_controller_init(&xnfc->controller);
+	xnfc->controller.ops = &pl353_nand_controller_ops;
+	/* Map physical address of NAND flash */
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	xnfc->regs = devm_ioremap_resource(xnfc->dev, res);
+	if (IS_ERR(xnfc->regs))
+		return PTR_ERR(xnfc->regs);
+
+	chip = &xnfc->chip;
+	chip->controller = &xnfc->controller;
+	mtd = nand_to_mtd(chip);
+	nand_set_controller_data(chip, xnfc);
+	mtd->priv = chip;
+	mtd->owner = THIS_MODULE;
+	nand_set_flash_node(chip, xnfc->dev->of_node);
+
+	/* Set the driver entry points for MTD */
+	chip->legacy.dev_ready = pl353_nand_device_ready;
+	/* If we don't set this delay driver sets 20us by default */
+	np = of_get_next_parent(xnfc->dev->of_node);
+	xnfc->mclk = of_clk_get(np, 0);
+	if (IS_ERR(xnfc->mclk)) {
+		dev_err(xnfc->dev, "Failed to retrieve MCK clk\n");
+		return PTR_ERR(xnfc->mclk);
+	}
+
+	dn = nand_get_flash_node(chip);
+
+	/* Set the device option and flash width */
+	chip->options = NAND_BUSWIDTH_AUTO;
+	chip->bbt_options = NAND_BBT_USE_FLASH;
+	platform_set_drvdata(pdev, xnfc);
+	ret = nand_scan(chip, 1);
+	if (ret) {
+		dev_err(xnfc->dev, "could not scan the nand chip\n");
+		return ret;
+	}
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret) {
+		dev_err(xnfc->dev, "Failed to register mtd device: %d\n", ret);
+		nand_cleanup(chip);
+		return ret;
+	}
+
+	return 0;
+}
+
+/**
+ * pl353_nand_remove - Remove method for the NAND driver
+ * @pdev:	Pointer to the platform_device structure
+ *
+ * This function is called if the driver module is being unloaded. It frees all
+ * resources allocated to the device.
+ *
+ * Return:	0 on success or error value on failure
+ */
+static int pl353_nand_remove(struct platform_device *pdev)
+{
+	struct pl353_nand_controller *xnfc = platform_get_drvdata(pdev);
+	struct mtd_info *mtd = nand_to_mtd(&xnfc->chip);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	/* Release resources, unregister device */
+	nand_release(chip);
+
+	return 0;
+}
+
+/* Match table for device tree binding */
+static const struct of_device_id pl353_nand_of_match[] = {
+	{ .compatible = "arm,pl353-nand-r2p1" },
+	{},
+};
+MODULE_DEVICE_TABLE(of, pl353_nand_of_match);
+
+/*
+ * pl353_nand_driver - This structure defines the NAND subsystem platform driver
+ */
+static struct platform_driver pl353_nand_driver = {
+	.probe		= pl353_nand_probe,
+	.remove		= pl353_nand_remove,
+	.driver		= {
+		.name	= PL353_NAND_DRIVER_NAME,
+		.of_match_table = pl353_nand_of_match,
+	},
+};
+
+module_platform_driver(pl353_nand_driver);
+
+MODULE_AUTHOR("Xilinx, Inc.");
+MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME);
+MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver");
+MODULE_LICENSE("GPL");
-- 
2.7.4


^ permalink raw reply related	[flat|nested] 8+ messages in thread

* Re: [LINUX PATCH v13] rawnand: pl353: Add basic driver for arm pl353 smc nand interface
  2019-02-09  6:37 [LINUX PATCH v13] rawnand: pl353: Add basic driver for arm pl353 smc nand interface Naga Sureshkumar Relli
@ 2019-03-04  9:43 ` Miquel Raynal
  2019-03-04 11:46   ` Naga Sureshkumar Relli
  2019-03-26 13:27 ` Helmut Grohne
  1 sibling, 1 reply; 8+ messages in thread
From: Miquel Raynal @ 2019-03-04  9:43 UTC (permalink / raw)
  To: Naga Sureshkumar Relli
  Cc: bbrezillon, richard, dwmw2, computersforpeace, marek.vasut,
	linux-mtd, linux-kernel, michals, nagasureshkumarrelli

Hi Naga,

Naga Sureshkumar Relli <naga.sureshkumar.relli@xilinx.com> wrote on
Sat, 9 Feb 2019 12:07:27 +0530:

> Add driver for arm pl353 static memory controller nand interface with
> HW ECC support. This controller is used in Xilinx Zynq SoC for
> interfacing the NAND flash memory.
> 
> Signed-off-by: Naga Sureshkumar Relli <naga.sureshkumar.relli@xilinx.com>
> ---
> xilinx zynq TRM link:
> https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
> 
> ARM pl353 smc TRM link:
> http://infocenter.arm.com/help/topic/com.arm.doc.ddi0380g/DDI0380G_smc_pl350_series_r2p1_trm.pdf
> 
> Tested Micron MT29F2G08ABAEAWP (On-die capable) and AMD/Spansion S34ML01G1.
> 
> SMC memory controller driver is at drivers/memory/pl353-smc.c
> 
> Changes in v13:
>  - Rebased the driver to mtd/next
> Changes in v12:
>  - Rebased the driver on top of v4.19 nand tree
>  - Removed nand_scan_ident() and nand_scan_tail(), and added nand_controller_ops
>    with ->attach_chip() and used nand_scan() instead.
>  - Renamed pl353_nand_info structure to pl353_nand_controller
>  - Renamed nand_base and nandaddr in pl353_nand_controller to 'regs' and 'buf_addr'
>  - Added new API pl353_wait_for_ecc_done() to wait for ecc done and call it from
>    pl353_nand_write_page_hwecc() and pl353_nand_read_page_hwecc()
>  - Defined new macro for max ECC blocks
>  - Added return value check for ecc.calculate()
>  - Renamed pl353_nand_cmd_function() to pl353_nand_exec_op_cmd()
>  - Added x16 bus-width support
>  - The dependent driver pl353-smc is already reviewed and hence dropped the
>    smc driver
> Changes in v11:
>  - Removed Documentation patch and added the required info in driver as
>    per Boris comments.
>  - Removed unwanted variables from pl353_nand_info as per Miquel comments
>  - Removed IO_ADDR_R/W.
>  - Replaced onhot() with hweight32()
>  - Defined macros for static values in function pl353_nand_correct_data()
>  - Removed all unnecessary delays
>  - Used nand_wait_ready() where ever is required
>  - Modifed the pl353_setup_data_interface() logic as per Miquel comments.
>  - Taken array instead of 7 values in pl353_setup_data_interface() and pass
>    it to smc driver.
>  - Added check to collect the return value of mtd_device_register().
> Changes in 10:
>  - Typos correction like nand to NAND and soc to SOC etc..
>  - Defined macros for the values in pl353_nand_calculate_hwecc()
>  - Modifed ecc_status from int to char in pl353_nand_calculate_hwecc()
>  - Changed the return type form int to bool to the function
>    onehot()
>  - Removed udelay(1000) in pl353_cmd_function, as it is not required
>  - Dropped ecc->hwctl = NULL in pl353_ecc_init()
>  - Added an error message in pl353_ecc_init(), when there is no matching
>    oobsize
>  - Changed the variable from xnand to xnfc
>  - Added logic to get mtd->name from DT, if it is specified in DT
> Changes in v9:
>  - Addressed the below comments given by Miquel
>  - instead of using pl353_nand_write32, use directly writel_relaxed
>  - Fixed check patch warnings
>  - Renamed write_buf/read_buf to write_data_op/read_data_op
>  - use BIT macro instead of 1 << nr
>  - Use NAND_ROW_ADDR_3 flag
>  - Use nand_wait_ready()
>  - Removed swecc functions
>  - Use address cycles as per size, instead of reading it from Parameter page
>  - Instead of writing too many patterns, use optional property
> Changes in v8:
>  - Added exec_op() implementation
>  - Fixed the below v7 review comments
>  - removed mtd_info from pl353_nand_info struct
>  - Corrected ecc layout offsets
>  - Added on-die ecc support
> Changes in v7:
>  - Currently not implemented the memclk rate adjustments. I will
>    look into this later and once the basic driver is accepted.
>  - Fixed GPL licence ident
> Changes in v6:
>  - Fixed the checkpatch.pl reported warnings
>  - Using the address cycles information from the onfi param page
>    earlier it is hardcoded to 5 in driver
> Changes in v5:
>  - Configure the nand timing parameters as per the onfi spec Changes in v4:
>  - Updated the driver to sync with pl353_smc driver APIs
> Changes in v3:
>  - implemented the proper error codes
>  - further breakdown this patch to multiple sets
>  - added the controller and driver details to Documentation section
>  - updated the licenece to GPLv2
>  - reorganized the pl353_nand_ecc_init function
> Changes in v2:
>  - use "depends on" rather than "select" option in kconfig
>  - remove unused variable parts
> ---
>  drivers/mtd/nand/raw/Kconfig      |    8 +
>  drivers/mtd/nand/raw/Makefile     |    1 +
>  drivers/mtd/nand/raw/pl353_nand.c | 1380 +++++++++++++++++++++++++++++++++++++
>  3 files changed, 1389 insertions(+)
>  create mode 100644 drivers/mtd/nand/raw/pl353_nand.c
> 
> diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
> index 1a55d3e..bc6c0a0 100644
> --- a/drivers/mtd/nand/raw/Kconfig
> +++ b/drivers/mtd/nand/raw/Kconfig
> @@ -541,4 +541,12 @@ config MTD_NAND_TEGRA
>  	  is supported. Extra OOB bytes when using HW ECC are currently
>  	  not supported.
>  
> +config MTD_NAND_PL353
> +	tristate "ARM Pl353 NAND flash driver"
> +	depends on MTD_NAND && ARM
> +	depends on PL353_SMC
> +	help
> +	  Enables support for PrimeCell Static Memory Controller PL353.
> +
> +
>  endif # MTD_NAND
> diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
> index 57159b3..9d3c48d 100644
> --- a/drivers/mtd/nand/raw/Makefile
> +++ b/drivers/mtd/nand/raw/Makefile
> @@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_BRCMNAND)		+= brcmnand/
>  obj-$(CONFIG_MTD_NAND_QCOM)		+= qcom_nandc.o
>  obj-$(CONFIG_MTD_NAND_MTK)		+= mtk_ecc.o mtk_nand.o
>  obj-$(CONFIG_MTD_NAND_TEGRA)		+= tegra_nand.o
> +obj-$(CONFIG_MTD_NAND_PL353)		+= pl353_nand.o
>  
>  nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
>  nand-objs += nand_onfi.o
> diff --git a/drivers/mtd/nand/raw/pl353_nand.c b/drivers/mtd/nand/raw/pl353_nand.c
> new file mode 100644
> index 0000000..1dbaae5
> --- /dev/null
> +++ b/drivers/mtd/nand/raw/pl353_nand.c
> @@ -0,0 +1,1380 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * ARM PL353 NAND flash controller driver
> + *
> + * Copyright (C) 2017 Xilinx, Inc
> + * Author: Punnaiah chowdary kalluri <punnaiah@xilinx.com>
> + * Author: Naga Sureshkumar Relli <nagasure@xilinx.com>
> + *
> + */
> +
> +#include <linux/err.h>
> +#include <linux/delay.h>
> +#include <linux/interrupt.h>
> +#include <linux/io.h>
> +#include <linux/ioport.h>
> +#include <linux/irq.h>
> +#include <linux/module.h>
> +#include <linux/moduleparam.h>
> +#include <linux/mtd/mtd.h>
> +#include <linux/mtd/rawnand.h>
> +#include <linux/mtd/nand_ecc.h>
> +#include <linux/mtd/partitions.h>
> +#include <linux/of_address.h>
> +#include <linux/of_device.h>
> +#include <linux/of_platform.h>
> +#include <linux/platform_device.h>
> +#include <linux/slab.h>
> +#include <linux/pl353-smc.h>
> +#include <linux/clk.h>
> +
> +#define PL353_NAND_DRIVER_NAME "pl353-nand"
> +
> +/* NAND flash driver defines */
> +#define PL353_NAND_CMD_PHASE	1	/* End command valid in command phase */
> +#define PL353_NAND_DATA_PHASE	2	/* End command valid in data phase */
> +#define PL353_NAND_ECC_SIZE	512	/* Size of data for ECC operation */
> +
> +/* Flash memory controller operating parameters */
> +
> +#define PL353_NAND_ECC_CONFIG	(BIT(4)  |	/* ECC read at end of page */ \
> +				 (0 << 5))	/* No Jumping */
> +
> +/* AXI Address definitions */
> +#define START_CMD_SHIFT		3
> +#define END_CMD_SHIFT		11
> +#define END_CMD_VALID_SHIFT	20
> +#define ADDR_CYCLES_SHIFT	21
> +#define CLEAR_CS_SHIFT		21
> +#define ECC_LAST_SHIFT		10
> +#define COMMAND_PHASE		(0 << 19)
> +#define DATA_PHASE		BIT(19)
> +
> +#define PL353_NAND_ECC_LAST	BIT(ECC_LAST_SHIFT)	/* Set ECC_Last */
> +#define PL353_NAND_CLEAR_CS	BIT(CLEAR_CS_SHIFT)	/* Clear chip select */
> +
> +#define PL353_NAND_ECC_BUSY_TIMEOUT	(1 * HZ)
> +#define PL353_NAND_DEV_BUSY_TIMEOUT	(1 * HZ)
> +#define PL353_NAND_LAST_TRANSFER_LENGTH	4
> +#define PL353_NAND_ECC_VALID_SHIFT	24
> +#define PL353_NAND_ECC_VALID_MASK	0x40
> +#define PL353_ECC_BITS_BYTEOFF_MASK	0x1FF
> +#define PL353_ECC_BITS_BITOFF_MASK	0x7
> +#define PL353_ECC_BIT_MASK		0xFFF
> +#define PL353_TREA_MAX_VALUE		1
> +#define PL353_MAX_ECC_CHUNKS		4
> +#define PL353_MAX_ECC_BYTES		3
> +
> +struct pl353_nfc_op {
> +	u32 cmnds[4];
> +	u32 end_cmd;
> +	u32 addrs;
> +	u32 naddrs;
> +	u32 addr5;
> +	u32 addr6;
> +	unsigned int data_instr_idx;
> +	unsigned int rdy_timeout_ms;
> +	unsigned int rdy_delay_ns;
> +	unsigned int cle_ale_delay_ns;
> +	const struct nand_op_instr *data_instr;
> +};
> +
> +/**
> + * struct pl353_nand_controller - Defines the NAND flash controller driver
> + *				  instance
> + * @chip:		NAND chip information structure
> + * @dev:		Parent device (used to print error messages)
> + * @regs:		Virtual address of the NAND flash device
> + * @buf_addr:		Virtual address of the NAND flash device for
> + *			data read/writes
> + * @addr_cycles:	Address cycles
> + * @mclk:		Memory controller clock
> + * @buswidth:		Bus width 8 or 16
> + */
> +struct pl353_nand_controller {
> +	struct nand_controller controller;
> +	struct nand_chip chip;
> +	struct device *dev;
> +	void __iomem *regs;
> +	void __iomem *buf_addr;
> +	u8 addr_cycles;
> +	struct clk *mclk;
> +	u32 buswidth;
> +};
> +
> +static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
> +				     struct mtd_oob_region *oobregion)
> +{
> +	struct nand_chip *chip = mtd_to_nand(mtd);
> +
> +	if (section >= chip->ecc.steps)
> +		return -ERANGE;
> +
> +	oobregion->offset = (section * chip->ecc.bytes);
> +	oobregion->length = chip->ecc.bytes;
> +
> +	return 0;
> +}
> +
> +static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
> +				      struct mtd_oob_region *oobregion)
> +{
> +	struct nand_chip *chip = mtd_to_nand(mtd);
> +
> +	if (section >= chip->ecc.steps)
> +		return -ERANGE;
> +
> +	oobregion->offset = (section * chip->ecc.bytes) + 8;
> +	oobregion->length = 8;
> +
> +	return 0;
> +}
> +
> +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops = {
> +	.ecc = pl353_ecc_ooblayout16_ecc,
> +	.free = pl353_ecc_ooblayout16_free,
> +};
> +
> +static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section,
> +				     struct mtd_oob_region *oobregion)
> +{
> +	struct nand_chip *chip = mtd_to_nand(mtd);
> +
> +	if (section >= chip->ecc.steps)
> +		return -ERANGE;
> +
> +	oobregion->offset = (section * chip->ecc.bytes) + 52;
> +	oobregion->length = chip->ecc.bytes;
> +
> +	return 0;
> +}
> +
> +static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section,
> +				      struct mtd_oob_region *oobregion)
> +{
> +	struct nand_chip *chip = mtd_to_nand(mtd);
> +
> +	if (section)
> +		return -ERANGE;
> +
> +	if (section >= chip->ecc.steps)
> +		return -ERANGE;
> +
> +	oobregion->offset = (section * chip->ecc.bytes) + 2;
> +	oobregion->length = 50;
> +
> +	return 0;
> +}
> +
> +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops = {
> +	.ecc = pl353_ecc_ooblayout64_ecc,
> +	.free = pl353_ecc_ooblayout64_free,
> +};
> +
> +/* Generic flash bbt decriptors */
> +static u8 bbt_pattern[] = { 'B', 'b', 't', '0' };
> +static u8 mirror_pattern[] = { '1', 't', 'b', 'B' };
> +
> +static struct nand_bbt_descr bbt_main_descr = {
> +	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
> +		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
> +	.offs = 4,
> +	.len = 4,
> +	.veroffs = 20,
> +	.maxblocks = 4,
> +	.pattern = bbt_pattern
> +};
> +
> +static struct nand_bbt_descr bbt_mirror_descr = {
> +	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
> +		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
> +	.offs = 4,
> +	.len = 4,
> +	.veroffs = 20,
> +	.maxblocks = 4,
> +	.pattern = mirror_pattern
> +};
> +
> +static void pl353_nfc_force_byte_access(struct nand_chip *chip,
> +					bool force_8bit)
> +{
> +	struct pl353_nand_controller *xnfc =
> +		container_of(chip, struct pl353_nand_controller, chip);
> +
> +	if (!(chip->options & NAND_BUSWIDTH_16))
> +		return;
> +
> +	if (force_8bit)
> +		pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_8);
> +	else
> +		pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
> +}
> +
> +/**
> + * pl353_nand_read_data_op - read chip data into buffer
> + * @chip:	Pointer to the NAND chip info structure
> + * @in:		Pointer to the buffer to store read data
> + * @len:	Number of bytes to read
> + * @force_8bit:	Force 8-bit bus access
> + * Return:	Always return zero
> + */
> +static int pl353_nand_read_data_op(struct nand_chip *chip,
> +				   u8 *in,
> +				   unsigned int len, bool force_8bit)
> +{
> +	int i;
> +	struct pl353_nand_controller *xnfc =
> +		container_of(chip, struct pl353_nand_controller, chip);
> +
> +	if (force_8bit)
> +		pl353_nfc_force_byte_access(chip, true);
> +
> +	if ((IS_ALIGNED((uint32_t)in, sizeof(uint32_t)) &&
> +	     IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) {
> +		u32 *ptr = (u32 *)in;
> +
> +		len /= 4;
> +		for (i = 0; i < len; i++)
> +			ptr[i] = readl(xnfc->buf_addr);
> +	} else {
> +		for (i = 0; i < len; i++)
> +			in[i] = readb(xnfc->buf_addr);
> +	}
> +	if (force_8bit)
> +		pl353_nfc_force_byte_access(chip, false);
> +
> +	return 0;
> +}
> +
> +/**
> + * pl353_nand_write_buf - write buffer to chip
> + * @mtd:	Pointer to the mtd info structure
> + * @buf:	Pointer to the buffer to store write data
> + * @len:	Number of bytes to write
> + * @force_8bit:	Force 8-bit bus access
> + */
> +static void pl353_nand_write_data_op(struct nand_chip *chip, const u8 *buf,
> +				     int len, bool force_8bit)
> +{
> +	int i;
> +	struct pl353_nand_controller *xnfc =
> +		container_of(chip, struct pl353_nand_controller, chip);
> +
> +	if (force_8bit)
> +		pl353_nfc_force_byte_access(chip, true);
> +
> +	if ((IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
> +	     IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) {
> +		u32 *ptr = (u32 *)buf;
> +
> +		len /= 4;
> +		for (i = 0; i < len; i++)
> +			writel(ptr[i], xnfc->buf_addr);
> +	} else {
> +		for (i = 0; i < len; i++)
> +			writeb(buf[i], xnfc->buf_addr);
> +	}
> +	if (force_8bit)
> +		pl353_nfc_force_byte_access(chip, false);
> +}
> +
> +static int pl353_wait_for_ecc_done(void)
> +{
> +	unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
> +
> +	do {
> +		if (pl353_smc_ecc_is_busy())
> +			cpu_relax();
> +		else
> +			break;
> +	} while (!time_after_eq(jiffies, timeout));
> +
> +	if (time_after_eq(jiffies, timeout)) {
> +		pr_err("%s timed out\n", __func__);
> +		return -ETIMEDOUT;
> +	}
> +
> +	return 0;
> +}
> +
> +/**
> + * pl353_nand_calculate_hwecc - Calculate Hardware ECC
> + * @mtd:	Pointer to the mtd_info structure
> + * @data:	Pointer to the page data
> + * @ecc:	Pointer to the ECC buffer where ECC data needs to be stored
> + *
> + * This function retrieves the Hardware ECC data from the controller and returns
> + * ECC data back to the MTD subsystem.
> + * It operates on a number of 512 byte blocks of NAND memory and can be
> + * programmed to store the ECC codes after the data in memory. For writes,
> + * the ECC is written to the spare area of the page. For reads, the result of
> + * a block ECC check are made available to the device driver.
> + *
> + * ------------------------------------------------------------------------
> + * |               n * 512 blocks                  | extra  | ecc    |     |
> + * |                                               | block  | codes  |     |
> + * ------------------------------------------------------------------------
> + *
> + * The ECC calculation uses a simple Hamming code, using 1-bit correction 2-bit
> + * detection. It starts when a valid read or write command with a 512 byte
> + * aligned address is detected on the memory interface.
> + *
> + * Return:	0 on success or error value on failure
> + */
> +static int pl353_nand_calculate_hwecc(struct nand_chip *chip,
> +				      const u8 *data, u8 *ecc)
> +{
> +	u32 ecc_value;
> +	u8 chunk, ecc_byte, ecc_status;
> +
> +	for (chunk = 0; chunk < PL353_MAX_ECC_CHUNKS; chunk++) {
> +		/* Read ECC value for each block */
> +		ecc_value = pl353_smc_get_ecc_val(chunk);
> +		ecc_status = (ecc_value >> PL353_NAND_ECC_VALID_SHIFT);
> +
> +		/* ECC value valid */
> +		if (ecc_status & PL353_NAND_ECC_VALID_MASK) {
> +			for (ecc_byte = 0; ecc_byte < PL353_MAX_ECC_BYTES;
> +			     ecc_byte++) {
> +				/* Copy ECC bytes to MTD buffer */
> +				*ecc = ~ecc_value & 0xFF;
> +				ecc_value = ecc_value >> 8;
> +				ecc++;
> +			}
> +		} else {
> +			pr_warn("%s status failed\n", __func__);
> +			return -1;
> +		}
> +	}
> +
> +	return 0;
> +}
> +
> +/**
> + * pl353_nand_correct_data - ECC correction function
> + * @mtd:	Pointer to the mtd_info structure
> + * @buf:	Pointer to the page data
> + * @read_ecc:	Pointer to the ECC value read from spare data area
> + * @calc_ecc:	Pointer to the calculated ECC value
> + *
> + * This function corrects the ECC single bit errors & detects 2-bit errors.
> + *
> + * Return:	0 if no ECC errors found
> + *		1 if single bit error found and corrected.
> + *		-1 if multiple uncorrectable ECC errors found.
> + */
> +static int pl353_nand_correct_data(struct nand_chip *chip, unsigned char *buf,
> +				   unsigned char *read_ecc,
> +				   unsigned char *calc_ecc)

Isn't it a regular Hamming software ECC algorithm? Can't you re-use the
implementation already existing?

> +{
> +	unsigned char bit_addr;
> +	unsigned int byte_addr;
> +	unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
> +	unsigned short calc_ecc_lower, calc_ecc_upper;
> +
> +	read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) &
> +			  PL353_ECC_BIT_MASK;
> +	read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) &
> +			  PL353_ECC_BIT_MASK;
> +
> +	calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) &
> +			  PL353_ECC_BIT_MASK;
> +	calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) &
> +			  PL353_ECC_BIT_MASK;
> +
> +	ecc_odd = read_ecc_lower ^ calc_ecc_lower;
> +	ecc_even = read_ecc_upper ^ calc_ecc_upper;
> +
> +	/* no error */
> +	if (!ecc_odd && !ecc_even)
> +		return 0;
> +
> +	if (ecc_odd == (~ecc_even & PL353_ECC_BIT_MASK)) {
> +		/* bits [11:3] of error code is byte offset */
> +		byte_addr = (ecc_odd >> 3) & PL353_ECC_BITS_BYTEOFF_MASK;
> +		/* bits [2:0] of error code is bit offset */
> +		bit_addr = ecc_odd & PL353_ECC_BITS_BITOFF_MASK;
> +		/* Toggling error bit */
> +		buf[byte_addr] ^= (BIT(bit_addr));
> +		return 1;
> +	}
> +
> +	/* one error in parity */
> +	if (hweight32(ecc_odd | ecc_even) == 1)
> +		return 1;
> +
> +	/* Uncorrectable error */
> +	return -1;
> +}
> +
> +static void pl353_prepare_cmd(struct nand_chip *chip,
> +			      int page, int column, int start_cmd, int end_cmd,
> +			      bool read)
> +{
> +	unsigned long data_phase_addr;
> +	u32 end_cmd_valid = 0;
> +	unsigned long cmd_phase_addr = 0, cmd_phase_data = 0;
> +	struct mtd_info *mtd = nand_to_mtd(chip);
> +
> +	struct pl353_nand_controller *xnfc =
> +		container_of(chip, struct pl353_nand_controller, chip);
> +
> +	end_cmd_valid = read ? 1 : 0;
> +
> +	cmd_phase_addr = (unsigned long __force)xnfc->regs +
> +			 ((xnfc->addr_cycles
> +			 << ADDR_CYCLES_SHIFT) |
> +			 (end_cmd_valid << END_CMD_VALID_SHIFT) |
> +			 (COMMAND_PHASE) |
> +			 (end_cmd << END_CMD_SHIFT) |
> +			 (start_cmd << START_CMD_SHIFT));
> +
> +	/* Get the data phase address */
> +	data_phase_addr = (unsigned long __force)xnfc->regs +
> +			  ((0x0 << CLEAR_CS_SHIFT) |
> +			  (0 << END_CMD_VALID_SHIFT) |
> +			  (DATA_PHASE) |
> +			  (end_cmd << END_CMD_SHIFT) |
> +			  (0x0 << ECC_LAST_SHIFT));
> +
> +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> +
> +	if (chip->options & NAND_BUSWIDTH_16)
> +		column /= 2;
> +	cmd_phase_data = column;
> +	if (mtd->writesize > PL353_NAND_ECC_SIZE) {
> +		cmd_phase_data |= page << 16;
> +		/* Another address cycle for devices > 128MiB */
> +		if (chip->options & NAND_ROW_ADDR_3) {
> +			writel_relaxed(cmd_phase_data,
> +				       (void __iomem * __force)cmd_phase_addr);
> +			cmd_phase_data = (page >> 16);
> +		}
> +	} else {
> +		cmd_phase_data |= page << 8;
> +	}
> +
> +	writel_relaxed(cmd_phase_data, (void __iomem * __force)cmd_phase_addr);
> +}
> +
> +/**
> + * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function
> + * @mtd:	Pointer to the mtd_info structure
> + * @chip:	Pointer to the nand_chip structure
> + * @page:	Page number to read
> + *
> + * Return:	Always return zero
> + */
> +static int pl353_nand_read_oob(struct nand_chip *chip,
> +			       int page)
> +{
> +	unsigned long data_phase_addr;
> +	u8 *p;
> +	struct pl353_nand_controller *xnfc =
> +		container_of(chip, struct pl353_nand_controller, chip);
> +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> +	struct mtd_info *mtd = nand_to_mtd(chip);
> +
> +	chip->pagebuf = -1;
> +	if (mtd->writesize < PL353_NAND_ECC_SIZE)
> +		return 0;
> +
> +	pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_READ0,
> +			  NAND_CMD_READSTART, 1);
> +
> +	nand_wait_ready(chip);
> +
> +	p = chip->oob_poi;
> +	pl353_nand_read_data_op(chip, p,
> +				(mtd->oobsize -
> +				PL353_NAND_LAST_TRANSFER_LENGTH), false);
> +	p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> +	data_phase_addr -= nand_offset;
> +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> +	data_phase_addr += nand_offset;
> +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> +	pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> +				false);
> +
> +	return 0;
> +}
> +
> +/**
> + * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write function
> + * @mtd:	Pointer to the mtd info structure
> + * @chip:	Pointer to the NAND chip info structure
> + * @page:	Page number to write
> + *
> + * Return:	Zero on success and EIO on failure
> + */
> +static int pl353_nand_write_oob(struct nand_chip *chip,
> +				int page)
> +{
> +	const u8 *buf = chip->oob_poi;
> +	unsigned long data_phase_addr;
> +	struct pl353_nand_controller *xnfc =
> +		container_of(chip, struct pl353_nand_controller, chip);
> +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> +	struct mtd_info *mtd = nand_to_mtd(chip);
> +	u32 addrcycles = 0;
> +
> +	chip->pagebuf = -1;
> +	addrcycles = xnfc->addr_cycles;
> +	pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_SEQIN,
> +			  NAND_CMD_PAGEPROG, 0);
> +
> +	pl353_nand_write_data_op(chip, buf,
> +				 (mtd->oobsize -
> +				 PL353_NAND_LAST_TRANSFER_LENGTH), false);
> +	buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> +	data_phase_addr -= nand_offset;
> +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> +	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
> +	data_phase_addr += nand_offset;
> +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> +	pl353_nand_write_data_op(chip, buf, PL353_NAND_LAST_TRANSFER_LENGTH,
> +				 false);
> +	nand_wait_ready(chip);
> +
> +	return 0;
> +}
> +
> +/**
> + * pl353_nand_read_page_raw - [Intern] read raw page data without ecc
> + * @mtd:		Pointer to the mtd info structure
> + * @chip:		Pointer to the NAND chip info structure
> + * @buf:		Pointer to the data buffer
> + * @oob_required:	Caller requires OOB data read to chip->oob_poi
> + * @page:		Page number to read
> + *
> + * Return:	Always return zero
> + */
> +static int pl353_nand_read_page_raw(struct nand_chip *chip,
> +				    u8 *buf, int oob_required, int page)
> +{
> +	unsigned long data_phase_addr;
> +	u8 *p;
> +	struct pl353_nand_controller *xnfc =
> +		container_of(chip, struct pl353_nand_controller, chip);
> +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> +	struct mtd_info *mtd = nand_to_mtd(chip);
> +
> +	pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0,
> +			  NAND_CMD_READSTART, 1);
> +	nand_wait_ready(chip);
> +	pl353_nand_read_data_op(chip, buf, mtd->writesize, false);
> +	p = chip->oob_poi;
> +	pl353_nand_read_data_op(chip, p,
> +				(mtd->oobsize -
> +				PL353_NAND_LAST_TRANSFER_LENGTH), false);
> +	p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> +	data_phase_addr -= nand_offset;
> +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> +	data_phase_addr += nand_offset;
> +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> +
> +	pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> +				false);
> +
> +	return 0;
> +}
> +
> +/**
> + * pl353_nand_write_page_raw - [Intern] raw page write function
> + * @mtd:		Pointer to the mtd info structure
> + * @chip:		Pointer to the NAND chip info structure
> + * @buf:		Pointer to the data buffer
> + * @oob_required:	Caller requires OOB data read to chip->oob_poi
> + * @page:		Page number to write
> + *
> + * Return:	Always return zero
> + */
> +static int pl353_nand_write_page_raw(struct nand_chip *chip,
> +				     const u8 *buf, int oob_required,
> +				     int page)
> +{
> +	unsigned long data_phase_addr;
> +	u8 *p;
> +	struct pl353_nand_controller *xnfc =
> +		container_of(chip, struct pl353_nand_controller, chip);
> +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> +	struct mtd_info *mtd = nand_to_mtd(chip);
> +
> +	pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN,
> +			  NAND_CMD_PAGEPROG, 0);
> +	pl353_nand_write_data_op(chip, buf, mtd->writesize, false);
> +	p = chip->oob_poi;
> +	pl353_nand_write_data_op(chip, p,
> +				 (mtd->oobsize -
> +				 PL353_NAND_LAST_TRANSFER_LENGTH), false);
> +	p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> +	data_phase_addr -= nand_offset;
> +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> +	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
> +	data_phase_addr += nand_offset;
> +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> +	pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> +				 false);
> +
> +	return 0;
> +}
> +
> +/**
> + * nand_write_page_hwecc - Hardware ECC based page write function
> + * @mtd:		Pointer to the mtd info structure
> + * @chip:		Pointer to the NAND chip info structure
> + * @buf:		Pointer to the data buffer
> + * @oob_required:	Caller requires OOB data read to chip->oob_poi
> + * @page:		Page number to write
> + *
> + * This functions writes data and hardware generated ECC values in to the page.
> + *
> + * Return:	Always return zero
> + */
> +static int pl353_nand_write_page_hwecc(struct nand_chip *chip,
> +				       const u8 *buf, int oob_required,
> +				       int page)
> +{
> +	int eccsize = chip->ecc.size;
> +	int eccsteps = chip->ecc.steps;
> +	u8 *ecc_calc = chip->ecc.calc_buf;
> +	u8 *oob_ptr;
> +	const u8 *p = buf;
> +	u32 ret;
> +	unsigned long data_phase_addr;
> +	struct pl353_nand_controller *xnfc =
> +		container_of(chip, struct pl353_nand_controller, chip);
> +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> +	struct mtd_info *mtd = nand_to_mtd(chip);
> +
> +	pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN,
> +			  NAND_CMD_PAGEPROG, 0);
> +
> +	for ( ; (eccsteps - 1); eccsteps--) {
> +		pl353_nand_write_data_op(chip, p, eccsize, false);
> +		p += eccsize;
> +	}
> +	pl353_nand_write_data_op(chip, p,
> +				 (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH),
> +				 false);
> +	p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> +	/* Set ECC Last bit to 1 */
> +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> +	data_phase_addr -= nand_offset;
> +	data_phase_addr |= PL353_NAND_ECC_LAST;
> +	data_phase_addr += nand_offset;
> +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> +	pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> +				 false);
> +
> +	/* Wait till the ECC operation is complete or timeout */
> +	ret = pl353_wait_for_ecc_done();
> +	if (ret)
> +		dev_err(xnfc->dev, "ECC Timeout\n");
> +	p = buf;
> +	ret = chip->ecc.calculate(chip, p, &ecc_calc[0]);
> +	if (ret)
> +		return ret;
> +
> +	/* Wait for ECC to be calculated and read the error values */
> +	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
> +					 0, chip->ecc.total);
> +	if (ret)
> +		return ret;
> +	/* Clear ECC last bit */
> +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> +	data_phase_addr -= nand_offset;
> +	data_phase_addr &= ~PL353_NAND_ECC_LAST;
> +	data_phase_addr += nand_offset;
> +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> +
> +	/* Write the spare area with ECC bytes */
> +	oob_ptr = chip->oob_poi;
> +	pl353_nand_write_data_op(chip, oob_ptr,
> +				 (mtd->oobsize -
> +				 PL353_NAND_LAST_TRANSFER_LENGTH), false);
> +
> +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> +	data_phase_addr -= nand_offset;
> +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> +	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
> +	data_phase_addr += nand_offset;
> +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> +	oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +	pl353_nand_write_data_op(chip, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH,
> +				 false);
> +	nand_wait_ready(chip);
> +
> +	return 0;
> +}
> +
> +/**
> + * pl353_nand_read_page_hwecc - Hardware ECC based page read function
> + * @mtd:		Pointer to the mtd info structure
> + * @chip:		Pointer to the NAND chip info structure
> + * @buf:		Pointer to the buffer to store read data
> + * @oob_required:	Caller requires OOB data read to chip->oob_poi
> + * @page:		Page number to read
> + *
> + * This functions reads data and checks the data integrity by comparing
> + * hardware generated ECC values and read ECC values from spare area.
> + * There is a limitation in SMC controller, that we must set ECC LAST on
> + * last data phase access, to tell ECC block not to expect any data further.
> + * Ex:  When number of ECC STEPS are 4, then till 3 we will write to flash
> + * using SMC with HW ECC enabled. And for the last ECC STEP, we will subtract
> + * 4bytes from page size, and will initiate a transfer. And the remaining 4 as
> + * one more transfer with ECC_LAST bit set in NAND data phase register to
> + * notify ECC block not to expect any more data. The last block should be align
> + * with end of 512 byte block. Because of this limitation, we are not using
> + * core routines.
> + *
> + * Return:	0 always and updates ECC operation status in to MTD structure
> + */
> +static int pl353_nand_read_page_hwecc(struct nand_chip *chip,
> +				      u8 *buf, int oob_required, int page)
> +{
> +	int i, stat, eccsize = chip->ecc.size;
> +	int eccbytes = chip->ecc.bytes;
> +	int eccsteps = chip->ecc.steps;
> +	u8 *p = buf;
> +	u8 *ecc_calc = chip->ecc.calc_buf;
> +	u8 *ecc = chip->ecc.code_buf;
> +	unsigned int max_bitflips = 0;
> +	u8 *oob_ptr;
> +	u32 ret;
> +	unsigned long data_phase_addr;
> +	struct pl353_nand_controller *xnfc =
> +		container_of(chip, struct pl353_nand_controller, chip);
> +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> +	struct mtd_info *mtd = nand_to_mtd(chip);
> +
> +	pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0,
> +			  NAND_CMD_READSTART, 1);
> +	nand_wait_ready(chip);
> +
> +	for ( ; (eccsteps - 1); eccsteps--) {
> +		pl353_nand_read_data_op(chip, p, eccsize, false);
> +		p += eccsize;
> +	}
> +	pl353_nand_read_data_op(chip, p,
> +				(eccsize - PL353_NAND_LAST_TRANSFER_LENGTH),
> +				false);
> +	p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +
> +	/* Set ECC Last bit to 1 */
> +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> +	data_phase_addr -= nand_offset;
> +	data_phase_addr |= PL353_NAND_ECC_LAST;
> +	data_phase_addr += nand_offset;
> +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> +	pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> +				false);
> +
> +	/* Wait till the ECC operation is complete or timeout */
> +	ret = pl353_wait_for_ecc_done();
> +	if (ret)
> +		dev_err(xnfc->dev, "ECC Timeout\n");
> +
> +	/* Read the calculated ECC value */
> +	p = buf;
> +	ret = chip->ecc.calculate(chip, p, &ecc_calc[0]);
> +	if (ret)
> +		return ret;
> +
> +	/* Clear ECC last bit */
> +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> +	data_phase_addr -= nand_offset;
> +	data_phase_addr &= ~PL353_NAND_ECC_LAST;
> +	data_phase_addr += nand_offset;
> +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> +
> +	/* Read the stored ECC value */
> +	oob_ptr = chip->oob_poi;
> +	pl353_nand_read_data_op(chip, oob_ptr,
> +				(mtd->oobsize -
> +				PL353_NAND_LAST_TRANSFER_LENGTH), false);
> +
> +	/* de-assert chip select */
> +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> +	data_phase_addr -= nand_offset;
> +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> +	data_phase_addr += nand_offset;
> +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> +
> +	oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> +	pl353_nand_read_data_op(chip, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH,
> +				false);
> +
> +	ret = mtd_ooblayout_get_eccbytes(mtd, ecc, chip->oob_poi, 0,
> +					 chip->ecc.total);
> +	if (ret)
> +		return ret;
> +
> +	eccsteps = chip->ecc.steps;
> +	p = buf;
> +
> +	/* Check ECC error for all blocks and correct if it is correctable */
> +	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
> +		stat = chip->ecc.correct(chip, p, &ecc[i], &ecc_calc[i]);
> +		if (stat < 0) {
> +			mtd->ecc_stats.failed++;
> +		} else {
> +			mtd->ecc_stats.corrected += stat;
> +			max_bitflips = max_t(unsigned int, max_bitflips, stat);
> +		}
> +	}
> +
> +	return max_bitflips;
> +}
> +
> +/* NAND framework ->exec_op() hooks and related helpers */
> +static void pl353_nfc_parse_instructions(struct nand_chip *chip,
> +					 const struct nand_subop *subop,
> +					 struct pl353_nfc_op *nfc_op)
> +{
> +	const struct nand_op_instr *instr = NULL;
> +	unsigned int op_id, offset, naddrs;
> +	int i;
> +	const u8 *addrs;
> +
> +	memset(nfc_op, 0, sizeof(struct pl353_nfc_op));
> +	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
> +		instr = &subop->instrs[op_id];
> +
> +		switch (instr->type) {
> +		case NAND_OP_CMD_INSTR:
> +			if (op_id)
> +				nfc_op->cmnds[1] = instr->ctx.cmd.opcode;
> +			else
> +				nfc_op->cmnds[0] = instr->ctx.cmd.opcode;
> +			nfc_op->cle_ale_delay_ns = instr->delay_ns;
> +			break;
> +
> +		case NAND_OP_ADDR_INSTR:
> +			offset = nand_subop_get_addr_start_off(subop, op_id);
> +			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
> +			addrs = &instr->ctx.addr.addrs[offset];
> +			nfc_op->addrs = instr->ctx.addr.addrs[offset];
> +			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) {
> +				nfc_op->addrs |= instr->ctx.addr.addrs[i] <<
> +						 (8 * i);
> +			}
> +
> +			if (naddrs >= 5)
> +				nfc_op->addr5 = addrs[4];
> +			if (naddrs >= 6)
> +				nfc_op->addr6 = addrs[5];
> +			nfc_op->naddrs = nand_subop_get_num_addr_cyc(subop,
> +								     op_id);
> +			nfc_op->cle_ale_delay_ns = instr->delay_ns;
> +			break;
> +
> +		case NAND_OP_DATA_IN_INSTR:
> +			nfc_op->data_instr = instr;
> +			nfc_op->data_instr_idx = op_id;
> +			break;
> +
> +		case NAND_OP_DATA_OUT_INSTR:
> +			nfc_op->data_instr = instr;
> +			nfc_op->data_instr_idx = op_id;
> +			break;
> +
> +		case NAND_OP_WAITRDY_INSTR:
> +			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
> +			nfc_op->rdy_delay_ns = instr->delay_ns;
> +			break;
> +		}
> +	}
> +}
> +
> +static void cond_delay(unsigned int ns)
> +{
> +	if (!ns)
> +		return;
> +
> +	if (ns < 10000)
> +		ndelay(ns);
> +	else
> +		udelay(DIV_ROUND_UP(ns, 1000));
> +}
> +
> +/**
> + * pl353_nand_exec_op_cmd - Send command to NAND device
> + * @chip:	Pointer to the NAND chip info structure
> + * @subop:	Pointer to array of instructions
> + * Return:	Always return zero
> + */
> +static int pl353_nand_exec_op_cmd(struct nand_chip *chip,
> +				  const struct nand_subop *subop)
> +{
> +	struct mtd_info *mtd = nand_to_mtd(chip);
> +	const struct nand_op_instr *instr;
> +	struct pl353_nfc_op nfc_op = {};
> +	struct pl353_nand_controller *xnfc =
> +		container_of(chip, struct pl353_nand_controller, chip);
> +	unsigned long cmd_phase_data = 0, end_cmd_valid = 0;
> +	unsigned long cmd_phase_addr, data_phase_addr, end_cmd;
> +	unsigned int op_id, len, offset;
> +	bool reading;
> +
> +	pl353_nfc_parse_instructions(chip, subop, &nfc_op);
> +	instr = nfc_op.data_instr;
> +	op_id = nfc_op.data_instr_idx;
> +
> +	offset = nand_subop_get_data_start_off(subop, op_id);
> +
> +	pl353_smc_clr_nand_int();
> +	/* Get the command phase address */
> +	if (nfc_op.cmnds[1] != 0) {
> +		if (nfc_op.cmnds[0] == NAND_CMD_SEQIN)
> +			end_cmd_valid = 0;
> +		else
> +			end_cmd_valid = 1;
> +		end_cmd = nfc_op.cmnds[1];
> +	}  else {
> +		end_cmd = 0x0;
> +	}
> +
> +	/*
> +	 * The SMC defines two phases of commands when transferring data to or
> +	 * from NAND flash.
> +	 * Command phase: Commands and optional address information are written
> +	 * to the NAND flash.The command and address can be associated with
> +	 * either a data phase operation to write to or read from the array,
> +	 * or a status/ID register transfer.
> +	 * Data phase: Data is either written to or read from the NAND flash.
> +	 * This data can be either data transferred to or from the array,
> +	 * or status/ID register information.
> +	 */
> +	cmd_phase_addr = (unsigned long __force)xnfc->regs +
> +			 ((nfc_op.naddrs << ADDR_CYCLES_SHIFT) |
> +			 (end_cmd_valid << END_CMD_VALID_SHIFT) |
> +			 (COMMAND_PHASE) |
> +			 (end_cmd << END_CMD_SHIFT) |
> +			 (nfc_op.cmnds[0] << START_CMD_SHIFT));
> +
> +	/* Get the data phase address */
> +	end_cmd_valid = 0;
> +
> +	data_phase_addr = (unsigned long __force)xnfc->regs +
> +			  ((0x0 << CLEAR_CS_SHIFT) |
> +			  (end_cmd_valid << END_CMD_VALID_SHIFT) |
> +			  (DATA_PHASE) |
> +			  (end_cmd << END_CMD_SHIFT) |
> +			  (0x0 << ECC_LAST_SHIFT));
> +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> +
> +	/* Command phase AXI Read & Write */
> +	if (nfc_op.naddrs >= 5) {
> +		if (mtd->writesize > PL353_NAND_ECC_SIZE) {
> +			cmd_phase_data = nfc_op.addrs;
> +			/* Another address cycle for devices > 128MiB */
> +			if (chip->options & NAND_ROW_ADDR_3) {
> +				writel_relaxed(cmd_phase_data,
> +					       (void __iomem * __force)
> +					       cmd_phase_addr);
> +				cmd_phase_data = nfc_op.addr5;
> +				if (nfc_op.naddrs >= 6)
> +					cmd_phase_data |= (nfc_op.addr6 << 8);
> +			}
> +		}
> +	}  else {
> +		if (nfc_op.addrs != -1) {
> +			int column = nfc_op.addrs;
> +			/*
> +			 * Change read/write column, read id etc
> +			 * Adjust columns for 16 bit bus width
> +			 */
> +			if ((chip->options & NAND_BUSWIDTH_16) &&
> +			    (nfc_op.cmnds[0] == NAND_CMD_READ0 ||
> +				nfc_op.cmnds[0] == NAND_CMD_SEQIN ||
> +				nfc_op.cmnds[0] == NAND_CMD_RNDOUT ||
> +				nfc_op.cmnds[0] == NAND_CMD_RNDIN)) {
> +				column >>= 1;
> +			}
> +			cmd_phase_data = column;
> +		}
> +	}
> +	writel_relaxed(cmd_phase_data, (void __iomem * __force)cmd_phase_addr);
> +
> +	if (!nfc_op.data_instr) {
> +		if (nfc_op.rdy_timeout_ms)
> +			nand_wait_ready(chip);
> +		return 0;
> +	}
> +
> +	reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
> +	if (!reading) {
> +		len = nand_subop_get_data_len(subop, op_id);
> +		pl353_nand_write_data_op(chip, instr->ctx.data.buf.out,
> +					 len, instr->ctx.data.force_8bit);
> +		if (nfc_op.rdy_timeout_ms)
> +			nand_wait_ready(chip);
> +		cond_delay(nfc_op.rdy_delay_ns);
> +	}

else ?

> +	if (reading) {
> +		len = nand_subop_get_data_len(subop, op_id);
> +		cond_delay(nfc_op.rdy_delay_ns);
> +		if (nfc_op.rdy_timeout_ms)
> +			nand_wait_ready(chip);
> +		pl353_nand_read_data_op(chip, instr->ctx.data.buf.in, len,
> +					instr->ctx.data.force_8bit);
> +	}
> +
> +	return 0;
> +}
> +
> +static const struct nand_op_parser pl353_nfc_op_parser = NAND_OP_PARSER
> +	(NAND_OP_PARSER_PATTERN
> +		(pl353_nand_exec_op_cmd,
> +		NAND_OP_PARSER_PAT_CMD_ELEM(true),
> +		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
> +		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
> +		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
> +	NAND_OP_PARSER_PATTERN
> +		(pl353_nand_exec_op_cmd,
> +		NAND_OP_PARSER_PAT_CMD_ELEM(false),
> +		NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
> +		NAND_OP_PARSER_PAT_CMD_ELEM(false),
> +		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false),
> +		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
> +	NAND_OP_PARSER_PATTERN
> +		(pl353_nand_exec_op_cmd,
> +		NAND_OP_PARSER_PAT_CMD_ELEM(false),
> +		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
> +		NAND_OP_PARSER_PAT_CMD_ELEM(true),
> +		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
> +	NAND_OP_PARSER_PATTERN
> +		(pl353_nand_exec_op_cmd,
> +		NAND_OP_PARSER_PAT_CMD_ELEM(false),
> +		NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8),
> +		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048),
> +		NAND_OP_PARSER_PAT_CMD_ELEM(true),
> +		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
> +	NAND_OP_PARSER_PATTERN
> +		(pl353_nand_exec_op_cmd,
> +		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
> +	);
> +
> +static int pl353_nfc_exec_op(struct nand_chip *chip,
> +			     const struct nand_operation *op,
> +			     bool check_only)
> +{
> +	return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser,
> +					      op, check_only);
> +}
> +
> +/**
> + * pl353_nand_device_ready - Check device ready/busy line
> + * @mtd:	Pointer to the mtd_info structure
> + *
> + * Return:	0 on busy or 1 on ready state
> + */
> +static int pl353_nand_device_ready(struct nand_chip *chip)
> +{
> +	if (pl353_smc_get_nand_int_status_raw()) {
> +		pl353_smc_clr_nand_int();
> +		return 1;
> +	}
> +
> +	return 0;
> +}
> +
> +/**
> + * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode
> + * @mtd:	Pointer to the mtd_info structure
> + * @ecc:	Pointer to ECC control structure
> + * @ecc_mode:	ondie ecc status
> + *
> + * This function initializes the ecc block and functional pointers as per the
> + * ecc mode
> + *
> + * Return:	0 on success or negative errno.
> + */
> +static int pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
> +			       int ecc_mode)
> +{
> +	struct nand_chip *chip = mtd_to_nand(mtd);
> +	struct pl353_nand_controller *xnfc =
> +		container_of(chip, struct pl353_nand_controller, chip);
> +	int err = 0;
> +
> +	ecc->write_page_raw = pl353_nand_write_page_raw;
> +	ecc->read_page_raw = pl353_nand_read_page_raw;
> +	ecc->read_oob = pl353_nand_read_oob;
> +	ecc->write_oob = pl353_nand_write_oob;
> +
> +	if (ecc_mode == NAND_ECC_ON_DIE) {
> +		pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS);
> +		/*
> +		 * On-Die ECC spare bytes offset 8 is used for ECC codes
> +		 * Use the BBT pattern descriptors
> +		 */
> +		chip->bbt_td = &bbt_main_descr;
> +		chip->bbt_md = &bbt_mirror_descr;
> +	} else {
> +		ecc->mode = NAND_ECC_HW;
> +		/* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
> +		ecc->bytes = 3;
> +		ecc->strength = 1;
> +		ecc->calculate = pl353_nand_calculate_hwecc;
> +		ecc->correct = pl353_nand_correct_data;
> +		ecc->read_page = pl353_nand_read_page_hwecc;
> +		ecc->size = PL353_NAND_ECC_SIZE;
> +		ecc->read_page = pl353_nand_read_page_hwecc;
> +		ecc->write_page = pl353_nand_write_page_hwecc;
> +		pl353_smc_set_ecc_pg_size(mtd->writesize);
> +		switch (mtd->writesize) {
> +		case SZ_512:
> +		case SZ_1K:
> +		case SZ_2K:
> +			pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB);
> +			break;
> +		default:
> +			ecc->calculate = nand_calculate_ecc;
> +			ecc->correct = nand_correct_data;
> +			ecc->size = 256;
> +			break;
> +		}
> +
> +		if (mtd->oobsize == 16) {
> +			mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout16_ops);
> +		} else if (mtd->oobsize == 64) {
> +			mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout64_ops);
> +		} else {
> +			err = -ENXIO;
> +			dev_err(xnfc->dev, "Unsupported oob Layout\n");
> +		}
> +	}
> +
> +	return err;
> +}
> +
> +static int pl353_nfc_setup_data_interface(struct nand_chip *chip, int csline,
> +					  const struct nand_data_interface
> +					  *conf)
> +{
> +	struct pl353_nand_controller *xnfc =
> +		container_of(chip, struct pl353_nand_controller, chip);
> +	const struct nand_sdr_timings *sdr;
> +	u32 timings[7], mckperiodps;
> +
> +	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
> +		return 0;
> +
> +	sdr = nand_get_sdr_timings(conf);
> +	if (IS_ERR(sdr))
> +		return PTR_ERR(sdr);
> +
> +	/*
> +	 * SDR timings are given in pico-seconds while NFC timings must be
> +	 * expressed in NAND controller clock cycles.
> +	 */
> +	mckperiodps = NSEC_PER_SEC / clk_get_rate(xnfc->mclk);
> +	mckperiodps *= 1000;
> +	if (sdr->tRC_min <= 20000)
> +		/*
> +		 * PL353 SMC needs one extra read cycle in SDR Mode 5
> +		 * This is not written anywhere in the datasheet but
> +		 * the results observed during testing.
> +		 */
> +		timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps) + 1;
> +	else
> +		timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps);
> +
> +	timings[1] = DIV_ROUND_UP(sdr->tWC_min, mckperiodps);
> +	/*
> +	 * For all SDR modes, PL353 SMC needs tREA max value as 1,
> +	 * Results observed during testing.
> +	 */
> +	timings[2] = PL353_TREA_MAX_VALUE;
> +	timings[3] = DIV_ROUND_UP(sdr->tWP_min, mckperiodps);
> +	timings[4] = DIV_ROUND_UP(sdr->tCLR_min, mckperiodps);
> +	timings[5] = DIV_ROUND_UP(sdr->tAR_min, mckperiodps);
> +	timings[6] = DIV_ROUND_UP(sdr->tRR_min, mckperiodps);
> +	pl353_smc_set_cycles(timings);
> +
> +	return 0;
> +}
> +
> +static int pl353_nand_attach_chip(struct nand_chip *chip)
> +{
> +	struct mtd_info *mtd = nand_to_mtd(chip);
> +	struct pl353_nand_controller *xnfc =
> +		container_of(chip, struct pl353_nand_controller, chip);
> +	u32 ret;
> +
> +	if (chip->options & NAND_BUSWIDTH_16)
> +		pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
> +
> +	if (mtd->writesize <= SZ_512)
> +		xnfc->addr_cycles = 1;
> +	else
> +		xnfc->addr_cycles = 2;
> +
> +	if (chip->options & NAND_ROW_ADDR_3)
> +		xnfc->addr_cycles += 3;
> +	else
> +		xnfc->addr_cycles += 2;
> +
> +	ret = pl353_nand_ecc_init(mtd, &chip->ecc, chip->ecc.mode);
> +	if (ret) {
> +		dev_err(xnfc->dev, "ECC init failed\n");
> +		return ret;
> +	}
> +
> +	if (!mtd->name) {
> +		/*
> +		 * If the new bindings are used and the bootloader has not been
> +		 * updated to pass a new mtdparts parameter on the cmdline, you
> +		 * should define the following property in your NAND node, ie:
> +		 *
> +		 *	label = "pl353-nand";
> +		 *
> +		 * This way, mtd->name will be set by the core when
> +		 * nand_set_flash_node() is called.
> +		 */
> +		mtd->name = devm_kasprintf(xnfc->dev, GFP_KERNEL,
> +					   "%s", PL353_NAND_DRIVER_NAME);
> +		if (!mtd->name) {
> +			dev_err(xnfc->dev, "Failed to allocate mtd->name\n");
> +			return -ENOMEM;
> +		}
> +	}
> +
> +	return 0;
> +}
> +
> +static const struct nand_controller_ops pl353_nand_controller_ops = {
> +	.attach_chip = pl353_nand_attach_chip,
> +	.exec_op = pl353_nfc_exec_op,
> +	.setup_data_interface = pl353_nfc_setup_data_interface,
> +};
> +
> +/**
> + * pl353_nand_probe - Probe method for the NAND driver
> + * @pdev:	Pointer to the platform_device structure
> + *
> + * This function initializes the driver data structures and the hardware.
> + * The NAND driver has dependency with the pl353_smc memory controller
> + * driver for initializing the NAND timing parameters, bus width, ECC modes,
> + * control and status information.
> + *
> + * Return:	0 on success or error value on failure
> + */
> +static int pl353_nand_probe(struct platform_device *pdev)
> +{
> +	struct pl353_nand_controller *xnfc;
> +	struct mtd_info *mtd;
> +	struct nand_chip *chip;
> +	struct resource *res;
> +	struct device_node *np, *dn;
> +	u32 ret, val;
> +
> +	xnfc = devm_kzalloc(&pdev->dev, sizeof(*xnfc), GFP_KERNEL);
> +	if (!xnfc)
> +		return -ENOMEM;
> +	xnfc->dev = &pdev->dev;
> +
> +	nand_controller_init(&xnfc->controller);
> +	xnfc->controller.ops = &pl353_nand_controller_ops;
> +	/* Map physical address of NAND flash */
> +	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> +	xnfc->regs = devm_ioremap_resource(xnfc->dev, res);
> +	if (IS_ERR(xnfc->regs))
> +		return PTR_ERR(xnfc->regs);
> +
> +	chip = &xnfc->chip;
> +	chip->controller = &xnfc->controller;
> +	mtd = nand_to_mtd(chip);
> +	nand_set_controller_data(chip, xnfc);
> +	mtd->priv = chip;
> +	mtd->owner = THIS_MODULE;
> +	nand_set_flash_node(chip, xnfc->dev->of_node);
> +
> +	/* Set the driver entry points for MTD */
> +	chip->legacy.dev_ready = pl353_nand_device_ready;

Please do not implement legacy interfaces.

> +	/* If we don't set this delay driver sets 20us by default */
> +	np = of_get_next_parent(xnfc->dev->of_node);
> +	xnfc->mclk = of_clk_get(np, 0);
> +	if (IS_ERR(xnfc->mclk)) {
> +		dev_err(xnfc->dev, "Failed to retrieve MCK clk\n");
> +		return PTR_ERR(xnfc->mclk);
> +	}
> +
> +	dn = nand_get_flash_node(chip);
> +
> +	/* Set the device option and flash width */
> +	chip->options = NAND_BUSWIDTH_AUTO;
> +	chip->bbt_options = NAND_BBT_USE_FLASH;
> +	platform_set_drvdata(pdev, xnfc);
> +	ret = nand_scan(chip, 1);
> +	if (ret) {
> +		dev_err(xnfc->dev, "could not scan the nand chip\n");
> +		return ret;
> +	}
> +
> +	ret = mtd_device_register(mtd, NULL, 0);
> +	if (ret) {
> +		dev_err(xnfc->dev, "Failed to register mtd device: %d\n", ret);
> +		nand_cleanup(chip);
> +		return ret;
> +	}
> +
> +	return 0;
> +}
> +
> +/**
> + * pl353_nand_remove - Remove method for the NAND driver
> + * @pdev:	Pointer to the platform_device structure
> + *
> + * This function is called if the driver module is being unloaded. It frees all
> + * resources allocated to the device.
> + *
> + * Return:	0 on success or error value on failure
> + */
> +static int pl353_nand_remove(struct platform_device *pdev)
> +{
> +	struct pl353_nand_controller *xnfc = platform_get_drvdata(pdev);
> +	struct mtd_info *mtd = nand_to_mtd(&xnfc->chip);
> +	struct nand_chip *chip = mtd_to_nand(mtd);
> +
> +	/* Release resources, unregister device */
> +	nand_release(chip);
> +
> +	return 0;
> +}
> +
> +/* Match table for device tree binding */
> +static const struct of_device_id pl353_nand_of_match[] = {
> +	{ .compatible = "arm,pl353-nand-r2p1" },
> +	{},
> +};
> +MODULE_DEVICE_TABLE(of, pl353_nand_of_match);
> +
> +/*
> + * pl353_nand_driver - This structure defines the NAND subsystem platform driver
> + */
> +static struct platform_driver pl353_nand_driver = {
> +	.probe		= pl353_nand_probe,
> +	.remove		= pl353_nand_remove,
> +	.driver		= {
> +		.name	= PL353_NAND_DRIVER_NAME,
> +		.of_match_table = pl353_nand_of_match,
> +	},
> +};
> +
> +module_platform_driver(pl353_nand_driver);
> +
> +MODULE_AUTHOR("Xilinx, Inc.");
> +MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME);
> +MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver");
> +MODULE_LICENSE("GPL");


Thanks,
Miquèl

^ permalink raw reply	[flat|nested] 8+ messages in thread

* RE: [LINUX PATCH v13] rawnand: pl353: Add basic driver for arm pl353 smc nand interface
  2019-03-04  9:43 ` Miquel Raynal
@ 2019-03-04 11:46   ` Naga Sureshkumar Relli
  2019-03-11  4:36     ` Naga Sureshkumar Relli
  0 siblings, 1 reply; 8+ messages in thread
From: Naga Sureshkumar Relli @ 2019-03-04 11:46 UTC (permalink / raw)
  To: Miquel Raynal
  Cc: bbrezillon, richard, dwmw2, computersforpeace, marek.vasut,
	linux-mtd, linux-kernel, Michal Simek, nagasureshkumarrelli

Hi Miquel,

> -----Original Message-----
> From: Miquel Raynal <miquel.raynal@bootlin.com>
> Sent: Monday, March 4, 2019 3:13 PM
> To: Naga Sureshkumar Relli <nagasure@xilinx.com>
> Cc: bbrezillon@kernel.org; richard@nod.at; dwmw2@infradead.org;
> computersforpeace@gmail.com; marek.vasut@gmail.com; linux-mtd@lists.infradead.org; linux-
> kernel@vger.kernel.org; Michal Simek <michals@xilinx.com>;
> nagasureshkumarrelli@gmail.com
> Subject: Re: [LINUX PATCH v13] rawnand: pl353: Add basic driver for arm pl353 smc nand
> interface
> 
> Hi Naga,
> 
> Naga Sureshkumar Relli <naga.sureshkumar.relli@xilinx.com> wrote on
> Sat, 9 Feb 2019 12:07:27 +0530:
> 
> > Add driver for arm pl353 static memory controller nand interface with
> > HW ECC support. This controller is used in Xilinx Zynq SoC for
> > interfacing the NAND flash memory.
> >
> > Signed-off-by: Naga Sureshkumar Relli <naga.sureshkumar.relli@xilinx.com>
> > ---
> > xilinx zynq TRM link:
> > https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
> >
> > ARM pl353 smc TRM link:
> >
> http://infocenter.arm.com/help/topic/com.arm.doc.ddi0380g/DDI0380G_smc_pl350_series_
> r2p1_trm.pdf
> >
> > Tested Micron MT29F2G08ABAEAWP (On-die capable) and AMD/Spansion
> S34ML01G1.
> >
> > SMC memory controller driver is at drivers/memory/pl353-smc.c
> >
> > Changes in v13:
> >  - Rebased the driver to mtd/next
> > Changes in v12:
> >  - Rebased the driver on top of v4.19 nand tree
> >  - Removed nand_scan_ident() and nand_scan_tail(), and added nand_controller_ops
> >    with ->attach_chip() and used nand_scan() instead.
> >  - Renamed pl353_nand_info structure to pl353_nand_controller
> >  - Renamed nand_base and nandaddr in pl353_nand_controller to 'regs' and 'buf_addr'
> >  - Added new API pl353_wait_for_ecc_done() to wait for ecc done and call it from
> >    pl353_nand_write_page_hwecc() and pl353_nand_read_page_hwecc()
> >  - Defined new macro for max ECC blocks
> >  - Added return value check for ecc.calculate()
> >  - Renamed pl353_nand_cmd_function() to pl353_nand_exec_op_cmd()
> >  - Added x16 bus-width support
> >  - The dependent driver pl353-smc is already reviewed and hence dropped the
> >    smc driver
> > Changes in v11:
> >  - Removed Documentation patch and added the required info in driver as
> >    per Boris comments.
> >  - Removed unwanted variables from pl353_nand_info as per Miquel comments
> >  - Removed IO_ADDR_R/W.
> >  - Replaced onhot() with hweight32()
> >  - Defined macros for static values in function pl353_nand_correct_data()
> >  - Removed all unnecessary delays
> >  - Used nand_wait_ready() where ever is required
> >  - Modifed the pl353_setup_data_interface() logic as per Miquel comments.
> >  - Taken array instead of 7 values in pl353_setup_data_interface() and pass
> >    it to smc driver.
> >  - Added check to collect the return value of mtd_device_register().
> > Changes in 10:
> >  - Typos correction like nand to NAND and soc to SOC etc..
> >  - Defined macros for the values in pl353_nand_calculate_hwecc()
> >  - Modifed ecc_status from int to char in pl353_nand_calculate_hwecc()
> >  - Changed the return type form int to bool to the function
> >    onehot()
> >  - Removed udelay(1000) in pl353_cmd_function, as it is not required
> >  - Dropped ecc->hwctl = NULL in pl353_ecc_init()
> >  - Added an error message in pl353_ecc_init(), when there is no matching
> >    oobsize
> >  - Changed the variable from xnand to xnfc
> >  - Added logic to get mtd->name from DT, if it is specified in DT
> > Changes in v9:
> >  - Addressed the below comments given by Miquel
> >  - instead of using pl353_nand_write32, use directly writel_relaxed
> >  - Fixed check patch warnings
> >  - Renamed write_buf/read_buf to write_data_op/read_data_op
> >  - use BIT macro instead of 1 << nr
> >  - Use NAND_ROW_ADDR_3 flag
> >  - Use nand_wait_ready()
> >  - Removed swecc functions
> >  - Use address cycles as per size, instead of reading it from Parameter page
> >  - Instead of writing too many patterns, use optional property
> > Changes in v8:
> >  - Added exec_op() implementation
> >  - Fixed the below v7 review comments
> >  - removed mtd_info from pl353_nand_info struct
> >  - Corrected ecc layout offsets
> >  - Added on-die ecc support
> > Changes in v7:
> >  - Currently not implemented the memclk rate adjustments. I will
> >    look into this later and once the basic driver is accepted.
> >  - Fixed GPL licence ident
> > Changes in v6:
> >  - Fixed the checkpatch.pl reported warnings
> >  - Using the address cycles information from the onfi param page
> >    earlier it is hardcoded to 5 in driver
> > Changes in v5:
> >  - Configure the nand timing parameters as per the onfi spec Changes in v4:
> >  - Updated the driver to sync with pl353_smc driver APIs
> > Changes in v3:
> >  - implemented the proper error codes
> >  - further breakdown this patch to multiple sets
> >  - added the controller and driver details to Documentation section
> >  - updated the licenece to GPLv2
> >  - reorganized the pl353_nand_ecc_init function
> > Changes in v2:
> >  - use "depends on" rather than "select" option in kconfig
> >  - remove unused variable parts
> > ---
> >  drivers/mtd/nand/raw/Kconfig      |    8 +
> >  drivers/mtd/nand/raw/Makefile     |    1 +
> >  drivers/mtd/nand/raw/pl353_nand.c | 1380
> +++++++++++++++++++++++++++++++++++++
> >  3 files changed, 1389 insertions(+)
> >  create mode 100644 drivers/mtd/nand/raw/pl353_nand.c
> >
> > diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
> > index 1a55d3e..bc6c0a0 100644
> > --- a/drivers/mtd/nand/raw/Kconfig
> > +++ b/drivers/mtd/nand/raw/Kconfig
> > @@ -541,4 +541,12 @@ config MTD_NAND_TEGRA
> >  	  is supported. Extra OOB bytes when using HW ECC are currently
> >  	  not supported.
> >
> > +config MTD_NAND_PL353
> > +	tristate "ARM Pl353 NAND flash driver"
> > +	depends on MTD_NAND && ARM
> > +	depends on PL353_SMC
> > +	help
> > +	  Enables support for PrimeCell Static Memory Controller PL353.
> > +
> > +
> >  endif # MTD_NAND
> > diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
> > index 57159b3..9d3c48d 100644
> > --- a/drivers/mtd/nand/raw/Makefile
> > +++ b/drivers/mtd/nand/raw/Makefile
> > @@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_BRCMNAND)		+= brcmnand/
> >  obj-$(CONFIG_MTD_NAND_QCOM)		+= qcom_nandc.o
> >  obj-$(CONFIG_MTD_NAND_MTK)		+= mtk_ecc.o mtk_nand.o
> >  obj-$(CONFIG_MTD_NAND_TEGRA)		+= tegra_nand.o
> > +obj-$(CONFIG_MTD_NAND_PL353)		+= pl353_nand.o
> >
> >  nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
> >  nand-objs += nand_onfi.o
> > diff --git a/drivers/mtd/nand/raw/pl353_nand.c b/drivers/mtd/nand/raw/pl353_nand.c
> > new file mode 100644
> > index 0000000..1dbaae5
> > --- /dev/null
> > +++ b/drivers/mtd/nand/raw/pl353_nand.c
> > @@ -0,0 +1,1380 @@
> > +// SPDX-License-Identifier: GPL-2.0
> > +/*
> > + * ARM PL353 NAND flash controller driver
> > + *
> > + * Copyright (C) 2017 Xilinx, Inc
> > + * Author: Punnaiah chowdary kalluri <punnaiah@xilinx.com>
> > + * Author: Naga Sureshkumar Relli <nagasure@xilinx.com>
> > + *
> > + */
> > +
> > +#include <linux/err.h>
> > +#include <linux/delay.h>
> > +#include <linux/interrupt.h>
> > +#include <linux/io.h>
> > +#include <linux/ioport.h>
> > +#include <linux/irq.h>
> > +#include <linux/module.h>
> > +#include <linux/moduleparam.h>
> > +#include <linux/mtd/mtd.h>
> > +#include <linux/mtd/rawnand.h>
> > +#include <linux/mtd/nand_ecc.h>
> > +#include <linux/mtd/partitions.h>
> > +#include <linux/of_address.h>
> > +#include <linux/of_device.h>
> > +#include <linux/of_platform.h>
> > +#include <linux/platform_device.h>
> > +#include <linux/slab.h>
> > +#include <linux/pl353-smc.h>
> > +#include <linux/clk.h>
> > +
> > +#define PL353_NAND_DRIVER_NAME "pl353-nand"
> > +
> > +/* NAND flash driver defines */
> > +#define PL353_NAND_CMD_PHASE	1	/* End command valid in command
> phase */
> > +#define PL353_NAND_DATA_PHASE	2	/* End command valid in data phase
> */
> > +#define PL353_NAND_ECC_SIZE	512	/* Size of data for ECC operation */
> > +
> > +/* Flash memory controller operating parameters */
> > +
> > +#define PL353_NAND_ECC_CONFIG	(BIT(4)  |	/* ECC read at end of page */
> \
> > +				 (0 << 5))	/* No Jumping */
> > +
> > +/* AXI Address definitions */
> > +#define START_CMD_SHIFT		3
> > +#define END_CMD_SHIFT		11
> > +#define END_CMD_VALID_SHIFT	20
> > +#define ADDR_CYCLES_SHIFT	21
> > +#define CLEAR_CS_SHIFT		21
> > +#define ECC_LAST_SHIFT		10
> > +#define COMMAND_PHASE		(0 << 19)
> > +#define DATA_PHASE		BIT(19)
> > +
> > +#define PL353_NAND_ECC_LAST	BIT(ECC_LAST_SHIFT)	/* Set
> ECC_Last */
> > +#define PL353_NAND_CLEAR_CS	BIT(CLEAR_CS_SHIFT)	/* Clear chip
> select */
> > +
> > +#define PL353_NAND_ECC_BUSY_TIMEOUT	(1 * HZ)
> > +#define PL353_NAND_DEV_BUSY_TIMEOUT	(1 * HZ)
> > +#define PL353_NAND_LAST_TRANSFER_LENGTH	4
> > +#define PL353_NAND_ECC_VALID_SHIFT	24
> > +#define PL353_NAND_ECC_VALID_MASK	0x40
> > +#define PL353_ECC_BITS_BYTEOFF_MASK	0x1FF
> > +#define PL353_ECC_BITS_BITOFF_MASK	0x7
> > +#define PL353_ECC_BIT_MASK		0xFFF
> > +#define PL353_TREA_MAX_VALUE		1
> > +#define PL353_MAX_ECC_CHUNKS		4
> > +#define PL353_MAX_ECC_BYTES		3
> > +
> > +struct pl353_nfc_op {
> > +	u32 cmnds[4];
> > +	u32 end_cmd;
> > +	u32 addrs;
> > +	u32 naddrs;
> > +	u32 addr5;
> > +	u32 addr6;
> > +	unsigned int data_instr_idx;
> > +	unsigned int rdy_timeout_ms;
> > +	unsigned int rdy_delay_ns;
> > +	unsigned int cle_ale_delay_ns;
> > +	const struct nand_op_instr *data_instr;
> > +};
> > +
> > +/**
> > + * struct pl353_nand_controller - Defines the NAND flash controller driver
> > + *				  instance
> > + * @chip:		NAND chip information structure
> > + * @dev:		Parent device (used to print error messages)
> > + * @regs:		Virtual address of the NAND flash device
> > + * @buf_addr:		Virtual address of the NAND flash device for
> > + *			data read/writes
> > + * @addr_cycles:	Address cycles
> > + * @mclk:		Memory controller clock
> > + * @buswidth:		Bus width 8 or 16
> > + */
> > +struct pl353_nand_controller {
> > +	struct nand_controller controller;
> > +	struct nand_chip chip;
> > +	struct device *dev;
> > +	void __iomem *regs;
> > +	void __iomem *buf_addr;
> > +	u8 addr_cycles;
> > +	struct clk *mclk;
> > +	u32 buswidth;
> > +};
> > +
> > +static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
> > +				     struct mtd_oob_region *oobregion)
> > +{
> > +	struct nand_chip *chip = mtd_to_nand(mtd);
> > +
> > +	if (section >= chip->ecc.steps)
> > +		return -ERANGE;
> > +
> > +	oobregion->offset = (section * chip->ecc.bytes);
> > +	oobregion->length = chip->ecc.bytes;
> > +
> > +	return 0;
> > +}
> > +
> > +static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
> > +				      struct mtd_oob_region *oobregion)
> > +{
> > +	struct nand_chip *chip = mtd_to_nand(mtd);
> > +
> > +	if (section >= chip->ecc.steps)
> > +		return -ERANGE;
> > +
> > +	oobregion->offset = (section * chip->ecc.bytes) + 8;
> > +	oobregion->length = 8;
> > +
> > +	return 0;
> > +}
> > +
> > +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops = {
> > +	.ecc = pl353_ecc_ooblayout16_ecc,
> > +	.free = pl353_ecc_ooblayout16_free,
> > +};
> > +
> > +static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section,
> > +				     struct mtd_oob_region *oobregion)
> > +{
> > +	struct nand_chip *chip = mtd_to_nand(mtd);
> > +
> > +	if (section >= chip->ecc.steps)
> > +		return -ERANGE;
> > +
> > +	oobregion->offset = (section * chip->ecc.bytes) + 52;
> > +	oobregion->length = chip->ecc.bytes;
> > +
> > +	return 0;
> > +}
> > +
> > +static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section,
> > +				      struct mtd_oob_region *oobregion)
> > +{
> > +	struct nand_chip *chip = mtd_to_nand(mtd);
> > +
> > +	if (section)
> > +		return -ERANGE;
> > +
> > +	if (section >= chip->ecc.steps)
> > +		return -ERANGE;
> > +
> > +	oobregion->offset = (section * chip->ecc.bytes) + 2;
> > +	oobregion->length = 50;
> > +
> > +	return 0;
> > +}
> > +
> > +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops = {
> > +	.ecc = pl353_ecc_ooblayout64_ecc,
> > +	.free = pl353_ecc_ooblayout64_free,
> > +};
> > +
> > +/* Generic flash bbt decriptors */
> > +static u8 bbt_pattern[] = { 'B', 'b', 't', '0' };
> > +static u8 mirror_pattern[] = { '1', 't', 'b', 'B' };
> > +
> > +static struct nand_bbt_descr bbt_main_descr = {
> > +	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE |
> NAND_BBT_WRITE
> > +		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
> > +	.offs = 4,
> > +	.len = 4,
> > +	.veroffs = 20,
> > +	.maxblocks = 4,
> > +	.pattern = bbt_pattern
> > +};
> > +
> > +static struct nand_bbt_descr bbt_mirror_descr = {
> > +	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE |
> NAND_BBT_WRITE
> > +		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
> > +	.offs = 4,
> > +	.len = 4,
> > +	.veroffs = 20,
> > +	.maxblocks = 4,
> > +	.pattern = mirror_pattern
> > +};
> > +
> > +static void pl353_nfc_force_byte_access(struct nand_chip *chip,
> > +					bool force_8bit)
> > +{
> > +	struct pl353_nand_controller *xnfc =
> > +		container_of(chip, struct pl353_nand_controller, chip);
> > +
> > +	if (!(chip->options & NAND_BUSWIDTH_16))
> > +		return;
> > +
> > +	if (force_8bit)
> > +		pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_8);
> > +	else
> > +		pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
> > +}
> > +
> > +/**
> > + * pl353_nand_read_data_op - read chip data into buffer
> > + * @chip:	Pointer to the NAND chip info structure
> > + * @in:		Pointer to the buffer to store read data
> > + * @len:	Number of bytes to read
> > + * @force_8bit:	Force 8-bit bus access
> > + * Return:	Always return zero
> > + */
> > +static int pl353_nand_read_data_op(struct nand_chip *chip,
> > +				   u8 *in,
> > +				   unsigned int len, bool force_8bit)
> > +{
> > +	int i;
> > +	struct pl353_nand_controller *xnfc =
> > +		container_of(chip, struct pl353_nand_controller, chip);
> > +
> > +	if (force_8bit)
> > +		pl353_nfc_force_byte_access(chip, true);
> > +
> > +	if ((IS_ALIGNED((uint32_t)in, sizeof(uint32_t)) &&
> > +	     IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) {
> > +		u32 *ptr = (u32 *)in;
> > +
> > +		len /= 4;
> > +		for (i = 0; i < len; i++)
> > +			ptr[i] = readl(xnfc->buf_addr);
> > +	} else {
> > +		for (i = 0; i < len; i++)
> > +			in[i] = readb(xnfc->buf_addr);
> > +	}
> > +	if (force_8bit)
> > +		pl353_nfc_force_byte_access(chip, false);
> > +
> > +	return 0;
> > +}
> > +
> > +/**
> > + * pl353_nand_write_buf - write buffer to chip
> > + * @mtd:	Pointer to the mtd info structure
> > + * @buf:	Pointer to the buffer to store write data
> > + * @len:	Number of bytes to write
> > + * @force_8bit:	Force 8-bit bus access
> > + */
> > +static void pl353_nand_write_data_op(struct nand_chip *chip, const u8 *buf,
> > +				     int len, bool force_8bit)
> > +{
> > +	int i;
> > +	struct pl353_nand_controller *xnfc =
> > +		container_of(chip, struct pl353_nand_controller, chip);
> > +
> > +	if (force_8bit)
> > +		pl353_nfc_force_byte_access(chip, true);
> > +
> > +	if ((IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
> > +	     IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) {
> > +		u32 *ptr = (u32 *)buf;
> > +
> > +		len /= 4;
> > +		for (i = 0; i < len; i++)
> > +			writel(ptr[i], xnfc->buf_addr);
> > +	} else {
> > +		for (i = 0; i < len; i++)
> > +			writeb(buf[i], xnfc->buf_addr);
> > +	}
> > +	if (force_8bit)
> > +		pl353_nfc_force_byte_access(chip, false);
> > +}
> > +
> > +static int pl353_wait_for_ecc_done(void)
> > +{
> > +	unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
> > +
> > +	do {
> > +		if (pl353_smc_ecc_is_busy())
> > +			cpu_relax();
> > +		else
> > +			break;
> > +	} while (!time_after_eq(jiffies, timeout));
> > +
> > +	if (time_after_eq(jiffies, timeout)) {
> > +		pr_err("%s timed out\n", __func__);
> > +		return -ETIMEDOUT;
> > +	}
> > +
> > +	return 0;
> > +}
> > +
> > +/**
> > + * pl353_nand_calculate_hwecc - Calculate Hardware ECC
> > + * @mtd:	Pointer to the mtd_info structure
> > + * @data:	Pointer to the page data
> > + * @ecc:	Pointer to the ECC buffer where ECC data needs to be stored
> > + *
> > + * This function retrieves the Hardware ECC data from the controller and returns
> > + * ECC data back to the MTD subsystem.
> > + * It operates on a number of 512 byte blocks of NAND memory and can be
> > + * programmed to store the ECC codes after the data in memory. For writes,
> > + * the ECC is written to the spare area of the page. For reads, the result of
> > + * a block ECC check are made available to the device driver.
> > + *
> > + * ------------------------------------------------------------------------
> > + * |               n * 512 blocks                  | extra  | ecc    |     |
> > + * |                                               | block  | codes  |     |
> > + * ------------------------------------------------------------------------
> > + *
> > + * The ECC calculation uses a simple Hamming code, using 1-bit correction 2-bit
> > + * detection. It starts when a valid read or write command with a 512 byte
> > + * aligned address is detected on the memory interface.
> > + *
> > + * Return:	0 on success or error value on failure
> > + */
> > +static int pl353_nand_calculate_hwecc(struct nand_chip *chip,
> > +				      const u8 *data, u8 *ecc)
> > +{
> > +	u32 ecc_value;
> > +	u8 chunk, ecc_byte, ecc_status;
> > +
> > +	for (chunk = 0; chunk < PL353_MAX_ECC_CHUNKS; chunk++) {
> > +		/* Read ECC value for each block */
> > +		ecc_value = pl353_smc_get_ecc_val(chunk);
> > +		ecc_status = (ecc_value >> PL353_NAND_ECC_VALID_SHIFT);
> > +
> > +		/* ECC value valid */
> > +		if (ecc_status & PL353_NAND_ECC_VALID_MASK) {
> > +			for (ecc_byte = 0; ecc_byte < PL353_MAX_ECC_BYTES;
> > +			     ecc_byte++) {
> > +				/* Copy ECC bytes to MTD buffer */
> > +				*ecc = ~ecc_value & 0xFF;
> > +				ecc_value = ecc_value >> 8;
> > +				ecc++;
> > +			}
> > +		} else {
> > +			pr_warn("%s status failed\n", __func__);
> > +			return -1;
> > +		}
> > +	}
> > +
> > +	return 0;
> > +}
> > +
> > +/**
> > + * pl353_nand_correct_data - ECC correction function
> > + * @mtd:	Pointer to the mtd_info structure
> > + * @buf:	Pointer to the page data
> > + * @read_ecc:	Pointer to the ECC value read from spare data area
> > + * @calc_ecc:	Pointer to the calculated ECC value
> > + *
> > + * This function corrects the ECC single bit errors & detects 2-bit errors.
> > + *
> > + * Return:	0 if no ECC errors found
> > + *		1 if single bit error found and corrected.
> > + *		-1 if multiple uncorrectable ECC errors found.
> > + */
> > +static int pl353_nand_correct_data(struct nand_chip *chip, unsigned char *buf,
> > +				   unsigned char *read_ecc,
> > +				   unsigned char *calc_ecc)
> 
> Isn't it a regular Hamming software ECC algorithm? Can't you re-use the
> implementation already existing?
This is called from pl353_nand_read_page_hwecc to check the errors using
chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]), once the page read(hwecc) is done.
And this needs some custom masks defined below.
> 
> > +{
> > +	unsigned char bit_addr;
> > +	unsigned int byte_addr;
> > +	unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
> > +	unsigned short calc_ecc_lower, calc_ecc_upper;
> > +
> > +	read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) &
> > +			  PL353_ECC_BIT_MASK;
> > +	read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) &
> > +			  PL353_ECC_BIT_MASK;
> > +
> > +	calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) &
> > +			  PL353_ECC_BIT_MASK;
> > +	calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) &
> > +			  PL353_ECC_BIT_MASK;
> > +
> > +	ecc_odd = read_ecc_lower ^ calc_ecc_lower;
> > +	ecc_even = read_ecc_upper ^ calc_ecc_upper;
> > +
> > +	/* no error */
> > +	if (!ecc_odd && !ecc_even)
> > +		return 0;
> > +
> > +	if (ecc_odd == (~ecc_even & PL353_ECC_BIT_MASK)) {
> > +		/* bits [11:3] of error code is byte offset */
> > +		byte_addr = (ecc_odd >> 3) & PL353_ECC_BITS_BYTEOFF_MASK;
> > +		/* bits [2:0] of error code is bit offset */
> > +		bit_addr = ecc_odd & PL353_ECC_BITS_BITOFF_MASK;
> > +		/* Toggling error bit */
> > +		buf[byte_addr] ^= (BIT(bit_addr));
> > +		return 1;
> > +	}
> > +
> > +	/* one error in parity */
> > +	if (hweight32(ecc_odd | ecc_even) == 1)
> > +		return 1;
> > +
> > +	/* Uncorrectable error */
> > +	return -1;
> > +}
> > +
> > +static void pl353_prepare_cmd(struct nand_chip *chip,
> > +			      int page, int column, int start_cmd, int end_cmd,
> > +			      bool read)
> > +{
> > +	unsigned long data_phase_addr;
> > +	u32 end_cmd_valid = 0;
> > +	unsigned long cmd_phase_addr = 0, cmd_phase_data = 0;
> > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > +
> > +	struct pl353_nand_controller *xnfc =
> > +		container_of(chip, struct pl353_nand_controller, chip);
> > +
> > +	end_cmd_valid = read ? 1 : 0;
> > +
> > +	cmd_phase_addr = (unsigned long __force)xnfc->regs +
> > +			 ((xnfc->addr_cycles
> > +			 << ADDR_CYCLES_SHIFT) |
> > +			 (end_cmd_valid << END_CMD_VALID_SHIFT) |
> > +			 (COMMAND_PHASE) |
> > +			 (end_cmd << END_CMD_SHIFT) |
> > +			 (start_cmd << START_CMD_SHIFT));
> > +
> > +	/* Get the data phase address */
> > +	data_phase_addr = (unsigned long __force)xnfc->regs +
> > +			  ((0x0 << CLEAR_CS_SHIFT) |
> > +			  (0 << END_CMD_VALID_SHIFT) |
> > +			  (DATA_PHASE) |
> > +			  (end_cmd << END_CMD_SHIFT) |
> > +			  (0x0 << ECC_LAST_SHIFT));
> > +
> > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > +
> > +	if (chip->options & NAND_BUSWIDTH_16)
> > +		column /= 2;
> > +	cmd_phase_data = column;
> > +	if (mtd->writesize > PL353_NAND_ECC_SIZE) {
> > +		cmd_phase_data |= page << 16;
> > +		/* Another address cycle for devices > 128MiB */
> > +		if (chip->options & NAND_ROW_ADDR_3) {
> > +			writel_relaxed(cmd_phase_data,
> > +				       (void __iomem * __force)cmd_phase_addr);
> > +			cmd_phase_data = (page >> 16);
> > +		}
> > +	} else {
> > +		cmd_phase_data |= page << 8;
> > +	}
> > +
> > +	writel_relaxed(cmd_phase_data, (void __iomem * __force)cmd_phase_addr);
> > +}
> > +
> > +/**
> > + * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function
> > + * @mtd:	Pointer to the mtd_info structure
> > + * @chip:	Pointer to the nand_chip structure
> > + * @page:	Page number to read
> > + *
> > + * Return:	Always return zero
> > + */
> > +static int pl353_nand_read_oob(struct nand_chip *chip,
> > +			       int page)
> > +{
> > +	unsigned long data_phase_addr;
> > +	u8 *p;
> > +	struct pl353_nand_controller *xnfc =
> > +		container_of(chip, struct pl353_nand_controller, chip);
> > +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > +
> > +	chip->pagebuf = -1;
> > +	if (mtd->writesize < PL353_NAND_ECC_SIZE)
> > +		return 0;
> > +
> > +	pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_READ0,
> > +			  NAND_CMD_READSTART, 1);
> > +
> > +	nand_wait_ready(chip);
> > +
> > +	p = chip->oob_poi;
> > +	pl353_nand_read_data_op(chip, p,
> > +				(mtd->oobsize -
> > +				PL353_NAND_LAST_TRANSFER_LENGTH), false);
> > +	p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > +	data_phase_addr -= nand_offset;
> > +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> > +	data_phase_addr += nand_offset;
> > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > +	pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> > +				false);
> > +
> > +	return 0;
> > +}
> > +
> > +/**
> > + * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write
> function
> > + * @mtd:	Pointer to the mtd info structure
> > + * @chip:	Pointer to the NAND chip info structure
> > + * @page:	Page number to write
> > + *
> > + * Return:	Zero on success and EIO on failure
> > + */
> > +static int pl353_nand_write_oob(struct nand_chip *chip,
> > +				int page)
> > +{
> > +	const u8 *buf = chip->oob_poi;
> > +	unsigned long data_phase_addr;
> > +	struct pl353_nand_controller *xnfc =
> > +		container_of(chip, struct pl353_nand_controller, chip);
> > +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > +	u32 addrcycles = 0;
> > +
> > +	chip->pagebuf = -1;
> > +	addrcycles = xnfc->addr_cycles;
> > +	pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_SEQIN,
> > +			  NAND_CMD_PAGEPROG, 0);
> > +
> > +	pl353_nand_write_data_op(chip, buf,
> > +				 (mtd->oobsize -
> > +				 PL353_NAND_LAST_TRANSFER_LENGTH), false);
> > +	buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > +
> > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > +	data_phase_addr -= nand_offset;
> > +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> > +	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
> > +	data_phase_addr += nand_offset;
> > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > +	pl353_nand_write_data_op(chip, buf, PL353_NAND_LAST_TRANSFER_LENGTH,
> > +				 false);
> > +	nand_wait_ready(chip);
> > +
> > +	return 0;
> > +}
> > +
> > +/**
> > + * pl353_nand_read_page_raw - [Intern] read raw page data without ecc
> > + * @mtd:		Pointer to the mtd info structure
> > + * @chip:		Pointer to the NAND chip info structure
> > + * @buf:		Pointer to the data buffer
> > + * @oob_required:	Caller requires OOB data read to chip->oob_poi
> > + * @page:		Page number to read
> > + *
> > + * Return:	Always return zero
> > + */
> > +static int pl353_nand_read_page_raw(struct nand_chip *chip,
> > +				    u8 *buf, int oob_required, int page)
> > +{
> > +	unsigned long data_phase_addr;
> > +	u8 *p;
> > +	struct pl353_nand_controller *xnfc =
> > +		container_of(chip, struct pl353_nand_controller, chip);
> > +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > +
> > +	pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0,
> > +			  NAND_CMD_READSTART, 1);
> > +	nand_wait_ready(chip);
> > +	pl353_nand_read_data_op(chip, buf, mtd->writesize, false);
> > +	p = chip->oob_poi;
> > +	pl353_nand_read_data_op(chip, p,
> > +				(mtd->oobsize -
> > +				PL353_NAND_LAST_TRANSFER_LENGTH), false);
> > +	p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > +
> > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > +	data_phase_addr -= nand_offset;
> > +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> > +	data_phase_addr += nand_offset;
> > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > +
> > +	pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> > +				false);
> > +
> > +	return 0;
> > +}
> > +
> > +/**
> > + * pl353_nand_write_page_raw - [Intern] raw page write function
> > + * @mtd:		Pointer to the mtd info structure
> > + * @chip:		Pointer to the NAND chip info structure
> > + * @buf:		Pointer to the data buffer
> > + * @oob_required:	Caller requires OOB data read to chip->oob_poi
> > + * @page:		Page number to write
> > + *
> > + * Return:	Always return zero
> > + */
> > +static int pl353_nand_write_page_raw(struct nand_chip *chip,
> > +				     const u8 *buf, int oob_required,
> > +				     int page)
> > +{
> > +	unsigned long data_phase_addr;
> > +	u8 *p;
> > +	struct pl353_nand_controller *xnfc =
> > +		container_of(chip, struct pl353_nand_controller, chip);
> > +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > +
> > +	pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN,
> > +			  NAND_CMD_PAGEPROG, 0);
> > +	pl353_nand_write_data_op(chip, buf, mtd->writesize, false);
> > +	p = chip->oob_poi;
> > +	pl353_nand_write_data_op(chip, p,
> > +				 (mtd->oobsize -
> > +				 PL353_NAND_LAST_TRANSFER_LENGTH), false);
> > +	p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > +
> > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > +	data_phase_addr -= nand_offset;
> > +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> > +	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
> > +	data_phase_addr += nand_offset;
> > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > +	pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> > +				 false);
> > +
> > +	return 0;
> > +}
> > +
> > +/**
> > + * nand_write_page_hwecc - Hardware ECC based page write function
> > + * @mtd:		Pointer to the mtd info structure
> > + * @chip:		Pointer to the NAND chip info structure
> > + * @buf:		Pointer to the data buffer
> > + * @oob_required:	Caller requires OOB data read to chip->oob_poi
> > + * @page:		Page number to write
> > + *
> > + * This functions writes data and hardware generated ECC values in to the page.
> > + *
> > + * Return:	Always return zero
> > + */
> > +static int pl353_nand_write_page_hwecc(struct nand_chip *chip,
> > +				       const u8 *buf, int oob_required,
> > +				       int page)
> > +{
> > +	int eccsize = chip->ecc.size;
> > +	int eccsteps = chip->ecc.steps;
> > +	u8 *ecc_calc = chip->ecc.calc_buf;
> > +	u8 *oob_ptr;
> > +	const u8 *p = buf;
> > +	u32 ret;
> > +	unsigned long data_phase_addr;
> > +	struct pl353_nand_controller *xnfc =
> > +		container_of(chip, struct pl353_nand_controller, chip);
> > +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > +
> > +	pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN,
> > +			  NAND_CMD_PAGEPROG, 0);
> > +
> > +	for ( ; (eccsteps - 1); eccsteps--) {
> > +		pl353_nand_write_data_op(chip, p, eccsize, false);
> > +		p += eccsize;
> > +	}
> > +	pl353_nand_write_data_op(chip, p,
> > +				 (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH),
> > +				 false);
> > +	p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > +
> > +	/* Set ECC Last bit to 1 */
> > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > +	data_phase_addr -= nand_offset;
> > +	data_phase_addr |= PL353_NAND_ECC_LAST;
> > +	data_phase_addr += nand_offset;
> > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > +	pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> > +				 false);
> > +
> > +	/* Wait till the ECC operation is complete or timeout */
> > +	ret = pl353_wait_for_ecc_done();
> > +	if (ret)
> > +		dev_err(xnfc->dev, "ECC Timeout\n");
> > +	p = buf;
> > +	ret = chip->ecc.calculate(chip, p, &ecc_calc[0]);
> > +	if (ret)
> > +		return ret;
> > +
> > +	/* Wait for ECC to be calculated and read the error values */
> > +	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
> > +					 0, chip->ecc.total);
> > +	if (ret)
> > +		return ret;
> > +	/* Clear ECC last bit */
> > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > +	data_phase_addr -= nand_offset;
> > +	data_phase_addr &= ~PL353_NAND_ECC_LAST;
> > +	data_phase_addr += nand_offset;
> > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > +
> > +	/* Write the spare area with ECC bytes */
> > +	oob_ptr = chip->oob_poi;
> > +	pl353_nand_write_data_op(chip, oob_ptr,
> > +				 (mtd->oobsize -
> > +				 PL353_NAND_LAST_TRANSFER_LENGTH), false);
> > +
> > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > +	data_phase_addr -= nand_offset;
> > +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> > +	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
> > +	data_phase_addr += nand_offset;
> > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > +	oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > +	pl353_nand_write_data_op(chip, oob_ptr,
> PL353_NAND_LAST_TRANSFER_LENGTH,
> > +				 false);
> > +	nand_wait_ready(chip);
> > +
> > +	return 0;
> > +}
> > +
> > +/**
> > + * pl353_nand_read_page_hwecc - Hardware ECC based page read function
> > + * @mtd:		Pointer to the mtd info structure
> > + * @chip:		Pointer to the NAND chip info structure
> > + * @buf:		Pointer to the buffer to store read data
> > + * @oob_required:	Caller requires OOB data read to chip->oob_poi
> > + * @page:		Page number to read
> > + *
> > + * This functions reads data and checks the data integrity by comparing
> > + * hardware generated ECC values and read ECC values from spare area.
> > + * There is a limitation in SMC controller, that we must set ECC LAST on
> > + * last data phase access, to tell ECC block not to expect any data further.
> > + * Ex:  When number of ECC STEPS are 4, then till 3 we will write to flash
> > + * using SMC with HW ECC enabled. And for the last ECC STEP, we will subtract
> > + * 4bytes from page size, and will initiate a transfer. And the remaining 4 as
> > + * one more transfer with ECC_LAST bit set in NAND data phase register to
> > + * notify ECC block not to expect any more data. The last block should be align
> > + * with end of 512 byte block. Because of this limitation, we are not using
> > + * core routines.
> > + *
> > + * Return:	0 always and updates ECC operation status in to MTD structure
> > + */
> > +static int pl353_nand_read_page_hwecc(struct nand_chip *chip,
> > +				      u8 *buf, int oob_required, int page)
> > +{
> > +	int i, stat, eccsize = chip->ecc.size;
> > +	int eccbytes = chip->ecc.bytes;
> > +	int eccsteps = chip->ecc.steps;
> > +	u8 *p = buf;
> > +	u8 *ecc_calc = chip->ecc.calc_buf;
> > +	u8 *ecc = chip->ecc.code_buf;
> > +	unsigned int max_bitflips = 0;
> > +	u8 *oob_ptr;
> > +	u32 ret;
> > +	unsigned long data_phase_addr;
> > +	struct pl353_nand_controller *xnfc =
> > +		container_of(chip, struct pl353_nand_controller, chip);
> > +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > +
> > +	pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0,
> > +			  NAND_CMD_READSTART, 1);
> > +	nand_wait_ready(chip);
> > +
> > +	for ( ; (eccsteps - 1); eccsteps--) {
> > +		pl353_nand_read_data_op(chip, p, eccsize, false);
> > +		p += eccsize;
> > +	}
> > +	pl353_nand_read_data_op(chip, p,
> > +				(eccsize - PL353_NAND_LAST_TRANSFER_LENGTH),
> > +				false);
> > +	p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > +
> > +	/* Set ECC Last bit to 1 */
> > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > +	data_phase_addr -= nand_offset;
> > +	data_phase_addr |= PL353_NAND_ECC_LAST;
> > +	data_phase_addr += nand_offset;
> > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > +	pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> > +				false);
> > +
> > +	/* Wait till the ECC operation is complete or timeout */
> > +	ret = pl353_wait_for_ecc_done();
> > +	if (ret)
> > +		dev_err(xnfc->dev, "ECC Timeout\n");
> > +
> > +	/* Read the calculated ECC value */
> > +	p = buf;
> > +	ret = chip->ecc.calculate(chip, p, &ecc_calc[0]);
> > +	if (ret)
> > +		return ret;
> > +
> > +	/* Clear ECC last bit */
> > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > +	data_phase_addr -= nand_offset;
> > +	data_phase_addr &= ~PL353_NAND_ECC_LAST;
> > +	data_phase_addr += nand_offset;
> > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > +
> > +	/* Read the stored ECC value */
> > +	oob_ptr = chip->oob_poi;
> > +	pl353_nand_read_data_op(chip, oob_ptr,
> > +				(mtd->oobsize -
> > +				PL353_NAND_LAST_TRANSFER_LENGTH), false);
> > +
> > +	/* de-assert chip select */
> > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > +	data_phase_addr -= nand_offset;
> > +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> > +	data_phase_addr += nand_offset;
> > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > +
> > +	oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > +	pl353_nand_read_data_op(chip, oob_ptr,
> PL353_NAND_LAST_TRANSFER_LENGTH,
> > +				false);
> > +
> > +	ret = mtd_ooblayout_get_eccbytes(mtd, ecc, chip->oob_poi, 0,
> > +					 chip->ecc.total);
> > +	if (ret)
> > +		return ret;
> > +
> > +	eccsteps = chip->ecc.steps;
> > +	p = buf;
> > +
> > +	/* Check ECC error for all blocks and correct if it is correctable */
> > +	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
> > +		stat = chip->ecc.correct(chip, p, &ecc[i], &ecc_calc[i]);
> > +		if (stat < 0) {
> > +			mtd->ecc_stats.failed++;
> > +		} else {
> > +			mtd->ecc_stats.corrected += stat;
> > +			max_bitflips = max_t(unsigned int, max_bitflips, stat);
> > +		}
> > +	}
> > +
> > +	return max_bitflips;
> > +}
> > +
> > +/* NAND framework ->exec_op() hooks and related helpers */
> > +static void pl353_nfc_parse_instructions(struct nand_chip *chip,
> > +					 const struct nand_subop *subop,
> > +					 struct pl353_nfc_op *nfc_op)
> > +{
> > +	const struct nand_op_instr *instr = NULL;
> > +	unsigned int op_id, offset, naddrs;
> > +	int i;
> > +	const u8 *addrs;
> > +
> > +	memset(nfc_op, 0, sizeof(struct pl353_nfc_op));
> > +	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
> > +		instr = &subop->instrs[op_id];
> > +
> > +		switch (instr->type) {
> > +		case NAND_OP_CMD_INSTR:
> > +			if (op_id)
> > +				nfc_op->cmnds[1] = instr->ctx.cmd.opcode;
> > +			else
> > +				nfc_op->cmnds[0] = instr->ctx.cmd.opcode;
> > +			nfc_op->cle_ale_delay_ns = instr->delay_ns;
> > +			break;
> > +
> > +		case NAND_OP_ADDR_INSTR:
> > +			offset = nand_subop_get_addr_start_off(subop, op_id);
> > +			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
> > +			addrs = &instr->ctx.addr.addrs[offset];
> > +			nfc_op->addrs = instr->ctx.addr.addrs[offset];
> > +			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) {
> > +				nfc_op->addrs |= instr->ctx.addr.addrs[i] <<
> > +						 (8 * i);
> > +			}
> > +
> > +			if (naddrs >= 5)
> > +				nfc_op->addr5 = addrs[4];
> > +			if (naddrs >= 6)
> > +				nfc_op->addr6 = addrs[5];
> > +			nfc_op->naddrs = nand_subop_get_num_addr_cyc(subop,
> > +								     op_id);
> > +			nfc_op->cle_ale_delay_ns = instr->delay_ns;
> > +			break;
> > +
> > +		case NAND_OP_DATA_IN_INSTR:
> > +			nfc_op->data_instr = instr;
> > +			nfc_op->data_instr_idx = op_id;
> > +			break;
> > +
> > +		case NAND_OP_DATA_OUT_INSTR:
> > +			nfc_op->data_instr = instr;
> > +			nfc_op->data_instr_idx = op_id;
> > +			break;
> > +
> > +		case NAND_OP_WAITRDY_INSTR:
> > +			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
> > +			nfc_op->rdy_delay_ns = instr->delay_ns;
> > +			break;
> > +		}
> > +	}
> > +}
> > +
> > +static void cond_delay(unsigned int ns)
> > +{
> > +	if (!ns)
> > +		return;
> > +
> > +	if (ns < 10000)
> > +		ndelay(ns);
> > +	else
> > +		udelay(DIV_ROUND_UP(ns, 1000));
> > +}
> > +
> > +/**
> > + * pl353_nand_exec_op_cmd - Send command to NAND device
> > + * @chip:	Pointer to the NAND chip info structure
> > + * @subop:	Pointer to array of instructions
> > + * Return:	Always return zero
> > + */
> > +static int pl353_nand_exec_op_cmd(struct nand_chip *chip,
> > +				  const struct nand_subop *subop)
> > +{
> > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > +	const struct nand_op_instr *instr;
> > +	struct pl353_nfc_op nfc_op = {};
> > +	struct pl353_nand_controller *xnfc =
> > +		container_of(chip, struct pl353_nand_controller, chip);
> > +	unsigned long cmd_phase_data = 0, end_cmd_valid = 0;
> > +	unsigned long cmd_phase_addr, data_phase_addr, end_cmd;
> > +	unsigned int op_id, len, offset;
> > +	bool reading;
> > +
> > +	pl353_nfc_parse_instructions(chip, subop, &nfc_op);
> > +	instr = nfc_op.data_instr;
> > +	op_id = nfc_op.data_instr_idx;
> > +
> > +	offset = nand_subop_get_data_start_off(subop, op_id);
> > +
> > +	pl353_smc_clr_nand_int();
> > +	/* Get the command phase address */
> > +	if (nfc_op.cmnds[1] != 0) {
> > +		if (nfc_op.cmnds[0] == NAND_CMD_SEQIN)
> > +			end_cmd_valid = 0;
> > +		else
> > +			end_cmd_valid = 1;
> > +		end_cmd = nfc_op.cmnds[1];
> > +	}  else {
> > +		end_cmd = 0x0;
> > +	}
> > +
> > +	/*
> > +	 * The SMC defines two phases of commands when transferring data to or
> > +	 * from NAND flash.
> > +	 * Command phase: Commands and optional address information are written
> > +	 * to the NAND flash.The command and address can be associated with
> > +	 * either a data phase operation to write to or read from the array,
> > +	 * or a status/ID register transfer.
> > +	 * Data phase: Data is either written to or read from the NAND flash.
> > +	 * This data can be either data transferred to or from the array,
> > +	 * or status/ID register information.
> > +	 */
> > +	cmd_phase_addr = (unsigned long __force)xnfc->regs +
> > +			 ((nfc_op.naddrs << ADDR_CYCLES_SHIFT) |
> > +			 (end_cmd_valid << END_CMD_VALID_SHIFT) |
> > +			 (COMMAND_PHASE) |
> > +			 (end_cmd << END_CMD_SHIFT) |
> > +			 (nfc_op.cmnds[0] << START_CMD_SHIFT));
> > +
> > +	/* Get the data phase address */
> > +	end_cmd_valid = 0;
> > +
> > +	data_phase_addr = (unsigned long __force)xnfc->regs +
> > +			  ((0x0 << CLEAR_CS_SHIFT) |
> > +			  (end_cmd_valid << END_CMD_VALID_SHIFT) |
> > +			  (DATA_PHASE) |
> > +			  (end_cmd << END_CMD_SHIFT) |
> > +			  (0x0 << ECC_LAST_SHIFT));
> > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > +
> > +	/* Command phase AXI Read & Write */
> > +	if (nfc_op.naddrs >= 5) {
> > +		if (mtd->writesize > PL353_NAND_ECC_SIZE) {
> > +			cmd_phase_data = nfc_op.addrs;
> > +			/* Another address cycle for devices > 128MiB */
> > +			if (chip->options & NAND_ROW_ADDR_3) {
> > +				writel_relaxed(cmd_phase_data,
> > +					       (void __iomem * __force)
> > +					       cmd_phase_addr);
> > +				cmd_phase_data = nfc_op.addr5;
> > +				if (nfc_op.naddrs >= 6)
> > +					cmd_phase_data |= (nfc_op.addr6 << 8);
> > +			}
> > +		}
> > +	}  else {
> > +		if (nfc_op.addrs != -1) {
> > +			int column = nfc_op.addrs;
> > +			/*
> > +			 * Change read/write column, read id etc
> > +			 * Adjust columns for 16 bit bus width
> > +			 */
> > +			if ((chip->options & NAND_BUSWIDTH_16) &&
> > +			    (nfc_op.cmnds[0] == NAND_CMD_READ0 ||
> > +				nfc_op.cmnds[0] == NAND_CMD_SEQIN ||
> > +				nfc_op.cmnds[0] == NAND_CMD_RNDOUT ||
> > +				nfc_op.cmnds[0] == NAND_CMD_RNDIN)) {
> > +				column >>= 1;
> > +			}
> > +			cmd_phase_data = column;
> > +		}
> > +	}
> > +	writel_relaxed(cmd_phase_data, (void __iomem * __force)cmd_phase_addr);
> > +
> > +	if (!nfc_op.data_instr) {
> > +		if (nfc_op.rdy_timeout_ms)
> > +			nand_wait_ready(chip);
> > +		return 0;
> > +	}
> > +
> > +	reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
> > +	if (!reading) {
> > +		len = nand_subop_get_data_len(subop, op_id);
> > +		pl353_nand_write_data_op(chip, instr->ctx.data.buf.out,
> > +					 len, instr->ctx.data.force_8bit);
> > +		if (nfc_op.rdy_timeout_ms)
> > +			nand_wait_ready(chip);
> > +		cond_delay(nfc_op.rdy_delay_ns);
> > +	}
> 
> else ?
If (reading) is nothing but else, but it is looking odd. I will change it.
> 
> > +	if (reading) {
> > +		len = nand_subop_get_data_len(subop, op_id);
> > +		cond_delay(nfc_op.rdy_delay_ns);
> > +		if (nfc_op.rdy_timeout_ms)
> > +			nand_wait_ready(chip);
> > +		pl353_nand_read_data_op(chip, instr->ctx.data.buf.in, len,
> > +					instr->ctx.data.force_8bit);
> > +	}
> > +
> > +	return 0;
> > +}
> > +
> > +static const struct nand_op_parser pl353_nfc_op_parser = NAND_OP_PARSER
> > +	(NAND_OP_PARSER_PATTERN
> > +		(pl353_nand_exec_op_cmd,
> > +		NAND_OP_PARSER_PAT_CMD_ELEM(true),
> > +		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
> > +		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
> > +		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
> > +	NAND_OP_PARSER_PATTERN
> > +		(pl353_nand_exec_op_cmd,
> > +		NAND_OP_PARSER_PAT_CMD_ELEM(false),
> > +		NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
> > +		NAND_OP_PARSER_PAT_CMD_ELEM(false),
> > +		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false),
> > +		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
> > +	NAND_OP_PARSER_PATTERN
> > +		(pl353_nand_exec_op_cmd,
> > +		NAND_OP_PARSER_PAT_CMD_ELEM(false),
> > +		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
> > +		NAND_OP_PARSER_PAT_CMD_ELEM(true),
> > +		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
> > +	NAND_OP_PARSER_PATTERN
> > +		(pl353_nand_exec_op_cmd,
> > +		NAND_OP_PARSER_PAT_CMD_ELEM(false),
> > +		NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8),
> > +		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048),
> > +		NAND_OP_PARSER_PAT_CMD_ELEM(true),
> > +		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
> > +	NAND_OP_PARSER_PATTERN
> > +		(pl353_nand_exec_op_cmd,
> > +		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
> > +	);
> > +
> > +static int pl353_nfc_exec_op(struct nand_chip *chip,
> > +			     const struct nand_operation *op,
> > +			     bool check_only)
> > +{
> > +	return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser,
> > +					      op, check_only);
> > +}
> > +
> > +/**
> > + * pl353_nand_device_ready - Check device ready/busy line
> > + * @mtd:	Pointer to the mtd_info structure
> > + *
> > + * Return:	0 on busy or 1 on ready state
> > + */
> > +static int pl353_nand_device_ready(struct nand_chip *chip)
> > +{
> > +	if (pl353_smc_get_nand_int_status_raw()) {
> > +		pl353_smc_clr_nand_int();
> > +		return 1;
> > +	}
> > +
> > +	return 0;
> > +}
> > +
> > +/**
> > + * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode
> > + * @mtd:	Pointer to the mtd_info structure
> > + * @ecc:	Pointer to ECC control structure
> > + * @ecc_mode:	ondie ecc status
> > + *
> > + * This function initializes the ecc block and functional pointers as per the
> > + * ecc mode
> > + *
> > + * Return:	0 on success or negative errno.
> > + */
> > +static int pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
> > +			       int ecc_mode)
> > +{
> > +	struct nand_chip *chip = mtd_to_nand(mtd);
> > +	struct pl353_nand_controller *xnfc =
> > +		container_of(chip, struct pl353_nand_controller, chip);
> > +	int err = 0;
> > +
> > +	ecc->write_page_raw = pl353_nand_write_page_raw;
> > +	ecc->read_page_raw = pl353_nand_read_page_raw;
> > +	ecc->read_oob = pl353_nand_read_oob;
> > +	ecc->write_oob = pl353_nand_write_oob;
> > +
> > +	if (ecc_mode == NAND_ECC_ON_DIE) {
> > +		pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS);
> > +		/*
> > +		 * On-Die ECC spare bytes offset 8 is used for ECC codes
> > +		 * Use the BBT pattern descriptors
> > +		 */
> > +		chip->bbt_td = &bbt_main_descr;
> > +		chip->bbt_md = &bbt_mirror_descr;
> > +	} else {
> > +		ecc->mode = NAND_ECC_HW;
> > +		/* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
> > +		ecc->bytes = 3;
> > +		ecc->strength = 1;
> > +		ecc->calculate = pl353_nand_calculate_hwecc;
> > +		ecc->correct = pl353_nand_correct_data;
> > +		ecc->read_page = pl353_nand_read_page_hwecc;
> > +		ecc->size = PL353_NAND_ECC_SIZE;
> > +		ecc->read_page = pl353_nand_read_page_hwecc;
> > +		ecc->write_page = pl353_nand_write_page_hwecc;
> > +		pl353_smc_set_ecc_pg_size(mtd->writesize);
> > +		switch (mtd->writesize) {
> > +		case SZ_512:
> > +		case SZ_1K:
> > +		case SZ_2K:
> > +			pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB);
> > +			break;
> > +		default:
> > +			ecc->calculate = nand_calculate_ecc;
> > +			ecc->correct = nand_correct_data;
> > +			ecc->size = 256;
> > +			break;
> > +		}
> > +
> > +		if (mtd->oobsize == 16) {
> > +			mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout16_ops);
> > +		} else if (mtd->oobsize == 64) {
> > +			mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout64_ops);
> > +		} else {
> > +			err = -ENXIO;
> > +			dev_err(xnfc->dev, "Unsupported oob Layout\n");
> > +		}
> > +	}
> > +
> > +	return err;
> > +}
> > +
> > +static int pl353_nfc_setup_data_interface(struct nand_chip *chip, int csline,
> > +					  const struct nand_data_interface
> > +					  *conf)
> > +{
> > +	struct pl353_nand_controller *xnfc =
> > +		container_of(chip, struct pl353_nand_controller, chip);
> > +	const struct nand_sdr_timings *sdr;
> > +	u32 timings[7], mckperiodps;
> > +
> > +	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
> > +		return 0;
> > +
> > +	sdr = nand_get_sdr_timings(conf);
> > +	if (IS_ERR(sdr))
> > +		return PTR_ERR(sdr);
> > +
> > +	/*
> > +	 * SDR timings are given in pico-seconds while NFC timings must be
> > +	 * expressed in NAND controller clock cycles.
> > +	 */
> > +	mckperiodps = NSEC_PER_SEC / clk_get_rate(xnfc->mclk);
> > +	mckperiodps *= 1000;
> > +	if (sdr->tRC_min <= 20000)
> > +		/*
> > +		 * PL353 SMC needs one extra read cycle in SDR Mode 5
> > +		 * This is not written anywhere in the datasheet but
> > +		 * the results observed during testing.
> > +		 */
> > +		timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps) + 1;
> > +	else
> > +		timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps);
> > +
> > +	timings[1] = DIV_ROUND_UP(sdr->tWC_min, mckperiodps);
> > +	/*
> > +	 * For all SDR modes, PL353 SMC needs tREA max value as 1,
> > +	 * Results observed during testing.
> > +	 */
> > +	timings[2] = PL353_TREA_MAX_VALUE;
> > +	timings[3] = DIV_ROUND_UP(sdr->tWP_min, mckperiodps);
> > +	timings[4] = DIV_ROUND_UP(sdr->tCLR_min, mckperiodps);
> > +	timings[5] = DIV_ROUND_UP(sdr->tAR_min, mckperiodps);
> > +	timings[6] = DIV_ROUND_UP(sdr->tRR_min, mckperiodps);
> > +	pl353_smc_set_cycles(timings);
> > +
> > +	return 0;
> > +}
> > +
> > +static int pl353_nand_attach_chip(struct nand_chip *chip)
> > +{
> > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > +	struct pl353_nand_controller *xnfc =
> > +		container_of(chip, struct pl353_nand_controller, chip);
> > +	u32 ret;
> > +
> > +	if (chip->options & NAND_BUSWIDTH_16)
> > +		pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
> > +
> > +	if (mtd->writesize <= SZ_512)
> > +		xnfc->addr_cycles = 1;
> > +	else
> > +		xnfc->addr_cycles = 2;
> > +
> > +	if (chip->options & NAND_ROW_ADDR_3)
> > +		xnfc->addr_cycles += 3;
> > +	else
> > +		xnfc->addr_cycles += 2;
> > +
> > +	ret = pl353_nand_ecc_init(mtd, &chip->ecc, chip->ecc.mode);
> > +	if (ret) {
> > +		dev_err(xnfc->dev, "ECC init failed\n");
> > +		return ret;
> > +	}
> > +
> > +	if (!mtd->name) {
> > +		/*
> > +		 * If the new bindings are used and the bootloader has not been
> > +		 * updated to pass a new mtdparts parameter on the cmdline, you
> > +		 * should define the following property in your NAND node, ie:
> > +		 *
> > +		 *	label = "pl353-nand";
> > +		 *
> > +		 * This way, mtd->name will be set by the core when
> > +		 * nand_set_flash_node() is called.
> > +		 */
> > +		mtd->name = devm_kasprintf(xnfc->dev, GFP_KERNEL,
> > +					   "%s", PL353_NAND_DRIVER_NAME);
> > +		if (!mtd->name) {
> > +			dev_err(xnfc->dev, "Failed to allocate mtd->name\n");
> > +			return -ENOMEM;
> > +		}
> > +	}
> > +
> > +	return 0;
> > +}
> > +
> > +static const struct nand_controller_ops pl353_nand_controller_ops = {
> > +	.attach_chip = pl353_nand_attach_chip,
> > +	.exec_op = pl353_nfc_exec_op,
> > +	.setup_data_interface = pl353_nfc_setup_data_interface,
> > +};
> > +
> > +/**
> > + * pl353_nand_probe - Probe method for the NAND driver
> > + * @pdev:	Pointer to the platform_device structure
> > + *
> > + * This function initializes the driver data structures and the hardware.
> > + * The NAND driver has dependency with the pl353_smc memory controller
> > + * driver for initializing the NAND timing parameters, bus width, ECC modes,
> > + * control and status information.
> > + *
> > + * Return:	0 on success or error value on failure
> > + */
> > +static int pl353_nand_probe(struct platform_device *pdev)
> > +{
> > +	struct pl353_nand_controller *xnfc;
> > +	struct mtd_info *mtd;
> > +	struct nand_chip *chip;
> > +	struct resource *res;
> > +	struct device_node *np, *dn;
> > +	u32 ret, val;
> > +
> > +	xnfc = devm_kzalloc(&pdev->dev, sizeof(*xnfc), GFP_KERNEL);
> > +	if (!xnfc)
> > +		return -ENOMEM;
> > +	xnfc->dev = &pdev->dev;
> > +
> > +	nand_controller_init(&xnfc->controller);
> > +	xnfc->controller.ops = &pl353_nand_controller_ops;
> > +	/* Map physical address of NAND flash */
> > +	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> > +	xnfc->regs = devm_ioremap_resource(xnfc->dev, res);
> > +	if (IS_ERR(xnfc->regs))
> > +		return PTR_ERR(xnfc->regs);
> > +
> > +	chip = &xnfc->chip;
> > +	chip->controller = &xnfc->controller;
> > +	mtd = nand_to_mtd(chip);
> > +	nand_set_controller_data(chip, xnfc);
> > +	mtd->priv = chip;
> > +	mtd->owner = THIS_MODULE;
> > +	nand_set_flash_node(chip, xnfc->dev->of_node);
> > +
> > +	/* Set the driver entry points for MTD */
> > +	chip->legacy.dev_ready = pl353_nand_device_ready;
> 
> Please do not implement legacy interfaces.
Ok, now it is moved to nand_legacy.c, I will update it.

Thanks,
Naga Sureshkumar Relli
> 
> > +	/* If we don't set this delay driver sets 20us by default */
> > +	np = of_get_next_parent(xnfc->dev->of_node);
> > +	xnfc->mclk = of_clk_get(np, 0);
> > +	if (IS_ERR(xnfc->mclk)) {
> > +		dev_err(xnfc->dev, "Failed to retrieve MCK clk\n");
> > +		return PTR_ERR(xnfc->mclk);
> > +	}
> > +
> > +	dn = nand_get_flash_node(chip);
> > +
> > +	/* Set the device option and flash width */
> > +	chip->options = NAND_BUSWIDTH_AUTO;
> > +	chip->bbt_options = NAND_BBT_USE_FLASH;
> > +	platform_set_drvdata(pdev, xnfc);
> > +	ret = nand_scan(chip, 1);
> > +	if (ret) {
> > +		dev_err(xnfc->dev, "could not scan the nand chip\n");
> > +		return ret;
> > +	}
> > +
> > +	ret = mtd_device_register(mtd, NULL, 0);
> > +	if (ret) {
> > +		dev_err(xnfc->dev, "Failed to register mtd device: %d\n", ret);
> > +		nand_cleanup(chip);
> > +		return ret;
> > +	}
> > +
> > +	return 0;
> > +}
> > +
> > +/**
> > + * pl353_nand_remove - Remove method for the NAND driver
> > + * @pdev:	Pointer to the platform_device structure
> > + *
> > + * This function is called if the driver module is being unloaded. It frees all
> > + * resources allocated to the device.
> > + *
> > + * Return:	0 on success or error value on failure
> > + */
> > +static int pl353_nand_remove(struct platform_device *pdev)
> > +{
> > +	struct pl353_nand_controller *xnfc = platform_get_drvdata(pdev);
> > +	struct mtd_info *mtd = nand_to_mtd(&xnfc->chip);
> > +	struct nand_chip *chip = mtd_to_nand(mtd);
> > +
> > +	/* Release resources, unregister device */
> > +	nand_release(chip);
> > +
> > +	return 0;
> > +}
> > +
> > +/* Match table for device tree binding */
> > +static const struct of_device_id pl353_nand_of_match[] = {
> > +	{ .compatible = "arm,pl353-nand-r2p1" },
> > +	{},
> > +};
> > +MODULE_DEVICE_TABLE(of, pl353_nand_of_match);
> > +
> > +/*
> > + * pl353_nand_driver - This structure defines the NAND subsystem platform driver
> > + */
> > +static struct platform_driver pl353_nand_driver = {
> > +	.probe		= pl353_nand_probe,
> > +	.remove		= pl353_nand_remove,
> > +	.driver		= {
> > +		.name	= PL353_NAND_DRIVER_NAME,
> > +		.of_match_table = pl353_nand_of_match,
> > +	},
> > +};
> > +
> > +module_platform_driver(pl353_nand_driver);
> > +
> > +MODULE_AUTHOR("Xilinx, Inc.");
> > +MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME);
> > +MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver");
> > +MODULE_LICENSE("GPL");
> 
> 
> Thanks,
> Miquèl

^ permalink raw reply	[flat|nested] 8+ messages in thread

* RE: [LINUX PATCH v13] rawnand: pl353: Add basic driver for arm pl353 smc nand interface
  2019-03-04 11:46   ` Naga Sureshkumar Relli
@ 2019-03-11  4:36     ` Naga Sureshkumar Relli
  0 siblings, 0 replies; 8+ messages in thread
From: Naga Sureshkumar Relli @ 2019-03-11  4:36 UTC (permalink / raw)
  To: Naga Sureshkumar Relli, Miquel Raynal
  Cc: bbrezillon, richard, dwmw2, computersforpeace, marek.vasut,
	linux-mtd, linux-kernel, Michal Simek, nagasureshkumarrelli

Hi Miquel,

Thanks for the review.
I will update the driver to remove legacy hooks.
Apart from that, Do you have any other comments on this driver?
If any, I will fix those.

Thanks,
Naga Sureshkumar Relli

> -----Original Message-----
> From: Naga Sureshkumar Relli <nagasure@xilinx.com>
> Sent: Monday, March 4, 2019 5:17 PM
> To: Miquel Raynal <miquel.raynal@bootlin.com>
> Cc: bbrezillon@kernel.org; richard@nod.at; dwmw2@infradead.org;
> computersforpeace@gmail.com; marek.vasut@gmail.com; linux-mtd@lists.infradead.org; linux-
> kernel@vger.kernel.org; Michal Simek <michals@xilinx.com>;
> nagasureshkumarrelli@gmail.com
> Subject: RE: [LINUX PATCH v13] rawnand: pl353: Add basic driver for arm pl353 smc nand
> interface
> 
> Hi Miquel,
> 
> > -----Original Message-----
> > From: Miquel Raynal <miquel.raynal@bootlin.com>
> > Sent: Monday, March 4, 2019 3:13 PM
> > To: Naga Sureshkumar Relli <nagasure@xilinx.com>
> > Cc: bbrezillon@kernel.org; richard@nod.at; dwmw2@infradead.org;
> > computersforpeace@gmail.com; marek.vasut@gmail.com; linux-mtd@lists.infradead.org;
> linux-
> > kernel@vger.kernel.org; Michal Simek <michals@xilinx.com>;
> > nagasureshkumarrelli@gmail.com
> > Subject: Re: [LINUX PATCH v13] rawnand: pl353: Add basic driver for arm pl353 smc
> nand
> > interface
> >
> > Hi Naga,
> >
> > Naga Sureshkumar Relli <naga.sureshkumar.relli@xilinx.com> wrote on
> > Sat, 9 Feb 2019 12:07:27 +0530:
> >
> > > Add driver for arm pl353 static memory controller nand interface with
> > > HW ECC support. This controller is used in Xilinx Zynq SoC for
> > > interfacing the NAND flash memory.
> > >
> > > Signed-off-by: Naga Sureshkumar Relli <naga.sureshkumar.relli@xilinx.com>
> > > ---
> > > xilinx zynq TRM link:
> > > https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-
> TRM.pdf
> > >
> > > ARM pl353 smc TRM link:
> > >
> >
> http://infocenter.arm.com/help/topic/com.arm.doc.ddi0380g/DDI0380G_smc_pl350_series_
> > r2p1_trm.pdf
> > >
> > > Tested Micron MT29F2G08ABAEAWP (On-die capable) and AMD/Spansion
> > S34ML01G1.
> > >
> > > SMC memory controller driver is at drivers/memory/pl353-smc.c
> > >
> > > Changes in v13:
> > >  - Rebased the driver to mtd/next
> > > Changes in v12:
> > >  - Rebased the driver on top of v4.19 nand tree
> > >  - Removed nand_scan_ident() and nand_scan_tail(), and added nand_controller_ops
> > >    with ->attach_chip() and used nand_scan() instead.
> > >  - Renamed pl353_nand_info structure to pl353_nand_controller
> > >  - Renamed nand_base and nandaddr in pl353_nand_controller to 'regs' and 'buf_addr'
> > >  - Added new API pl353_wait_for_ecc_done() to wait for ecc done and call it from
> > >    pl353_nand_write_page_hwecc() and pl353_nand_read_page_hwecc()
> > >  - Defined new macro for max ECC blocks
> > >  - Added return value check for ecc.calculate()
> > >  - Renamed pl353_nand_cmd_function() to pl353_nand_exec_op_cmd()
> > >  - Added x16 bus-width support
> > >  - The dependent driver pl353-smc is already reviewed and hence dropped the
> > >    smc driver
> > > Changes in v11:
> > >  - Removed Documentation patch and added the required info in driver as
> > >    per Boris comments.
> > >  - Removed unwanted variables from pl353_nand_info as per Miquel comments
> > >  - Removed IO_ADDR_R/W.
> > >  - Replaced onhot() with hweight32()
> > >  - Defined macros for static values in function pl353_nand_correct_data()
> > >  - Removed all unnecessary delays
> > >  - Used nand_wait_ready() where ever is required
> > >  - Modifed the pl353_setup_data_interface() logic as per Miquel comments.
> > >  - Taken array instead of 7 values in pl353_setup_data_interface() and pass
> > >    it to smc driver.
> > >  - Added check to collect the return value of mtd_device_register().
> > > Changes in 10:
> > >  - Typos correction like nand to NAND and soc to SOC etc..
> > >  - Defined macros for the values in pl353_nand_calculate_hwecc()
> > >  - Modifed ecc_status from int to char in pl353_nand_calculate_hwecc()
> > >  - Changed the return type form int to bool to the function
> > >    onehot()
> > >  - Removed udelay(1000) in pl353_cmd_function, as it is not required
> > >  - Dropped ecc->hwctl = NULL in pl353_ecc_init()
> > >  - Added an error message in pl353_ecc_init(), when there is no matching
> > >    oobsize
> > >  - Changed the variable from xnand to xnfc
> > >  - Added logic to get mtd->name from DT, if it is specified in DT
> > > Changes in v9:
> > >  - Addressed the below comments given by Miquel
> > >  - instead of using pl353_nand_write32, use directly writel_relaxed
> > >  - Fixed check patch warnings
> > >  - Renamed write_buf/read_buf to write_data_op/read_data_op
> > >  - use BIT macro instead of 1 << nr
> > >  - Use NAND_ROW_ADDR_3 flag
> > >  - Use nand_wait_ready()
> > >  - Removed swecc functions
> > >  - Use address cycles as per size, instead of reading it from Parameter page
> > >  - Instead of writing too many patterns, use optional property
> > > Changes in v8:
> > >  - Added exec_op() implementation
> > >  - Fixed the below v7 review comments
> > >  - removed mtd_info from pl353_nand_info struct
> > >  - Corrected ecc layout offsets
> > >  - Added on-die ecc support
> > > Changes in v7:
> > >  - Currently not implemented the memclk rate adjustments. I will
> > >    look into this later and once the basic driver is accepted.
> > >  - Fixed GPL licence ident
> > > Changes in v6:
> > >  - Fixed the checkpatch.pl reported warnings
> > >  - Using the address cycles information from the onfi param page
> > >    earlier it is hardcoded to 5 in driver
> > > Changes in v5:
> > >  - Configure the nand timing parameters as per the onfi spec Changes in v4:
> > >  - Updated the driver to sync with pl353_smc driver APIs
> > > Changes in v3:
> > >  - implemented the proper error codes
> > >  - further breakdown this patch to multiple sets
> > >  - added the controller and driver details to Documentation section
> > >  - updated the licenece to GPLv2
> > >  - reorganized the pl353_nand_ecc_init function
> > > Changes in v2:
> > >  - use "depends on" rather than "select" option in kconfig
> > >  - remove unused variable parts
> > > ---
> > >  drivers/mtd/nand/raw/Kconfig      |    8 +
> > >  drivers/mtd/nand/raw/Makefile     |    1 +
> > >  drivers/mtd/nand/raw/pl353_nand.c | 1380
> > +++++++++++++++++++++++++++++++++++++
> > >  3 files changed, 1389 insertions(+)
> > >  create mode 100644 drivers/mtd/nand/raw/pl353_nand.c
> > >
> > > diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
> > > index 1a55d3e..bc6c0a0 100644
> > > --- a/drivers/mtd/nand/raw/Kconfig
> > > +++ b/drivers/mtd/nand/raw/Kconfig
> > > @@ -541,4 +541,12 @@ config MTD_NAND_TEGRA
> > >  	  is supported. Extra OOB bytes when using HW ECC are currently
> > >  	  not supported.
> > >
> > > +config MTD_NAND_PL353
> > > +	tristate "ARM Pl353 NAND flash driver"
> > > +	depends on MTD_NAND && ARM
> > > +	depends on PL353_SMC
> > > +	help
> > > +	  Enables support for PrimeCell Static Memory Controller PL353.
> > > +
> > > +
> > >  endif # MTD_NAND
> > > diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
> > > index 57159b3..9d3c48d 100644
> > > --- a/drivers/mtd/nand/raw/Makefile
> > > +++ b/drivers/mtd/nand/raw/Makefile
> > > @@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_BRCMNAND)		+=
> brcmnand/
> > >  obj-$(CONFIG_MTD_NAND_QCOM)		+= qcom_nandc.o
> > >  obj-$(CONFIG_MTD_NAND_MTK)		+= mtk_ecc.o mtk_nand.o
> > >  obj-$(CONFIG_MTD_NAND_TEGRA)		+= tegra_nand.o
> > > +obj-$(CONFIG_MTD_NAND_PL353)		+= pl353_nand.o
> > >
> > >  nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
> > >  nand-objs += nand_onfi.o
> > > diff --git a/drivers/mtd/nand/raw/pl353_nand.c
> b/drivers/mtd/nand/raw/pl353_nand.c
> > > new file mode 100644
> > > index 0000000..1dbaae5
> > > --- /dev/null
> > > +++ b/drivers/mtd/nand/raw/pl353_nand.c
> > > @@ -0,0 +1,1380 @@
> > > +// SPDX-License-Identifier: GPL-2.0
> > > +/*
> > > + * ARM PL353 NAND flash controller driver
> > > + *
> > > + * Copyright (C) 2017 Xilinx, Inc
> > > + * Author: Punnaiah chowdary kalluri <punnaiah@xilinx.com>
> > > + * Author: Naga Sureshkumar Relli <nagasure@xilinx.com>
> > > + *
> > > + */
> > > +
> > > +#include <linux/err.h>
> > > +#include <linux/delay.h>
> > > +#include <linux/interrupt.h>
> > > +#include <linux/io.h>
> > > +#include <linux/ioport.h>
> > > +#include <linux/irq.h>
> > > +#include <linux/module.h>
> > > +#include <linux/moduleparam.h>
> > > +#include <linux/mtd/mtd.h>
> > > +#include <linux/mtd/rawnand.h>
> > > +#include <linux/mtd/nand_ecc.h>
> > > +#include <linux/mtd/partitions.h>
> > > +#include <linux/of_address.h>
> > > +#include <linux/of_device.h>
> > > +#include <linux/of_platform.h>
> > > +#include <linux/platform_device.h>
> > > +#include <linux/slab.h>
> > > +#include <linux/pl353-smc.h>
> > > +#include <linux/clk.h>
> > > +
> > > +#define PL353_NAND_DRIVER_NAME "pl353-nand"
> > > +
> > > +/* NAND flash driver defines */
> > > +#define PL353_NAND_CMD_PHASE	1	/* End command valid in command
> > phase */
> > > +#define PL353_NAND_DATA_PHASE	2	/* End command valid in data phase
> > */
> > > +#define PL353_NAND_ECC_SIZE	512	/* Size of data for ECC operation */
> > > +
> > > +/* Flash memory controller operating parameters */
> > > +
> > > +#define PL353_NAND_ECC_CONFIG	(BIT(4)  |	/* ECC read at end of page */
> > \
> > > +				 (0 << 5))	/* No Jumping */
> > > +
> > > +/* AXI Address definitions */
> > > +#define START_CMD_SHIFT		3
> > > +#define END_CMD_SHIFT		11
> > > +#define END_CMD_VALID_SHIFT	20
> > > +#define ADDR_CYCLES_SHIFT	21
> > > +#define CLEAR_CS_SHIFT		21
> > > +#define ECC_LAST_SHIFT		10
> > > +#define COMMAND_PHASE		(0 << 19)
> > > +#define DATA_PHASE		BIT(19)
> > > +
> > > +#define PL353_NAND_ECC_LAST	BIT(ECC_LAST_SHIFT)	/* Set
> > ECC_Last */
> > > +#define PL353_NAND_CLEAR_CS	BIT(CLEAR_CS_SHIFT)	/* Clear chip
> > select */
> > > +
> > > +#define PL353_NAND_ECC_BUSY_TIMEOUT	(1 * HZ)
> > > +#define PL353_NAND_DEV_BUSY_TIMEOUT	(1 * HZ)
> > > +#define PL353_NAND_LAST_TRANSFER_LENGTH	4
> > > +#define PL353_NAND_ECC_VALID_SHIFT	24
> > > +#define PL353_NAND_ECC_VALID_MASK	0x40
> > > +#define PL353_ECC_BITS_BYTEOFF_MASK	0x1FF
> > > +#define PL353_ECC_BITS_BITOFF_MASK	0x7
> > > +#define PL353_ECC_BIT_MASK		0xFFF
> > > +#define PL353_TREA_MAX_VALUE		1
> > > +#define PL353_MAX_ECC_CHUNKS		4
> > > +#define PL353_MAX_ECC_BYTES		3
> > > +
> > > +struct pl353_nfc_op {
> > > +	u32 cmnds[4];
> > > +	u32 end_cmd;
> > > +	u32 addrs;
> > > +	u32 naddrs;
> > > +	u32 addr5;
> > > +	u32 addr6;
> > > +	unsigned int data_instr_idx;
> > > +	unsigned int rdy_timeout_ms;
> > > +	unsigned int rdy_delay_ns;
> > > +	unsigned int cle_ale_delay_ns;
> > > +	const struct nand_op_instr *data_instr;
> > > +};
> > > +
> > > +/**
> > > + * struct pl353_nand_controller - Defines the NAND flash controller driver
> > > + *				  instance
> > > + * @chip:		NAND chip information structure
> > > + * @dev:		Parent device (used to print error messages)
> > > + * @regs:		Virtual address of the NAND flash device
> > > + * @buf_addr:		Virtual address of the NAND flash device for
> > > + *			data read/writes
> > > + * @addr_cycles:	Address cycles
> > > + * @mclk:		Memory controller clock
> > > + * @buswidth:		Bus width 8 or 16
> > > + */
> > > +struct pl353_nand_controller {
> > > +	struct nand_controller controller;
> > > +	struct nand_chip chip;
> > > +	struct device *dev;
> > > +	void __iomem *regs;
> > > +	void __iomem *buf_addr;
> > > +	u8 addr_cycles;
> > > +	struct clk *mclk;
> > > +	u32 buswidth;
> > > +};
> > > +
> > > +static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
> > > +				     struct mtd_oob_region *oobregion)
> > > +{
> > > +	struct nand_chip *chip = mtd_to_nand(mtd);
> > > +
> > > +	if (section >= chip->ecc.steps)
> > > +		return -ERANGE;
> > > +
> > > +	oobregion->offset = (section * chip->ecc.bytes);
> > > +	oobregion->length = chip->ecc.bytes;
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
> > > +				      struct mtd_oob_region *oobregion)
> > > +{
> > > +	struct nand_chip *chip = mtd_to_nand(mtd);
> > > +
> > > +	if (section >= chip->ecc.steps)
> > > +		return -ERANGE;
> > > +
> > > +	oobregion->offset = (section * chip->ecc.bytes) + 8;
> > > +	oobregion->length = 8;
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops = {
> > > +	.ecc = pl353_ecc_ooblayout16_ecc,
> > > +	.free = pl353_ecc_ooblayout16_free,
> > > +};
> > > +
> > > +static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section,
> > > +				     struct mtd_oob_region *oobregion)
> > > +{
> > > +	struct nand_chip *chip = mtd_to_nand(mtd);
> > > +
> > > +	if (section >= chip->ecc.steps)
> > > +		return -ERANGE;
> > > +
> > > +	oobregion->offset = (section * chip->ecc.bytes) + 52;
> > > +	oobregion->length = chip->ecc.bytes;
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section,
> > > +				      struct mtd_oob_region *oobregion)
> > > +{
> > > +	struct nand_chip *chip = mtd_to_nand(mtd);
> > > +
> > > +	if (section)
> > > +		return -ERANGE;
> > > +
> > > +	if (section >= chip->ecc.steps)
> > > +		return -ERANGE;
> > > +
> > > +	oobregion->offset = (section * chip->ecc.bytes) + 2;
> > > +	oobregion->length = 50;
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops = {
> > > +	.ecc = pl353_ecc_ooblayout64_ecc,
> > > +	.free = pl353_ecc_ooblayout64_free,
> > > +};
> > > +
> > > +/* Generic flash bbt decriptors */
> > > +static u8 bbt_pattern[] = { 'B', 'b', 't', '0' };
> > > +static u8 mirror_pattern[] = { '1', 't', 'b', 'B' };
> > > +
> > > +static struct nand_bbt_descr bbt_main_descr = {
> > > +	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE |
> > NAND_BBT_WRITE
> > > +		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
> > > +	.offs = 4,
> > > +	.len = 4,
> > > +	.veroffs = 20,
> > > +	.maxblocks = 4,
> > > +	.pattern = bbt_pattern
> > > +};
> > > +
> > > +static struct nand_bbt_descr bbt_mirror_descr = {
> > > +	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE |
> > NAND_BBT_WRITE
> > > +		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
> > > +	.offs = 4,
> > > +	.len = 4,
> > > +	.veroffs = 20,
> > > +	.maxblocks = 4,
> > > +	.pattern = mirror_pattern
> > > +};
> > > +
> > > +static void pl353_nfc_force_byte_access(struct nand_chip *chip,
> > > +					bool force_8bit)
> > > +{
> > > +	struct pl353_nand_controller *xnfc =
> > > +		container_of(chip, struct pl353_nand_controller, chip);
> > > +
> > > +	if (!(chip->options & NAND_BUSWIDTH_16))
> > > +		return;
> > > +
> > > +	if (force_8bit)
> > > +		pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_8);
> > > +	else
> > > +		pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
> > > +}
> > > +
> > > +/**
> > > + * pl353_nand_read_data_op - read chip data into buffer
> > > + * @chip:	Pointer to the NAND chip info structure
> > > + * @in:		Pointer to the buffer to store read data
> > > + * @len:	Number of bytes to read
> > > + * @force_8bit:	Force 8-bit bus access
> > > + * Return:	Always return zero
> > > + */
> > > +static int pl353_nand_read_data_op(struct nand_chip *chip,
> > > +				   u8 *in,
> > > +				   unsigned int len, bool force_8bit)
> > > +{
> > > +	int i;
> > > +	struct pl353_nand_controller *xnfc =
> > > +		container_of(chip, struct pl353_nand_controller, chip);
> > > +
> > > +	if (force_8bit)
> > > +		pl353_nfc_force_byte_access(chip, true);
> > > +
> > > +	if ((IS_ALIGNED((uint32_t)in, sizeof(uint32_t)) &&
> > > +	     IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) {
> > > +		u32 *ptr = (u32 *)in;
> > > +
> > > +		len /= 4;
> > > +		for (i = 0; i < len; i++)
> > > +			ptr[i] = readl(xnfc->buf_addr);
> > > +	} else {
> > > +		for (i = 0; i < len; i++)
> > > +			in[i] = readb(xnfc->buf_addr);
> > > +	}
> > > +	if (force_8bit)
> > > +		pl353_nfc_force_byte_access(chip, false);
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +/**
> > > + * pl353_nand_write_buf - write buffer to chip
> > > + * @mtd:	Pointer to the mtd info structure
> > > + * @buf:	Pointer to the buffer to store write data
> > > + * @len:	Number of bytes to write
> > > + * @force_8bit:	Force 8-bit bus access
> > > + */
> > > +static void pl353_nand_write_data_op(struct nand_chip *chip, const u8 *buf,
> > > +				     int len, bool force_8bit)
> > > +{
> > > +	int i;
> > > +	struct pl353_nand_controller *xnfc =
> > > +		container_of(chip, struct pl353_nand_controller, chip);
> > > +
> > > +	if (force_8bit)
> > > +		pl353_nfc_force_byte_access(chip, true);
> > > +
> > > +	if ((IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
> > > +	     IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) {
> > > +		u32 *ptr = (u32 *)buf;
> > > +
> > > +		len /= 4;
> > > +		for (i = 0; i < len; i++)
> > > +			writel(ptr[i], xnfc->buf_addr);
> > > +	} else {
> > > +		for (i = 0; i < len; i++)
> > > +			writeb(buf[i], xnfc->buf_addr);
> > > +	}
> > > +	if (force_8bit)
> > > +		pl353_nfc_force_byte_access(chip, false);
> > > +}
> > > +
> > > +static int pl353_wait_for_ecc_done(void)
> > > +{
> > > +	unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
> > > +
> > > +	do {
> > > +		if (pl353_smc_ecc_is_busy())
> > > +			cpu_relax();
> > > +		else
> > > +			break;
> > > +	} while (!time_after_eq(jiffies, timeout));
> > > +
> > > +	if (time_after_eq(jiffies, timeout)) {
> > > +		pr_err("%s timed out\n", __func__);
> > > +		return -ETIMEDOUT;
> > > +	}
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +/**
> > > + * pl353_nand_calculate_hwecc - Calculate Hardware ECC
> > > + * @mtd:	Pointer to the mtd_info structure
> > > + * @data:	Pointer to the page data
> > > + * @ecc:	Pointer to the ECC buffer where ECC data needs to be stored
> > > + *
> > > + * This function retrieves the Hardware ECC data from the controller and returns
> > > + * ECC data back to the MTD subsystem.
> > > + * It operates on a number of 512 byte blocks of NAND memory and can be
> > > + * programmed to store the ECC codes after the data in memory. For writes,
> > > + * the ECC is written to the spare area of the page. For reads, the result of
> > > + * a block ECC check are made available to the device driver.
> > > + *
> > > + * ------------------------------------------------------------------------
> > > + * |               n * 512 blocks                  | extra  | ecc    |     |
> > > + * |                                               | block  | codes  |     |
> > > + * ------------------------------------------------------------------------
> > > + *
> > > + * The ECC calculation uses a simple Hamming code, using 1-bit correction 2-bit
> > > + * detection. It starts when a valid read or write command with a 512 byte
> > > + * aligned address is detected on the memory interface.
> > > + *
> > > + * Return:	0 on success or error value on failure
> > > + */
> > > +static int pl353_nand_calculate_hwecc(struct nand_chip *chip,
> > > +				      const u8 *data, u8 *ecc)
> > > +{
> > > +	u32 ecc_value;
> > > +	u8 chunk, ecc_byte, ecc_status;
> > > +
> > > +	for (chunk = 0; chunk < PL353_MAX_ECC_CHUNKS; chunk++) {
> > > +		/* Read ECC value for each block */
> > > +		ecc_value = pl353_smc_get_ecc_val(chunk);
> > > +		ecc_status = (ecc_value >> PL353_NAND_ECC_VALID_SHIFT);
> > > +
> > > +		/* ECC value valid */
> > > +		if (ecc_status & PL353_NAND_ECC_VALID_MASK) {
> > > +			for (ecc_byte = 0; ecc_byte < PL353_MAX_ECC_BYTES;
> > > +			     ecc_byte++) {
> > > +				/* Copy ECC bytes to MTD buffer */
> > > +				*ecc = ~ecc_value & 0xFF;
> > > +				ecc_value = ecc_value >> 8;
> > > +				ecc++;
> > > +			}
> > > +		} else {
> > > +			pr_warn("%s status failed\n", __func__);
> > > +			return -1;
> > > +		}
> > > +	}
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +/**
> > > + * pl353_nand_correct_data - ECC correction function
> > > + * @mtd:	Pointer to the mtd_info structure
> > > + * @buf:	Pointer to the page data
> > > + * @read_ecc:	Pointer to the ECC value read from spare data area
> > > + * @calc_ecc:	Pointer to the calculated ECC value
> > > + *
> > > + * This function corrects the ECC single bit errors & detects 2-bit errors.
> > > + *
> > > + * Return:	0 if no ECC errors found
> > > + *		1 if single bit error found and corrected.
> > > + *		-1 if multiple uncorrectable ECC errors found.
> > > + */
> > > +static int pl353_nand_correct_data(struct nand_chip *chip, unsigned char *buf,
> > > +				   unsigned char *read_ecc,
> > > +				   unsigned char *calc_ecc)
> >
> > Isn't it a regular Hamming software ECC algorithm? Can't you re-use the
> > implementation already existing?
> This is called from pl353_nand_read_page_hwecc to check the errors using
> chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]), once the page read(hwecc) is done.
> And this needs some custom masks defined below.
> >
> > > +{
> > > +	unsigned char bit_addr;
> > > +	unsigned int byte_addr;
> > > +	unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
> > > +	unsigned short calc_ecc_lower, calc_ecc_upper;
> > > +
> > > +	read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) &
> > > +			  PL353_ECC_BIT_MASK;
> > > +	read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) &
> > > +			  PL353_ECC_BIT_MASK;
> > > +
> > > +	calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) &
> > > +			  PL353_ECC_BIT_MASK;
> > > +	calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) &
> > > +			  PL353_ECC_BIT_MASK;
> > > +
> > > +	ecc_odd = read_ecc_lower ^ calc_ecc_lower;
> > > +	ecc_even = read_ecc_upper ^ calc_ecc_upper;
> > > +
> > > +	/* no error */
> > > +	if (!ecc_odd && !ecc_even)
> > > +		return 0;
> > > +
> > > +	if (ecc_odd == (~ecc_even & PL353_ECC_BIT_MASK)) {
> > > +		/* bits [11:3] of error code is byte offset */
> > > +		byte_addr = (ecc_odd >> 3) & PL353_ECC_BITS_BYTEOFF_MASK;
> > > +		/* bits [2:0] of error code is bit offset */
> > > +		bit_addr = ecc_odd & PL353_ECC_BITS_BITOFF_MASK;
> > > +		/* Toggling error bit */
> > > +		buf[byte_addr] ^= (BIT(bit_addr));
> > > +		return 1;
> > > +	}
> > > +
> > > +	/* one error in parity */
> > > +	if (hweight32(ecc_odd | ecc_even) == 1)
> > > +		return 1;
> > > +
> > > +	/* Uncorrectable error */
> > > +	return -1;
> > > +}
> > > +
> > > +static void pl353_prepare_cmd(struct nand_chip *chip,
> > > +			      int page, int column, int start_cmd, int end_cmd,
> > > +			      bool read)
> > > +{
> > > +	unsigned long data_phase_addr;
> > > +	u32 end_cmd_valid = 0;
> > > +	unsigned long cmd_phase_addr = 0, cmd_phase_data = 0;
> > > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > > +
> > > +	struct pl353_nand_controller *xnfc =
> > > +		container_of(chip, struct pl353_nand_controller, chip);
> > > +
> > > +	end_cmd_valid = read ? 1 : 0;
> > > +
> > > +	cmd_phase_addr = (unsigned long __force)xnfc->regs +
> > > +			 ((xnfc->addr_cycles
> > > +			 << ADDR_CYCLES_SHIFT) |
> > > +			 (end_cmd_valid << END_CMD_VALID_SHIFT) |
> > > +			 (COMMAND_PHASE) |
> > > +			 (end_cmd << END_CMD_SHIFT) |
> > > +			 (start_cmd << START_CMD_SHIFT));
> > > +
> > > +	/* Get the data phase address */
> > > +	data_phase_addr = (unsigned long __force)xnfc->regs +
> > > +			  ((0x0 << CLEAR_CS_SHIFT) |
> > > +			  (0 << END_CMD_VALID_SHIFT) |
> > > +			  (DATA_PHASE) |
> > > +			  (end_cmd << END_CMD_SHIFT) |
> > > +			  (0x0 << ECC_LAST_SHIFT));
> > > +
> > > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > > +
> > > +	if (chip->options & NAND_BUSWIDTH_16)
> > > +		column /= 2;
> > > +	cmd_phase_data = column;
> > > +	if (mtd->writesize > PL353_NAND_ECC_SIZE) {
> > > +		cmd_phase_data |= page << 16;
> > > +		/* Another address cycle for devices > 128MiB */
> > > +		if (chip->options & NAND_ROW_ADDR_3) {
> > > +			writel_relaxed(cmd_phase_data,
> > > +				       (void __iomem * __force)cmd_phase_addr);
> > > +			cmd_phase_data = (page >> 16);
> > > +		}
> > > +	} else {
> > > +		cmd_phase_data |= page << 8;
> > > +	}
> > > +
> > > +	writel_relaxed(cmd_phase_data, (void __iomem * __force)cmd_phase_addr);
> > > +}
> > > +
> > > +/**
> > > + * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read
> function
> > > + * @mtd:	Pointer to the mtd_info structure
> > > + * @chip:	Pointer to the nand_chip structure
> > > + * @page:	Page number to read
> > > + *
> > > + * Return:	Always return zero
> > > + */
> > > +static int pl353_nand_read_oob(struct nand_chip *chip,
> > > +			       int page)
> > > +{
> > > +	unsigned long data_phase_addr;
> > > +	u8 *p;
> > > +	struct pl353_nand_controller *xnfc =
> > > +		container_of(chip, struct pl353_nand_controller, chip);
> > > +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> > > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > > +
> > > +	chip->pagebuf = -1;
> > > +	if (mtd->writesize < PL353_NAND_ECC_SIZE)
> > > +		return 0;
> > > +
> > > +	pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_READ0,
> > > +			  NAND_CMD_READSTART, 1);
> > > +
> > > +	nand_wait_ready(chip);
> > > +
> > > +	p = chip->oob_poi;
> > > +	pl353_nand_read_data_op(chip, p,
> > > +				(mtd->oobsize -
> > > +				PL353_NAND_LAST_TRANSFER_LENGTH), false);
> > > +	p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > > +	data_phase_addr -= nand_offset;
> > > +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> > > +	data_phase_addr += nand_offset;
> > > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > > +	pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> > > +				false);
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +/**
> > > + * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write
> > function
> > > + * @mtd:	Pointer to the mtd info structure
> > > + * @chip:	Pointer to the NAND chip info structure
> > > + * @page:	Page number to write
> > > + *
> > > + * Return:	Zero on success and EIO on failure
> > > + */
> > > +static int pl353_nand_write_oob(struct nand_chip *chip,
> > > +				int page)
> > > +{
> > > +	const u8 *buf = chip->oob_poi;
> > > +	unsigned long data_phase_addr;
> > > +	struct pl353_nand_controller *xnfc =
> > > +		container_of(chip, struct pl353_nand_controller, chip);
> > > +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> > > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > > +	u32 addrcycles = 0;
> > > +
> > > +	chip->pagebuf = -1;
> > > +	addrcycles = xnfc->addr_cycles;
> > > +	pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_SEQIN,
> > > +			  NAND_CMD_PAGEPROG, 0);
> > > +
> > > +	pl353_nand_write_data_op(chip, buf,
> > > +				 (mtd->oobsize -
> > > +				 PL353_NAND_LAST_TRANSFER_LENGTH), false);
> > > +	buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > > +
> > > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > > +	data_phase_addr -= nand_offset;
> > > +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> > > +	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
> > > +	data_phase_addr += nand_offset;
> > > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > > +	pl353_nand_write_data_op(chip, buf, PL353_NAND_LAST_TRANSFER_LENGTH,
> > > +				 false);
> > > +	nand_wait_ready(chip);
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +/**
> > > + * pl353_nand_read_page_raw - [Intern] read raw page data without ecc
> > > + * @mtd:		Pointer to the mtd info structure
> > > + * @chip:		Pointer to the NAND chip info structure
> > > + * @buf:		Pointer to the data buffer
> > > + * @oob_required:	Caller requires OOB data read to chip->oob_poi
> > > + * @page:		Page number to read
> > > + *
> > > + * Return:	Always return zero
> > > + */
> > > +static int pl353_nand_read_page_raw(struct nand_chip *chip,
> > > +				    u8 *buf, int oob_required, int page)
> > > +{
> > > +	unsigned long data_phase_addr;
> > > +	u8 *p;
> > > +	struct pl353_nand_controller *xnfc =
> > > +		container_of(chip, struct pl353_nand_controller, chip);
> > > +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> > > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > > +
> > > +	pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0,
> > > +			  NAND_CMD_READSTART, 1);
> > > +	nand_wait_ready(chip);
> > > +	pl353_nand_read_data_op(chip, buf, mtd->writesize, false);
> > > +	p = chip->oob_poi;
> > > +	pl353_nand_read_data_op(chip, p,
> > > +				(mtd->oobsize -
> > > +				PL353_NAND_LAST_TRANSFER_LENGTH), false);
> > > +	p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > > +
> > > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > > +	data_phase_addr -= nand_offset;
> > > +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> > > +	data_phase_addr += nand_offset;
> > > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > > +
> > > +	pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> > > +				false);
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +/**
> > > + * pl353_nand_write_page_raw - [Intern] raw page write function
> > > + * @mtd:		Pointer to the mtd info structure
> > > + * @chip:		Pointer to the NAND chip info structure
> > > + * @buf:		Pointer to the data buffer
> > > + * @oob_required:	Caller requires OOB data read to chip->oob_poi
> > > + * @page:		Page number to write
> > > + *
> > > + * Return:	Always return zero
> > > + */
> > > +static int pl353_nand_write_page_raw(struct nand_chip *chip,
> > > +				     const u8 *buf, int oob_required,
> > > +				     int page)
> > > +{
> > > +	unsigned long data_phase_addr;
> > > +	u8 *p;
> > > +	struct pl353_nand_controller *xnfc =
> > > +		container_of(chip, struct pl353_nand_controller, chip);
> > > +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> > > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > > +
> > > +	pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN,
> > > +			  NAND_CMD_PAGEPROG, 0);
> > > +	pl353_nand_write_data_op(chip, buf, mtd->writesize, false);
> > > +	p = chip->oob_poi;
> > > +	pl353_nand_write_data_op(chip, p,
> > > +				 (mtd->oobsize -
> > > +				 PL353_NAND_LAST_TRANSFER_LENGTH), false);
> > > +	p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > > +
> > > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > > +	data_phase_addr -= nand_offset;
> > > +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> > > +	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
> > > +	data_phase_addr += nand_offset;
> > > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > > +	pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> > > +				 false);
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +/**
> > > + * nand_write_page_hwecc - Hardware ECC based page write function
> > > + * @mtd:		Pointer to the mtd info structure
> > > + * @chip:		Pointer to the NAND chip info structure
> > > + * @buf:		Pointer to the data buffer
> > > + * @oob_required:	Caller requires OOB data read to chip->oob_poi
> > > + * @page:		Page number to write
> > > + *
> > > + * This functions writes data and hardware generated ECC values in to the page.
> > > + *
> > > + * Return:	Always return zero
> > > + */
> > > +static int pl353_nand_write_page_hwecc(struct nand_chip *chip,
> > > +				       const u8 *buf, int oob_required,
> > > +				       int page)
> > > +{
> > > +	int eccsize = chip->ecc.size;
> > > +	int eccsteps = chip->ecc.steps;
> > > +	u8 *ecc_calc = chip->ecc.calc_buf;
> > > +	u8 *oob_ptr;
> > > +	const u8 *p = buf;
> > > +	u32 ret;
> > > +	unsigned long data_phase_addr;
> > > +	struct pl353_nand_controller *xnfc =
> > > +		container_of(chip, struct pl353_nand_controller, chip);
> > > +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> > > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > > +
> > > +	pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN,
> > > +			  NAND_CMD_PAGEPROG, 0);
> > > +
> > > +	for ( ; (eccsteps - 1); eccsteps--) {
> > > +		pl353_nand_write_data_op(chip, p, eccsize, false);
> > > +		p += eccsize;
> > > +	}
> > > +	pl353_nand_write_data_op(chip, p,
> > > +				 (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH),
> > > +				 false);
> > > +	p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > > +
> > > +	/* Set ECC Last bit to 1 */
> > > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > > +	data_phase_addr -= nand_offset;
> > > +	data_phase_addr |= PL353_NAND_ECC_LAST;
> > > +	data_phase_addr += nand_offset;
> > > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > > +	pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> > > +				 false);
> > > +
> > > +	/* Wait till the ECC operation is complete or timeout */
> > > +	ret = pl353_wait_for_ecc_done();
> > > +	if (ret)
> > > +		dev_err(xnfc->dev, "ECC Timeout\n");
> > > +	p = buf;
> > > +	ret = chip->ecc.calculate(chip, p, &ecc_calc[0]);
> > > +	if (ret)
> > > +		return ret;
> > > +
> > > +	/* Wait for ECC to be calculated and read the error values */
> > > +	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
> > > +					 0, chip->ecc.total);
> > > +	if (ret)
> > > +		return ret;
> > > +	/* Clear ECC last bit */
> > > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > > +	data_phase_addr -= nand_offset;
> > > +	data_phase_addr &= ~PL353_NAND_ECC_LAST;
> > > +	data_phase_addr += nand_offset;
> > > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > > +
> > > +	/* Write the spare area with ECC bytes */
> > > +	oob_ptr = chip->oob_poi;
> > > +	pl353_nand_write_data_op(chip, oob_ptr,
> > > +				 (mtd->oobsize -
> > > +				 PL353_NAND_LAST_TRANSFER_LENGTH), false);
> > > +
> > > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > > +	data_phase_addr -= nand_offset;
> > > +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> > > +	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
> > > +	data_phase_addr += nand_offset;
> > > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > > +	oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > > +	pl353_nand_write_data_op(chip, oob_ptr,
> > PL353_NAND_LAST_TRANSFER_LENGTH,
> > > +				 false);
> > > +	nand_wait_ready(chip);
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +/**
> > > + * pl353_nand_read_page_hwecc - Hardware ECC based page read function
> > > + * @mtd:		Pointer to the mtd info structure
> > > + * @chip:		Pointer to the NAND chip info structure
> > > + * @buf:		Pointer to the buffer to store read data
> > > + * @oob_required:	Caller requires OOB data read to chip->oob_poi
> > > + * @page:		Page number to read
> > > + *
> > > + * This functions reads data and checks the data integrity by comparing
> > > + * hardware generated ECC values and read ECC values from spare area.
> > > + * There is a limitation in SMC controller, that we must set ECC LAST on
> > > + * last data phase access, to tell ECC block not to expect any data further.
> > > + * Ex:  When number of ECC STEPS are 4, then till 3 we will write to flash
> > > + * using SMC with HW ECC enabled. And for the last ECC STEP, we will subtract
> > > + * 4bytes from page size, and will initiate a transfer. And the remaining 4 as
> > > + * one more transfer with ECC_LAST bit set in NAND data phase register to
> > > + * notify ECC block not to expect any more data. The last block should be align
> > > + * with end of 512 byte block. Because of this limitation, we are not using
> > > + * core routines.
> > > + *
> > > + * Return:	0 always and updates ECC operation status in to MTD structure
> > > + */
> > > +static int pl353_nand_read_page_hwecc(struct nand_chip *chip,
> > > +				      u8 *buf, int oob_required, int page)
> > > +{
> > > +	int i, stat, eccsize = chip->ecc.size;
> > > +	int eccbytes = chip->ecc.bytes;
> > > +	int eccsteps = chip->ecc.steps;
> > > +	u8 *p = buf;
> > > +	u8 *ecc_calc = chip->ecc.calc_buf;
> > > +	u8 *ecc = chip->ecc.code_buf;
> > > +	unsigned int max_bitflips = 0;
> > > +	u8 *oob_ptr;
> > > +	u32 ret;
> > > +	unsigned long data_phase_addr;
> > > +	struct pl353_nand_controller *xnfc =
> > > +		container_of(chip, struct pl353_nand_controller, chip);
> > > +	unsigned long nand_offset = (unsigned long __force)xnfc->regs;
> > > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > > +
> > > +	pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0,
> > > +			  NAND_CMD_READSTART, 1);
> > > +	nand_wait_ready(chip);
> > > +
> > > +	for ( ; (eccsteps - 1); eccsteps--) {
> > > +		pl353_nand_read_data_op(chip, p, eccsize, false);
> > > +		p += eccsize;
> > > +	}
> > > +	pl353_nand_read_data_op(chip, p,
> > > +				(eccsize - PL353_NAND_LAST_TRANSFER_LENGTH),
> > > +				false);
> > > +	p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > > +
> > > +	/* Set ECC Last bit to 1 */
> > > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > > +	data_phase_addr -= nand_offset;
> > > +	data_phase_addr |= PL353_NAND_ECC_LAST;
> > > +	data_phase_addr += nand_offset;
> > > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > > +	pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH,
> > > +				false);
> > > +
> > > +	/* Wait till the ECC operation is complete or timeout */
> > > +	ret = pl353_wait_for_ecc_done();
> > > +	if (ret)
> > > +		dev_err(xnfc->dev, "ECC Timeout\n");
> > > +
> > > +	/* Read the calculated ECC value */
> > > +	p = buf;
> > > +	ret = chip->ecc.calculate(chip, p, &ecc_calc[0]);
> > > +	if (ret)
> > > +		return ret;
> > > +
> > > +	/* Clear ECC last bit */
> > > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > > +	data_phase_addr -= nand_offset;
> > > +	data_phase_addr &= ~PL353_NAND_ECC_LAST;
> > > +	data_phase_addr += nand_offset;
> > > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > > +
> > > +	/* Read the stored ECC value */
> > > +	oob_ptr = chip->oob_poi;
> > > +	pl353_nand_read_data_op(chip, oob_ptr,
> > > +				(mtd->oobsize -
> > > +				PL353_NAND_LAST_TRANSFER_LENGTH), false);
> > > +
> > > +	/* de-assert chip select */
> > > +	data_phase_addr = (unsigned long __force)xnfc->buf_addr;
> > > +	data_phase_addr -= nand_offset;
> > > +	data_phase_addr |= PL353_NAND_CLEAR_CS;
> > > +	data_phase_addr += nand_offset;
> > > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > > +
> > > +	oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
> > > +	pl353_nand_read_data_op(chip, oob_ptr,
> > PL353_NAND_LAST_TRANSFER_LENGTH,
> > > +				false);
> > > +
> > > +	ret = mtd_ooblayout_get_eccbytes(mtd, ecc, chip->oob_poi, 0,
> > > +					 chip->ecc.total);
> > > +	if (ret)
> > > +		return ret;
> > > +
> > > +	eccsteps = chip->ecc.steps;
> > > +	p = buf;
> > > +
> > > +	/* Check ECC error for all blocks and correct if it is correctable */
> > > +	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
> > > +		stat = chip->ecc.correct(chip, p, &ecc[i], &ecc_calc[i]);
> > > +		if (stat < 0) {
> > > +			mtd->ecc_stats.failed++;
> > > +		} else {
> > > +			mtd->ecc_stats.corrected += stat;
> > > +			max_bitflips = max_t(unsigned int, max_bitflips, stat);
> > > +		}
> > > +	}
> > > +
> > > +	return max_bitflips;
> > > +}
> > > +
> > > +/* NAND framework ->exec_op() hooks and related helpers */
> > > +static void pl353_nfc_parse_instructions(struct nand_chip *chip,
> > > +					 const struct nand_subop *subop,
> > > +					 struct pl353_nfc_op *nfc_op)
> > > +{
> > > +	const struct nand_op_instr *instr = NULL;
> > > +	unsigned int op_id, offset, naddrs;
> > > +	int i;
> > > +	const u8 *addrs;
> > > +
> > > +	memset(nfc_op, 0, sizeof(struct pl353_nfc_op));
> > > +	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
> > > +		instr = &subop->instrs[op_id];
> > > +
> > > +		switch (instr->type) {
> > > +		case NAND_OP_CMD_INSTR:
> > > +			if (op_id)
> > > +				nfc_op->cmnds[1] = instr->ctx.cmd.opcode;
> > > +			else
> > > +				nfc_op->cmnds[0] = instr->ctx.cmd.opcode;
> > > +			nfc_op->cle_ale_delay_ns = instr->delay_ns;
> > > +			break;
> > > +
> > > +		case NAND_OP_ADDR_INSTR:
> > > +			offset = nand_subop_get_addr_start_off(subop, op_id);
> > > +			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
> > > +			addrs = &instr->ctx.addr.addrs[offset];
> > > +			nfc_op->addrs = instr->ctx.addr.addrs[offset];
> > > +			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) {
> > > +				nfc_op->addrs |= instr->ctx.addr.addrs[i] <<
> > > +						 (8 * i);
> > > +			}
> > > +
> > > +			if (naddrs >= 5)
> > > +				nfc_op->addr5 = addrs[4];
> > > +			if (naddrs >= 6)
> > > +				nfc_op->addr6 = addrs[5];
> > > +			nfc_op->naddrs = nand_subop_get_num_addr_cyc(subop,
> > > +								     op_id);
> > > +			nfc_op->cle_ale_delay_ns = instr->delay_ns;
> > > +			break;
> > > +
> > > +		case NAND_OP_DATA_IN_INSTR:
> > > +			nfc_op->data_instr = instr;
> > > +			nfc_op->data_instr_idx = op_id;
> > > +			break;
> > > +
> > > +		case NAND_OP_DATA_OUT_INSTR:
> > > +			nfc_op->data_instr = instr;
> > > +			nfc_op->data_instr_idx = op_id;
> > > +			break;
> > > +
> > > +		case NAND_OP_WAITRDY_INSTR:
> > > +			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
> > > +			nfc_op->rdy_delay_ns = instr->delay_ns;
> > > +			break;
> > > +		}
> > > +	}
> > > +}
> > > +
> > > +static void cond_delay(unsigned int ns)
> > > +{
> > > +	if (!ns)
> > > +		return;
> > > +
> > > +	if (ns < 10000)
> > > +		ndelay(ns);
> > > +	else
> > > +		udelay(DIV_ROUND_UP(ns, 1000));
> > > +}
> > > +
> > > +/**
> > > + * pl353_nand_exec_op_cmd - Send command to NAND device
> > > + * @chip:	Pointer to the NAND chip info structure
> > > + * @subop:	Pointer to array of instructions
> > > + * Return:	Always return zero
> > > + */
> > > +static int pl353_nand_exec_op_cmd(struct nand_chip *chip,
> > > +				  const struct nand_subop *subop)
> > > +{
> > > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > > +	const struct nand_op_instr *instr;
> > > +	struct pl353_nfc_op nfc_op = {};
> > > +	struct pl353_nand_controller *xnfc =
> > > +		container_of(chip, struct pl353_nand_controller, chip);
> > > +	unsigned long cmd_phase_data = 0, end_cmd_valid = 0;
> > > +	unsigned long cmd_phase_addr, data_phase_addr, end_cmd;
> > > +	unsigned int op_id, len, offset;
> > > +	bool reading;
> > > +
> > > +	pl353_nfc_parse_instructions(chip, subop, &nfc_op);
> > > +	instr = nfc_op.data_instr;
> > > +	op_id = nfc_op.data_instr_idx;
> > > +
> > > +	offset = nand_subop_get_data_start_off(subop, op_id);
> > > +
> > > +	pl353_smc_clr_nand_int();
> > > +	/* Get the command phase address */
> > > +	if (nfc_op.cmnds[1] != 0) {
> > > +		if (nfc_op.cmnds[0] == NAND_CMD_SEQIN)
> > > +			end_cmd_valid = 0;
> > > +		else
> > > +			end_cmd_valid = 1;
> > > +		end_cmd = nfc_op.cmnds[1];
> > > +	}  else {
> > > +		end_cmd = 0x0;
> > > +	}
> > > +
> > > +	/*
> > > +	 * The SMC defines two phases of commands when transferring data to or
> > > +	 * from NAND flash.
> > > +	 * Command phase: Commands and optional address information are written
> > > +	 * to the NAND flash.The command and address can be associated with
> > > +	 * either a data phase operation to write to or read from the array,
> > > +	 * or a status/ID register transfer.
> > > +	 * Data phase: Data is either written to or read from the NAND flash.
> > > +	 * This data can be either data transferred to or from the array,
> > > +	 * or status/ID register information.
> > > +	 */
> > > +	cmd_phase_addr = (unsigned long __force)xnfc->regs +
> > > +			 ((nfc_op.naddrs << ADDR_CYCLES_SHIFT) |
> > > +			 (end_cmd_valid << END_CMD_VALID_SHIFT) |
> > > +			 (COMMAND_PHASE) |
> > > +			 (end_cmd << END_CMD_SHIFT) |
> > > +			 (nfc_op.cmnds[0] << START_CMD_SHIFT));
> > > +
> > > +	/* Get the data phase address */
> > > +	end_cmd_valid = 0;
> > > +
> > > +	data_phase_addr = (unsigned long __force)xnfc->regs +
> > > +			  ((0x0 << CLEAR_CS_SHIFT) |
> > > +			  (end_cmd_valid << END_CMD_VALID_SHIFT) |
> > > +			  (DATA_PHASE) |
> > > +			  (end_cmd << END_CMD_SHIFT) |
> > > +			  (0x0 << ECC_LAST_SHIFT));
> > > +	xnfc->buf_addr = (void __iomem * __force)data_phase_addr;
> > > +
> > > +	/* Command phase AXI Read & Write */
> > > +	if (nfc_op.naddrs >= 5) {
> > > +		if (mtd->writesize > PL353_NAND_ECC_SIZE) {
> > > +			cmd_phase_data = nfc_op.addrs;
> > > +			/* Another address cycle for devices > 128MiB */
> > > +			if (chip->options & NAND_ROW_ADDR_3) {
> > > +				writel_relaxed(cmd_phase_data,
> > > +					       (void __iomem * __force)
> > > +					       cmd_phase_addr);
> > > +				cmd_phase_data = nfc_op.addr5;
> > > +				if (nfc_op.naddrs >= 6)
> > > +					cmd_phase_data |= (nfc_op.addr6 << 8);
> > > +			}
> > > +		}
> > > +	}  else {
> > > +		if (nfc_op.addrs != -1) {
> > > +			int column = nfc_op.addrs;
> > > +			/*
> > > +			 * Change read/write column, read id etc
> > > +			 * Adjust columns for 16 bit bus width
> > > +			 */
> > > +			if ((chip->options & NAND_BUSWIDTH_16) &&
> > > +			    (nfc_op.cmnds[0] == NAND_CMD_READ0 ||
> > > +				nfc_op.cmnds[0] == NAND_CMD_SEQIN ||
> > > +				nfc_op.cmnds[0] == NAND_CMD_RNDOUT ||
> > > +				nfc_op.cmnds[0] == NAND_CMD_RNDIN)) {
> > > +				column >>= 1;
> > > +			}
> > > +			cmd_phase_data = column;
> > > +		}
> > > +	}
> > > +	writel_relaxed(cmd_phase_data, (void __iomem * __force)cmd_phase_addr);
> > > +
> > > +	if (!nfc_op.data_instr) {
> > > +		if (nfc_op.rdy_timeout_ms)
> > > +			nand_wait_ready(chip);
> > > +		return 0;
> > > +	}
> > > +
> > > +	reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
> > > +	if (!reading) {
> > > +		len = nand_subop_get_data_len(subop, op_id);
> > > +		pl353_nand_write_data_op(chip, instr->ctx.data.buf.out,
> > > +					 len, instr->ctx.data.force_8bit);
> > > +		if (nfc_op.rdy_timeout_ms)
> > > +			nand_wait_ready(chip);
> > > +		cond_delay(nfc_op.rdy_delay_ns);
> > > +	}
> >
> > else ?
> If (reading) is nothing but else, but it is looking odd. I will change it.
> >
> > > +	if (reading) {
> > > +		len = nand_subop_get_data_len(subop, op_id);
> > > +		cond_delay(nfc_op.rdy_delay_ns);
> > > +		if (nfc_op.rdy_timeout_ms)
> > > +			nand_wait_ready(chip);
> > > +		pl353_nand_read_data_op(chip, instr->ctx.data.buf.in, len,
> > > +					instr->ctx.data.force_8bit);
> > > +	}
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +static const struct nand_op_parser pl353_nfc_op_parser = NAND_OP_PARSER
> > > +	(NAND_OP_PARSER_PATTERN
> > > +		(pl353_nand_exec_op_cmd,
> > > +		NAND_OP_PARSER_PAT_CMD_ELEM(true),
> > > +		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
> > > +		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
> > > +		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
> > > +	NAND_OP_PARSER_PATTERN
> > > +		(pl353_nand_exec_op_cmd,
> > > +		NAND_OP_PARSER_PAT_CMD_ELEM(false),
> > > +		NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
> > > +		NAND_OP_PARSER_PAT_CMD_ELEM(false),
> > > +		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false),
> > > +		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
> > > +	NAND_OP_PARSER_PATTERN
> > > +		(pl353_nand_exec_op_cmd,
> > > +		NAND_OP_PARSER_PAT_CMD_ELEM(false),
> > > +		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
> > > +		NAND_OP_PARSER_PAT_CMD_ELEM(true),
> > > +		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
> > > +	NAND_OP_PARSER_PATTERN
> > > +		(pl353_nand_exec_op_cmd,
> > > +		NAND_OP_PARSER_PAT_CMD_ELEM(false),
> > > +		NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8),
> > > +		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048),
> > > +		NAND_OP_PARSER_PAT_CMD_ELEM(true),
> > > +		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
> > > +	NAND_OP_PARSER_PATTERN
> > > +		(pl353_nand_exec_op_cmd,
> > > +		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
> > > +	);
> > > +
> > > +static int pl353_nfc_exec_op(struct nand_chip *chip,
> > > +			     const struct nand_operation *op,
> > > +			     bool check_only)
> > > +{
> > > +	return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser,
> > > +					      op, check_only);
> > > +}
> > > +
> > > +/**
> > > + * pl353_nand_device_ready - Check device ready/busy line
> > > + * @mtd:	Pointer to the mtd_info structure
> > > + *
> > > + * Return:	0 on busy or 1 on ready state
> > > + */
> > > +static int pl353_nand_device_ready(struct nand_chip *chip)
> > > +{
> > > +	if (pl353_smc_get_nand_int_status_raw()) {
> > > +		pl353_smc_clr_nand_int();
> > > +		return 1;
> > > +	}
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +/**
> > > + * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode
> > > + * @mtd:	Pointer to the mtd_info structure
> > > + * @ecc:	Pointer to ECC control structure
> > > + * @ecc_mode:	ondie ecc status
> > > + *
> > > + * This function initializes the ecc block and functional pointers as per the
> > > + * ecc mode
> > > + *
> > > + * Return:	0 on success or negative errno.
> > > + */
> > > +static int pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
> > > +			       int ecc_mode)
> > > +{
> > > +	struct nand_chip *chip = mtd_to_nand(mtd);
> > > +	struct pl353_nand_controller *xnfc =
> > > +		container_of(chip, struct pl353_nand_controller, chip);
> > > +	int err = 0;
> > > +
> > > +	ecc->write_page_raw = pl353_nand_write_page_raw;
> > > +	ecc->read_page_raw = pl353_nand_read_page_raw;
> > > +	ecc->read_oob = pl353_nand_read_oob;
> > > +	ecc->write_oob = pl353_nand_write_oob;
> > > +
> > > +	if (ecc_mode == NAND_ECC_ON_DIE) {
> > > +		pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS);
> > > +		/*
> > > +		 * On-Die ECC spare bytes offset 8 is used for ECC codes
> > > +		 * Use the BBT pattern descriptors
> > > +		 */
> > > +		chip->bbt_td = &bbt_main_descr;
> > > +		chip->bbt_md = &bbt_mirror_descr;
> > > +	} else {
> > > +		ecc->mode = NAND_ECC_HW;
> > > +		/* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
> > > +		ecc->bytes = 3;
> > > +		ecc->strength = 1;
> > > +		ecc->calculate = pl353_nand_calculate_hwecc;
> > > +		ecc->correct = pl353_nand_correct_data;
> > > +		ecc->read_page = pl353_nand_read_page_hwecc;
> > > +		ecc->size = PL353_NAND_ECC_SIZE;
> > > +		ecc->read_page = pl353_nand_read_page_hwecc;
> > > +		ecc->write_page = pl353_nand_write_page_hwecc;
> > > +		pl353_smc_set_ecc_pg_size(mtd->writesize);
> > > +		switch (mtd->writesize) {
> > > +		case SZ_512:
> > > +		case SZ_1K:
> > > +		case SZ_2K:
> > > +			pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB);
> > > +			break;
> > > +		default:
> > > +			ecc->calculate = nand_calculate_ecc;
> > > +			ecc->correct = nand_correct_data;
> > > +			ecc->size = 256;
> > > +			break;
> > > +		}
> > > +
> > > +		if (mtd->oobsize == 16) {
> > > +			mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout16_ops);
> > > +		} else if (mtd->oobsize == 64) {
> > > +			mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout64_ops);
> > > +		} else {
> > > +			err = -ENXIO;
> > > +			dev_err(xnfc->dev, "Unsupported oob Layout\n");
> > > +		}
> > > +	}
> > > +
> > > +	return err;
> > > +}
> > > +
> > > +static int pl353_nfc_setup_data_interface(struct nand_chip *chip, int csline,
> > > +					  const struct nand_data_interface
> > > +					  *conf)
> > > +{
> > > +	struct pl353_nand_controller *xnfc =
> > > +		container_of(chip, struct pl353_nand_controller, chip);
> > > +	const struct nand_sdr_timings *sdr;
> > > +	u32 timings[7], mckperiodps;
> > > +
> > > +	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
> > > +		return 0;
> > > +
> > > +	sdr = nand_get_sdr_timings(conf);
> > > +	if (IS_ERR(sdr))
> > > +		return PTR_ERR(sdr);
> > > +
> > > +	/*
> > > +	 * SDR timings are given in pico-seconds while NFC timings must be
> > > +	 * expressed in NAND controller clock cycles.
> > > +	 */
> > > +	mckperiodps = NSEC_PER_SEC / clk_get_rate(xnfc->mclk);
> > > +	mckperiodps *= 1000;
> > > +	if (sdr->tRC_min <= 20000)
> > > +		/*
> > > +		 * PL353 SMC needs one extra read cycle in SDR Mode 5
> > > +		 * This is not written anywhere in the datasheet but
> > > +		 * the results observed during testing.
> > > +		 */
> > > +		timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps) + 1;
> > > +	else
> > > +		timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps);
> > > +
> > > +	timings[1] = DIV_ROUND_UP(sdr->tWC_min, mckperiodps);
> > > +	/*
> > > +	 * For all SDR modes, PL353 SMC needs tREA max value as 1,
> > > +	 * Results observed during testing.
> > > +	 */
> > > +	timings[2] = PL353_TREA_MAX_VALUE;
> > > +	timings[3] = DIV_ROUND_UP(sdr->tWP_min, mckperiodps);
> > > +	timings[4] = DIV_ROUND_UP(sdr->tCLR_min, mckperiodps);
> > > +	timings[5] = DIV_ROUND_UP(sdr->tAR_min, mckperiodps);
> > > +	timings[6] = DIV_ROUND_UP(sdr->tRR_min, mckperiodps);
> > > +	pl353_smc_set_cycles(timings);
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +static int pl353_nand_attach_chip(struct nand_chip *chip)
> > > +{
> > > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > > +	struct pl353_nand_controller *xnfc =
> > > +		container_of(chip, struct pl353_nand_controller, chip);
> > > +	u32 ret;
> > > +
> > > +	if (chip->options & NAND_BUSWIDTH_16)
> > > +		pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
> > > +
> > > +	if (mtd->writesize <= SZ_512)
> > > +		xnfc->addr_cycles = 1;
> > > +	else
> > > +		xnfc->addr_cycles = 2;
> > > +
> > > +	if (chip->options & NAND_ROW_ADDR_3)
> > > +		xnfc->addr_cycles += 3;
> > > +	else
> > > +		xnfc->addr_cycles += 2;
> > > +
> > > +	ret = pl353_nand_ecc_init(mtd, &chip->ecc, chip->ecc.mode);
> > > +	if (ret) {
> > > +		dev_err(xnfc->dev, "ECC init failed\n");
> > > +		return ret;
> > > +	}
> > > +
> > > +	if (!mtd->name) {
> > > +		/*
> > > +		 * If the new bindings are used and the bootloader has not been
> > > +		 * updated to pass a new mtdparts parameter on the cmdline, you
> > > +		 * should define the following property in your NAND node, ie:
> > > +		 *
> > > +		 *	label = "pl353-nand";
> > > +		 *
> > > +		 * This way, mtd->name will be set by the core when
> > > +		 * nand_set_flash_node() is called.
> > > +		 */
> > > +		mtd->name = devm_kasprintf(xnfc->dev, GFP_KERNEL,
> > > +					   "%s", PL353_NAND_DRIVER_NAME);
> > > +		if (!mtd->name) {
> > > +			dev_err(xnfc->dev, "Failed to allocate mtd->name\n");
> > > +			return -ENOMEM;
> > > +		}
> > > +	}
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +static const struct nand_controller_ops pl353_nand_controller_ops = {
> > > +	.attach_chip = pl353_nand_attach_chip,
> > > +	.exec_op = pl353_nfc_exec_op,
> > > +	.setup_data_interface = pl353_nfc_setup_data_interface,
> > > +};
> > > +
> > > +/**
> > > + * pl353_nand_probe - Probe method for the NAND driver
> > > + * @pdev:	Pointer to the platform_device structure
> > > + *
> > > + * This function initializes the driver data structures and the hardware.
> > > + * The NAND driver has dependency with the pl353_smc memory controller
> > > + * driver for initializing the NAND timing parameters, bus width, ECC modes,
> > > + * control and status information.
> > > + *
> > > + * Return:	0 on success or error value on failure
> > > + */
> > > +static int pl353_nand_probe(struct platform_device *pdev)
> > > +{
> > > +	struct pl353_nand_controller *xnfc;
> > > +	struct mtd_info *mtd;
> > > +	struct nand_chip *chip;
> > > +	struct resource *res;
> > > +	struct device_node *np, *dn;
> > > +	u32 ret, val;
> > > +
> > > +	xnfc = devm_kzalloc(&pdev->dev, sizeof(*xnfc), GFP_KERNEL);
> > > +	if (!xnfc)
> > > +		return -ENOMEM;
> > > +	xnfc->dev = &pdev->dev;
> > > +
> > > +	nand_controller_init(&xnfc->controller);
> > > +	xnfc->controller.ops = &pl353_nand_controller_ops;
> > > +	/* Map physical address of NAND flash */
> > > +	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> > > +	xnfc->regs = devm_ioremap_resource(xnfc->dev, res);
> > > +	if (IS_ERR(xnfc->regs))
> > > +		return PTR_ERR(xnfc->regs);
> > > +
> > > +	chip = &xnfc->chip;
> > > +	chip->controller = &xnfc->controller;
> > > +	mtd = nand_to_mtd(chip);
> > > +	nand_set_controller_data(chip, xnfc);
> > > +	mtd->priv = chip;
> > > +	mtd->owner = THIS_MODULE;
> > > +	nand_set_flash_node(chip, xnfc->dev->of_node);
> > > +
> > > +	/* Set the driver entry points for MTD */
> > > +	chip->legacy.dev_ready = pl353_nand_device_ready;
> >
> > Please do not implement legacy interfaces.
> Ok, now it is moved to nand_legacy.c, I will update it.
> 
> Thanks,
> Naga Sureshkumar Relli
> >
> > > +	/* If we don't set this delay driver sets 20us by default */
> > > +	np = of_get_next_parent(xnfc->dev->of_node);
> > > +	xnfc->mclk = of_clk_get(np, 0);
> > > +	if (IS_ERR(xnfc->mclk)) {
> > > +		dev_err(xnfc->dev, "Failed to retrieve MCK clk\n");
> > > +		return PTR_ERR(xnfc->mclk);
> > > +	}
> > > +
> > > +	dn = nand_get_flash_node(chip);
> > > +
> > > +	/* Set the device option and flash width */
> > > +	chip->options = NAND_BUSWIDTH_AUTO;
> > > +	chip->bbt_options = NAND_BBT_USE_FLASH;
> > > +	platform_set_drvdata(pdev, xnfc);
> > > +	ret = nand_scan(chip, 1);
> > > +	if (ret) {
> > > +		dev_err(xnfc->dev, "could not scan the nand chip\n");
> > > +		return ret;
> > > +	}
> > > +
> > > +	ret = mtd_device_register(mtd, NULL, 0);
> > > +	if (ret) {
> > > +		dev_err(xnfc->dev, "Failed to register mtd device: %d\n", ret);
> > > +		nand_cleanup(chip);
> > > +		return ret;
> > > +	}
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +/**
> > > + * pl353_nand_remove - Remove method for the NAND driver
> > > + * @pdev:	Pointer to the platform_device structure
> > > + *
> > > + * This function is called if the driver module is being unloaded. It frees all
> > > + * resources allocated to the device.
> > > + *
> > > + * Return:	0 on success or error value on failure
> > > + */
> > > +static int pl353_nand_remove(struct platform_device *pdev)
> > > +{
> > > +	struct pl353_nand_controller *xnfc = platform_get_drvdata(pdev);
> > > +	struct mtd_info *mtd = nand_to_mtd(&xnfc->chip);
> > > +	struct nand_chip *chip = mtd_to_nand(mtd);
> > > +
> > > +	/* Release resources, unregister device */
> > > +	nand_release(chip);
> > > +
> > > +	return 0;
> > > +}
> > > +
> > > +/* Match table for device tree binding */
> > > +static const struct of_device_id pl353_nand_of_match[] = {
> > > +	{ .compatible = "arm,pl353-nand-r2p1" },
> > > +	{},
> > > +};
> > > +MODULE_DEVICE_TABLE(of, pl353_nand_of_match);
> > > +
> > > +/*
> > > + * pl353_nand_driver - This structure defines the NAND subsystem platform driver
> > > + */
> > > +static struct platform_driver pl353_nand_driver = {
> > > +	.probe		= pl353_nand_probe,
> > > +	.remove		= pl353_nand_remove,
> > > +	.driver		= {
> > > +		.name	= PL353_NAND_DRIVER_NAME,
> > > +		.of_match_table = pl353_nand_of_match,
> > > +	},
> > > +};
> > > +
> > > +module_platform_driver(pl353_nand_driver);
> > > +
> > > +MODULE_AUTHOR("Xilinx, Inc.");
> > > +MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME);
> > > +MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver");
> > > +MODULE_LICENSE("GPL");
> >
> >
> > Thanks,
> > Miquèl

^ permalink raw reply	[flat|nested] 8+ messages in thread

* Re: [LINUX PATCH v13] rawnand: pl353: Add basic driver for arm pl353 smc nand interface
  2019-02-09  6:37 [LINUX PATCH v13] rawnand: pl353: Add basic driver for arm pl353 smc nand interface Naga Sureshkumar Relli
  2019-03-04  9:43 ` Miquel Raynal
@ 2019-03-26 13:27 ` Helmut Grohne
  2019-03-27  9:13   ` Naga Sureshkumar Relli
  1 sibling, 1 reply; 8+ messages in thread
From: Helmut Grohne @ 2019-03-26 13:27 UTC (permalink / raw)
  To: Naga Sureshkumar Relli
  Cc: bbrezillon, miquel.raynal, richard, dwmw2, computersforpeace,
	marek.vasut, linux-mtd, linux-kernel, michals,
	nagasureshkumarrelli

On Sat, Feb 09, 2019 at 12:07:27PM +0530, Naga Sureshkumar Relli wrote:
> +static void pl353_nfc_force_byte_access(struct nand_chip *chip,
> +					bool force_8bit)
> +{
> +	struct pl353_nand_controller *xnfc =
> +		container_of(chip, struct pl353_nand_controller, chip);

This `xnfc' variable is never used anywhere inside this function.

> +/**
> + * pl353_nand_exec_op_cmd - Send command to NAND device
> + * @chip:	Pointer to the NAND chip info structure
> + * @subop:	Pointer to array of instructions
> + * Return:	Always return zero
> + */
> +static int pl353_nand_exec_op_cmd(struct nand_chip *chip,
> +				  const struct nand_subop *subop)
> +{
> +	struct mtd_info *mtd = nand_to_mtd(chip);
> +	const struct nand_op_instr *instr;
> +	struct pl353_nfc_op nfc_op = {};
> +	struct pl353_nand_controller *xnfc =
> +		container_of(chip, struct pl353_nand_controller, chip);
> +	unsigned long cmd_phase_data = 0, end_cmd_valid = 0;
> +	unsigned long cmd_phase_addr, data_phase_addr, end_cmd;
> +	unsigned int op_id, len, offset;
> +	bool reading;
> +
> +	pl353_nfc_parse_instructions(chip, subop, &nfc_op);
> +	instr = nfc_op.data_instr;
> +	op_id = nfc_op.data_instr_idx;
> +
> +	offset = nand_subop_get_data_start_off(subop, op_id);

This `offset' variable is never used anywhere inside this function. The
call is unnecessary and should be removed.

Beyond being useless, it also is harmful. When applying this patch on
top of a v5.1-rc2, this can be found in dmesg:

| ------------[ cut here ]------------
| WARNING: CPU: 0 PID: 1 at .../linux/drivers/mtd/nand/raw/nand_base.c:2299 nand_subop_get_data_start_off+0x30/0x6c
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.1.0-rc2-dirty #3
| Hardware name: Xilinx Zynq Platform
| [<c001743c>] (unwind_backtrace) from [<c00145a4>] (show_stack+0x18/0x1c)
| [<c00145a4>] (show_stack) from [<c03afe98>] (dump_stack+0xa0/0xcc)
| [<c03afe98>] (dump_stack) from [<c0021c10>] (__warn+0x10c/0x128)
| [<c0021c10>] (__warn) from [<c0021d14>] (warn_slowpath_null+0x48/0x50)
| [<c0021d14>] (warn_slowpath_null) from [<c02703f0>] (nand_subop_get_data_start_off+0x30/0x6c)
| [<c02703f0>] (nand_subop_get_data_start_off) from [<c0279fe0>] (pl353_nand_exec_op_cmd+0x94/0x2f0)
| [<c0279fe0>] (pl353_nand_exec_op_cmd) from [<c027025c>] (nand_op_parser_exec_op+0x460/0x4cc)
| [<c027025c>] (nand_op_parser_exec_op) from [<c026ee4c>] (nand_reset_op+0x134/0x1a0)
| [<c026ee4c>] (nand_reset_op) from [<c0270adc>] (nand_reset+0x60/0xbc)
| [<c0270adc>] (nand_reset) from [<c0272410>] (nand_scan_with_ids+0x288/0x1600)
| [<c0272410>] (nand_scan_with_ids) from [<c027974c>] (pl353_nand_probe+0xf8/0x1a0)
| [<c027974c>] (pl353_nand_probe) from [<c025185c>] (platform_drv_probe+0x3c/0x74)
| [<c025185c>] (platform_drv_probe) from [<c024fd28>] (really_probe+0x278/0x400)
| [<c024fd28>] (really_probe) from [<c024e440>] (bus_for_each_drv+0x68/0x9c)
| [<c024e440>] (bus_for_each_drv) from [<c0250090>] (__device_attach+0xa8/0x11c)
| [<c0250090>] (__device_attach) from [<c024e63c>] (bus_probe_device+0x90/0x98)
| [<c024e63c>] (bus_probe_device) from [<c024cf7c>] (device_add+0x3b4/0x5f0)
| [<c024cf7c>] (device_add) from [<c02b91b8>] (of_platform_device_create_pdata+0x98/0xc8)
| [<c02b91b8>] (of_platform_device_create_pdata) from [<c02beba8>] (pl353_smc_probe+0x194/0x234)
| [<c02beba8>] (pl353_smc_probe) from [<c0223a64>] (amba_probe+0x60/0x74)
| [<c0223a64>] (amba_probe) from [<c024fd28>] (really_probe+0x278/0x400)
| [<c024fd28>] (really_probe) from [<c025062c>] (device_driver_attach+0x60/0x68)
| [<c025062c>] (device_driver_attach) from [<c02506bc>] (__driver_attach+0x88/0x180)
| [<c02506bc>] (__driver_attach) from [<c024df98>] (bus_for_each_dev+0x60/0x9c)
| [<c024df98>] (bus_for_each_dev) from [<c024e894>] (bus_add_driver+0x10c/0x208)
| [<c024e894>] (bus_add_driver) from [<c0250dcc>] (driver_register+0x80/0x114)
| [<c0250dcc>] (driver_register) from [<c04e2194>] (do_one_initcall+0x164/0x374)
| [<c04e2194>] (do_one_initcall) from [<c04e2738>] (kernel_init_freeable+0x394/0x474)
| [<c04e2738>] (kernel_init_freeable) from [<c03c9660>] (kernel_init+0x14/0x100)
| [<c03c9660>] (kernel_init) from [<c00090ac>] (ret_from_fork+0x14/0x28)
| Exception stack(0xdd8c9fb0 to 0xdd8c9ff8)
| 9fa0:                                     00000000 00000000 00000000 00000000
| 9fc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
| 9fe0: 00000000 00000000 00000000 00000000 00000013 00000000
| irq event stamp: 414355
| hardirqs last  enabled at (414361): [<c007c318>] console_unlock+0x4c4/0x690
| hardirqs last disabled at (414366): [<c007bf30>] console_unlock+0xdc/0x690
| softirqs last  enabled at (414350): [<c000a4cc>] __do_softirq+0x454/0x544
| softirqs last disabled at (414345): [<c0027d98>] irq_exit+0x124/0x128
| ---[ end trace 3be9247df2f8dfb5 ]---

After removing the call (and the variable), this particular problem goes away.

> +/**
> + * pl353_nand_probe - Probe method for the NAND driver
> + * @pdev:	Pointer to the platform_device structure
> + *
> + * This function initializes the driver data structures and the hardware.
> + * The NAND driver has dependency with the pl353_smc memory controller
> + * driver for initializing the NAND timing parameters, bus width, ECC modes,
> + * control and status information.
> + *
> + * Return:	0 on success or error value on failure
> + */
> +static int pl353_nand_probe(struct platform_device *pdev)
> +{
> +	struct pl353_nand_controller *xnfc;
> +	struct mtd_info *mtd;
> +	struct nand_chip *chip;
> +	struct resource *res;
> +	struct device_node *np, *dn;
> +	u32 ret, val;

This `val' variable is never used anywhere inside this function.

Even after fixing these, I couldn't make this driver work on actual
hardware.

| nand: device found, Manufacturer ID: 0x2c, Chip ID: 0xda
| nand: Micron MT29F2G08ABAEAWP
| nand: 256 MiB, SLC, erase size: 128 KiB, page size: 2048, OOB size: 64
| nand: WARNING: MT29F2G08ABAEAWP: the ECC used on your system is too weak compared to the one required by the NAND chip
| pl353_nand_calculate_hwecc status failed
| pl353_nand_calculate_hwecc status failed
| pl353_nand_calculate_hwecc status failed
| pl353_nand_calculate_hwecc status failed
| Bad block table not found for chip 0
| pl353_nand_calculate_hwecc status failed
| pl353_nand_calculate_hwecc status failed
| pl353_nand_calculate_hwecc status failed
| pl353_nand_calculate_hwecc status failed
| Bad block table not found for chip 0

The very same device works fine with an older version of the out-of-tree
driver based on a v4.14 tree. Thus far I couldn't figure out why it
fails like this.

I'd appreciate if you could Cc me on future postings of this driver.

Helmut

^ permalink raw reply	[flat|nested] 8+ messages in thread

* RE: [LINUX PATCH v13] rawnand: pl353: Add basic driver for arm pl353 smc nand interface
  2019-03-26 13:27 ` Helmut Grohne
@ 2019-03-27  9:13   ` Naga Sureshkumar Relli
  2019-03-28 11:51     ` Helmut Grohne
  0 siblings, 1 reply; 8+ messages in thread
From: Naga Sureshkumar Relli @ 2019-03-27  9:13 UTC (permalink / raw)
  To: Helmut Grohne
  Cc: bbrezillon, miquel.raynal, richard, dwmw2, computersforpeace,
	marek.vasut, linux-mtd, linux-kernel, Michal Simek,
	nagasureshkumarrelli

Hi Helmut,

> -----Original Message-----
> From: Helmut Grohne <helmut.grohne@intenta.de>
> Sent: Tuesday, March 26, 2019 6:57 PM
> To: Naga Sureshkumar Relli <nagasure@xilinx.com>
> Cc: bbrezillon@kernel.org; miquel.raynal@bootlin.com; richard@nod.at;
> dwmw2@infradead.org; computersforpeace@gmail.com; marek.vasut@gmail.com; linux-
> mtd@lists.infradead.org; linux-kernel@vger.kernel.org; Michal Simek <michals@xilinx.com>;
> nagasureshkumarrelli@gmail.com
> Subject: Re: [LINUX PATCH v13] rawnand: pl353: Add basic driver for arm pl353 smc nand
> interface
> 
> On Sat, Feb 09, 2019 at 12:07:27PM +0530, Naga Sureshkumar Relli wrote:
> > +static void pl353_nfc_force_byte_access(struct nand_chip *chip,
> > +					bool force_8bit)
> > +{
> > +	struct pl353_nand_controller *xnfc =
> > +		container_of(chip, struct pl353_nand_controller, chip);
> 
> This `xnfc' variable is never used anywhere inside this function.
> 
> > +/**
> > + * pl353_nand_exec_op_cmd - Send command to NAND device
> > + * @chip:	Pointer to the NAND chip info structure
> > + * @subop:	Pointer to array of instructions
> > + * Return:	Always return zero
> > + */
> > +static int pl353_nand_exec_op_cmd(struct nand_chip *chip,
> > +				  const struct nand_subop *subop) {
> > +	struct mtd_info *mtd = nand_to_mtd(chip);
> > +	const struct nand_op_instr *instr;
> > +	struct pl353_nfc_op nfc_op = {};
> > +	struct pl353_nand_controller *xnfc =
> > +		container_of(chip, struct pl353_nand_controller, chip);
> > +	unsigned long cmd_phase_data = 0, end_cmd_valid = 0;
> > +	unsigned long cmd_phase_addr, data_phase_addr, end_cmd;
> > +	unsigned int op_id, len, offset;
> > +	bool reading;
> > +
> > +	pl353_nfc_parse_instructions(chip, subop, &nfc_op);
> > +	instr = nfc_op.data_instr;
> > +	op_id = nfc_op.data_instr_idx;
> > +
> > +	offset = nand_subop_get_data_start_off(subop, op_id);
> 
> This `offset' variable is never used anywhere inside this function. The call is unnecessary and
> should be removed.
Will remove it.
> 
> Beyond being useless, it also is harmful. When applying this patch on top of a v5.1-rc2, this can
> be found in dmesg:
> 
> | ------------[ cut here ]------------
> | WARNING: CPU: 0 PID: 1 at
> | .../linux/drivers/mtd/nand/raw/nand_base.c:2299
> | nand_subop_get_data_start_off+0x30/0x6c
> | CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.1.0-rc2-dirty #3 Hardware
> | name: Xilinx Zynq Platform [<c001743c>] (unwind_backtrace) from
> | [<c00145a4>] (show_stack+0x18/0x1c) [<c00145a4>] (show_stack) from
> | [<c03afe98>] (dump_stack+0xa0/0xcc) [<c03afe98>] (dump_stack) from
> | [<c0021c10>] (__warn+0x10c/0x128) [<c0021c10>] (__warn) from
> | [<c0021d14>] (warn_slowpath_null+0x48/0x50) [<c0021d14>]
> | (warn_slowpath_null) from [<c02703f0>]
> | (nand_subop_get_data_start_off+0x30/0x6c)
> | [<c02703f0>] (nand_subop_get_data_start_off) from [<c0279fe0>]
> | (pl353_nand_exec_op_cmd+0x94/0x2f0)
> | [<c0279fe0>] (pl353_nand_exec_op_cmd) from [<c027025c>]
> | (nand_op_parser_exec_op+0x460/0x4cc)
> | [<c027025c>] (nand_op_parser_exec_op) from [<c026ee4c>]
> | (nand_reset_op+0x134/0x1a0) [<c026ee4c>] (nand_reset_op) from
> | [<c0270adc>] (nand_reset+0x60/0xbc) [<c0270adc>] (nand_reset) from
> | [<c0272410>] (nand_scan_with_ids+0x288/0x1600) [<c0272410>]
> | (nand_scan_with_ids) from [<c027974c>] (pl353_nand_probe+0xf8/0x1a0)
> | [<c027974c>] (pl353_nand_probe) from [<c025185c>]
> | (platform_drv_probe+0x3c/0x74) [<c025185c>] (platform_drv_probe) from
> | [<c024fd28>] (really_probe+0x278/0x400) [<c024fd28>] (really_probe)
> | from [<c024e440>] (bus_for_each_drv+0x68/0x9c) [<c024e440>]
> | (bus_for_each_drv) from [<c0250090>] (__device_attach+0xa8/0x11c)
> | [<c0250090>] (__device_attach) from [<c024e63c>]
> | (bus_probe_device+0x90/0x98) [<c024e63c>] (bus_probe_device) from
> | [<c024cf7c>] (device_add+0x3b4/0x5f0) [<c024cf7c>] (device_add) from
> | [<c02b91b8>] (of_platform_device_create_pdata+0x98/0xc8)
> | [<c02b91b8>] (of_platform_device_create_pdata) from [<c02beba8>]
> | (pl353_smc_probe+0x194/0x234) [<c02beba8>] (pl353_smc_probe) from
> | [<c0223a64>] (amba_probe+0x60/0x74) [<c0223a64>] (amba_probe) from
> | [<c024fd28>] (really_probe+0x278/0x400) [<c024fd28>] (really_probe)
> | from [<c025062c>] (device_driver_attach+0x60/0x68) [<c025062c>]
> | (device_driver_attach) from [<c02506bc>] (__driver_attach+0x88/0x180)
> | [<c02506bc>] (__driver_attach) from [<c024df98>]
> | (bus_for_each_dev+0x60/0x9c) [<c024df98>] (bus_for_each_dev) from
> | [<c024e894>] (bus_add_driver+0x10c/0x208) [<c024e894>]
> | (bus_add_driver) from [<c0250dcc>] (driver_register+0x80/0x114)
> | [<c0250dcc>] (driver_register) from [<c04e2194>]
> | (do_one_initcall+0x164/0x374) [<c04e2194>] (do_one_initcall) from
> | [<c04e2738>] (kernel_init_freeable+0x394/0x474)
> | [<c04e2738>] (kernel_init_freeable) from [<c03c9660>]
> | (kernel_init+0x14/0x100) [<c03c9660>] (kernel_init) from [<c00090ac>]
> | (ret_from_fork+0x14/0x28) Exception stack(0xdd8c9fb0 to 0xdd8c9ff8)
> | 9fa0:                                     00000000 00000000 00000000 00000000
> | 9fc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000
> | 00000000
> | 9fe0: 00000000 00000000 00000000 00000000 00000013 00000000 irq event
> | stamp: 414355 hardirqs last  enabled at (414361): [<c007c318>]
> | console_unlock+0x4c4/0x690 hardirqs last disabled at (414366):
> | [<c007bf30>] console_unlock+0xdc/0x690 softirqs last  enabled at
> | (414350): [<c000a4cc>] __do_softirq+0x454/0x544 softirqs last disabled
> | at (414345): [<c0027d98>] irq_exit+0x124/0x128 ---[ end trace
> | 3be9247df2f8dfb5 ]---
> 
> After removing the call (and the variable), this particular problem goes away.
Ok, will update
> 
> > +/**
> > + * pl353_nand_probe - Probe method for the NAND driver
> > + * @pdev:	Pointer to the platform_device structure
> > + *
> > + * This function initializes the driver data structures and the hardware.
> > + * The NAND driver has dependency with the pl353_smc memory
> > +controller
> > + * driver for initializing the NAND timing parameters, bus width, ECC
> > +modes,
> > + * control and status information.
> > + *
> > + * Return:	0 on success or error value on failure
> > + */
> > +static int pl353_nand_probe(struct platform_device *pdev) {
> > +	struct pl353_nand_controller *xnfc;
> > +	struct mtd_info *mtd;
> > +	struct nand_chip *chip;
> > +	struct resource *res;
> > +	struct device_node *np, *dn;
> > +	u32 ret, val;
> 
> This `val' variable is never used anywhere inside this function.
> 
> Even after fixing these, I couldn't make this driver work on actual hardware.
It's a on-die ECC capable device. Did u mentioned nand-ecc-mode = "on-die" in dts.
The same part I tested by mentioning "on-die" property in dts and it worked for me.
Please share the dts entries for NAND.
Also if it is x8 bus then please mention nand-bus-width = <8>;
If it is x16 mention nand-bus-width = <16>;

> 
> | nand: device found, Manufacturer ID: 0x2c, Chip ID: 0xda
> | nand: Micron MT29F2G08ABAEAWP
> | nand: 256 MiB, SLC, erase size: 128 KiB, page size: 2048, OOB size: 64
> | nand: WARNING: MT29F2G08ABAEAWP: the ECC used on your system is too
> | weak compared to the one required by the NAND chip
> | pl353_nand_calculate_hwecc status failed pl353_nand_calculate_hwecc
> | status failed pl353_nand_calculate_hwecc status failed
> | pl353_nand_calculate_hwecc status failed Bad block table not found for
> | chip 0 pl353_nand_calculate_hwecc status failed
> | pl353_nand_calculate_hwecc status failed pl353_nand_calculate_hwecc
> | status failed pl353_nand_calculate_hwecc status failed Bad block table
> | not found for chip 0
> 
> The very same device works fine with an older version of the out-of-tree driver based on a
> v4.14 tree. Thus far I couldn't figure out why it fails like this.
> 
> I'd appreciate if you could Cc me on future postings of this driver.
Sure, I will put you in CC.

On this v13 patch, got comments from Miquel to remove legacy hooks.
I will update the driver and will send next version.

Thanks,
Naga Sureshkumar Relli
> 
> Helmut

^ permalink raw reply	[flat|nested] 8+ messages in thread

* Re: [LINUX PATCH v13] rawnand: pl353: Add basic driver for arm pl353 smc nand interface
  2019-03-27  9:13   ` Naga Sureshkumar Relli
@ 2019-03-28 11:51     ` Helmut Grohne
  2019-03-29  5:21       ` Naga Sureshkumar Relli
  0 siblings, 1 reply; 8+ messages in thread
From: Helmut Grohne @ 2019-03-28 11:51 UTC (permalink / raw)
  To: Naga Sureshkumar Relli
  Cc: bbrezillon, miquel.raynal, richard, dwmw2, computersforpeace,
	marek.vasut, linux-mtd, linux-kernel, Michal Simek,
	nagasureshkumarrelli

Hi Naga,

On Wed, Mar 27, 2019 at 09:13:59AM +0000, Naga Sureshkumar Relli wrote:
> It's a on-die ECC capable device. Did u mentioned nand-ecc-mode = "on-die" in dts.
> The same part I tested by mentioning "on-die" property in dts and it worked for me.
> Please share the dts entries for NAND.
> Also if it is x8 bus then please mention nand-bus-width = <8>;
> If it is x16 mention nand-bus-width = <16>;

Thank you for pointing at the relevant properties. Indeed, these were
missing in my previous tests. I am now using the following dt (generated
from multiple fragments, giving the decompiled dt here):

| memory-controller@e000e000 {
| 	#address-cells = <0x2>;
| 	#size-cells = <0x1>;
| 	status = "okay";
| 	clock-names = "memclk", "apb_pclk";
| 	clocks = <0x1 0xb 0x1 0x2c>;
| 	compatible = "arm,pl353-smc-r2p1", "arm,primecell";
| 	interrupt-parent = <0x4>;
| 	interrupts = <0x0 0x12 0x4>;
| 	ranges = <0x0 0x0 0xe1000000 0x1000000>;
| 	reg = <0xe000e000 0x1000>;
| 
| 	flash@e1000000 {
| 		status = "okay";
| 		compatible = "arm,pl353-nand-r2p1";
| 		reg = <0x0 0x0 0x1000000>;
| 		#address-cells = <0x1>;
| 		#size-cells = <0x1>;
| 		nand-ecc-mode = "on-die";
| 		nand-ecc-algo = "hamming";
| 		nand-bus-width = <0x8>;
| 	};
| };

With this dt, the device is successfully initialized and the data read
is mostly intact. When using it with jffs2, I get loads of ECC errors
though (offsets and lengths vary):

| jffs2: mtd->read(0x800 bytes from 0xb60000) returned ECC error

Reverting back to the out-of-tree driver (4.14), it works normally, so a
hardware defect seems unlikely. I compared a register dump of the smc between
those drivers and the only difference I could find was NAND timings (at
0xE000E180), which are much lower with the new drivers as it does not consume
the arm,nand-cycle-* properties that the old driver consumed. I tried hard
coding the previous timings, but the ECC errors persist. This leads me to
conclude that timings are not the cause for what I am seeing.

Is there anything else I can try to diagnose it?

Helmut

^ permalink raw reply	[flat|nested] 8+ messages in thread

* RE: [LINUX PATCH v13] rawnand: pl353: Add basic driver for arm pl353 smc nand interface
  2019-03-28 11:51     ` Helmut Grohne
@ 2019-03-29  5:21       ` Naga Sureshkumar Relli
  0 siblings, 0 replies; 8+ messages in thread
From: Naga Sureshkumar Relli @ 2019-03-29  5:21 UTC (permalink / raw)
  To: Helmut Grohne
  Cc: bbrezillon, miquel.raynal, richard, dwmw2, computersforpeace,
	marek.vasut, linux-mtd, linux-kernel, Michal Simek,
	nagasureshkumarrelli

Hi Helmut,

> -----Original Message-----
> From: Helmut Grohne <helmut.grohne@intenta.de>
> Sent: Thursday, March 28, 2019 5:21 PM
> To: Naga Sureshkumar Relli <nagasure@xilinx.com>
> Cc: bbrezillon@kernel.org; miquel.raynal@bootlin.com; richard@nod.at;
> dwmw2@infradead.org; computersforpeace@gmail.com; marek.vasut@gmail.com; linux-
> mtd@lists.infradead.org; linux-kernel@vger.kernel.org; Michal Simek <michals@xilinx.com>;
> nagasureshkumarrelli@gmail.com
> Subject: Re: [LINUX PATCH v13] rawnand: pl353: Add basic driver for arm pl353 smc nand
> interface
> 
> Hi Naga,
> 
> On Wed, Mar 27, 2019 at 09:13:59AM +0000, Naga Sureshkumar Relli wrote:
> > It's a on-die ECC capable device. Did u mentioned nand-ecc-mode = "on-die" in dts.
> > The same part I tested by mentioning "on-die" property in dts and it worked for me.
> > Please share the dts entries for NAND.
> > Also if it is x8 bus then please mention nand-bus-width = <8>; If it
> > is x16 mention nand-bus-width = <16>;
> 
> Thank you for pointing at the relevant properties. Indeed, these were missing in my previous
> tests. I am now using the following dt (generated from multiple fragments, giving the
> decompiled dt here):
> 
> | memory-controller@e000e000 {
> | 	#address-cells = <0x2>;
> | 	#size-cells = <0x1>;
> | 	status = "okay";
> | 	clock-names = "memclk", "apb_pclk";
> | 	clocks = <0x1 0xb 0x1 0x2c>;
> | 	compatible = "arm,pl353-smc-r2p1", "arm,primecell";
> | 	interrupt-parent = <0x4>;
> | 	interrupts = <0x0 0x12 0x4>;
> | 	ranges = <0x0 0x0 0xe1000000 0x1000000>;
> | 	reg = <0xe000e000 0x1000>;
> |
> | 	flash@e1000000 {
> | 		status = "okay";
> | 		compatible = "arm,pl353-nand-r2p1";
> | 		reg = <0x0 0x0 0x1000000>;
> | 		#address-cells = <0x1>;
> | 		#size-cells = <0x1>;
> | 		nand-ecc-mode = "on-die";
> | 		nand-ecc-algo = "hamming";
> | 		nand-bus-width = <0x8>;
> | 	};
> | };
> 
> With this dt, the device is successfully initialized and the data read is mostly intact. When
> using it with jffs2, I get loads of ECC errors though (offsets and lengths vary):
> 
> | jffs2: mtd->read(0x800 bytes from 0xb60000) returned ECC error
> 
> Reverting back to the out-of-tree driver (4.14), it works normally, so a hardware defect seems
> unlikely. I compared a register dump of the smc between those drivers and the only difference I
> could find was NAND timings (at 0xE000E180), which are much lower with the new drivers
> as it does not consume the arm,nand-cycle-* properties that the old driver consumed. I tried
> hard coding the previous timings, but the ECC errors persist. This leads me to conclude that
> timings are not the cause for what I am seeing.
> 
> Is there anything else I can try to diagnose it?
Thanks for trying with new dts.
Previously we will pass the nand-cycle-* through dts.
But now framework is giving all the timing information of SDR. So we will just configure those
Timings. I will recheck the driver about the timings.

Till now I tried mtd-utils(mtd-debug) and ubifs.
I haven't tried jffs2. Let me give a try and will let you know.

Thanks,
Naga Sureshkumar Relli.
> 
> Helmut

^ permalink raw reply	[flat|nested] 8+ messages in thread

end of thread, other threads:[~2019-03-29  5:21 UTC | newest]

Thread overview: 8+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2019-02-09  6:37 [LINUX PATCH v13] rawnand: pl353: Add basic driver for arm pl353 smc nand interface Naga Sureshkumar Relli
2019-03-04  9:43 ` Miquel Raynal
2019-03-04 11:46   ` Naga Sureshkumar Relli
2019-03-11  4:36     ` Naga Sureshkumar Relli
2019-03-26 13:27 ` Helmut Grohne
2019-03-27  9:13   ` Naga Sureshkumar Relli
2019-03-28 11:51     ` Helmut Grohne
2019-03-29  5:21       ` Naga Sureshkumar Relli

This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).