All of lore.kernel.org
 help / color / mirror / Atom feed
From: Qu Wenruo <wqu@suse.com>
To: linux-btrfs@vger.kernel.org, fstests@vger.kernel.org,
	u-boot@lists.denx.de
Cc: marek.behun@nic.cz
Subject: [PATCH U-BOOT 01/26] fs: btrfs: Sync btrfs_btree.h from kernel
Date: Wed, 22 Apr 2020 14:49:44 +0800	[thread overview]
Message-ID: <20200422065009.69392-2-wqu@suse.com> (raw)
In-Reply-To: <20200422065009.69392-1-wqu@suse.com>

This version includes all needed on-disk format from kernel.

Only need to modify the include headers for u-boot, everything else is
untouched.

Also, since u-boot btrfs is using a different endian convert timing (at
tree block read time), it needs some forced type conversion before
proper cross port.

Signed-off-by: Qu Wenruo <wqu@suse.com>
---
 fs/btrfs/btrfs.c                    |    3 +-
 fs/btrfs/btrfs_tree.h               |  766 ---------------
 fs/btrfs/ctree.h                    |  214 +----
 fs/btrfs/inode.c                    |    5 +-
 fs/btrfs/kernel-shared/btrfs_tree.h | 1333 +++++++++++++++++++++++++++
 fs/btrfs/root.c                     |    2 +-
 fs/btrfs/subvolume.c                |    2 +-
 7 files changed, 1343 insertions(+), 982 deletions(-)
 delete mode 100644 fs/btrfs/btrfs_tree.h
 create mode 100644 fs/btrfs/kernel-shared/btrfs_tree.h

diff --git a/fs/btrfs/btrfs.c b/fs/btrfs/btrfs.c
index cb7e18274221..5d3ddd5931f0 100644
--- a/fs/btrfs/btrfs.c
+++ b/fs/btrfs/btrfs.c
@@ -31,7 +31,8 @@ static int readdir_callback(const struct btrfs_root *root,
 	char filetime[32], *target = NULL;
 	time_t mtime;
 
-	if (btrfs_lookup_inode(root, &item->location, &inode, NULL)) {
+	if (btrfs_lookup_inode(root, (struct btrfs_key *)&item->location,
+			       &inode, NULL)) {
 		printf("%s: Cannot find inode item for directory entry %.*s!\n",
 		       __func__, item->name_len, name);
 		return 0;
diff --git a/fs/btrfs/btrfs_tree.h b/fs/btrfs/btrfs_tree.h
deleted file mode 100644
index aa0f3d6c86dd..000000000000
--- a/fs/btrfs/btrfs_tree.h
+++ /dev/null
@@ -1,766 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0+ */
-/*
- * From linux/include/uapi/linux/btrfs_tree.h
- */
-
-#ifndef __BTRFS_BTRFS_TREE_H__
-#define __BTRFS_BTRFS_TREE_H__
-
-#include <common.h>
-
-#define BTRFS_VOL_NAME_MAX 255
-#define BTRFS_NAME_MAX 255
-#define BTRFS_LABEL_SIZE 256
-#define BTRFS_FSID_SIZE 16
-#define BTRFS_UUID_SIZE 16
-
-/*
- * This header contains the structure definitions and constants used
- * by file system objects that can be retrieved using
- * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
- * is needed to describe a leaf node's key or item contents.
- */
-
-/* holds pointers to all of the tree roots */
-#define BTRFS_ROOT_TREE_OBJECTID 1ULL
-
-/* stores information about which extents are in use, and reference counts */
-#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
-
-/*
- * chunk tree stores translations from logical -> physical block numbering
- * the super block points to the chunk tree
- */
-#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
-
-/*
- * stores information about which areas of a given device are in use.
- * one per device.  The tree of tree roots points to the device tree
- */
-#define BTRFS_DEV_TREE_OBJECTID 4ULL
-
-/* one per subvolume, storing files and directories */
-#define BTRFS_FS_TREE_OBJECTID 5ULL
-
-/* directory objectid inside the root tree */
-#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
-
-/* holds checksums of all the data extents */
-#define BTRFS_CSUM_TREE_OBJECTID 7ULL
-
-/* holds quota configuration and tracking */
-#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
-
-/* for storing items that use the BTRFS_UUID_KEY* types */
-#define BTRFS_UUID_TREE_OBJECTID 9ULL
-
-/* tracks free space in block groups. */
-#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
-
-/* device stats in the device tree */
-#define BTRFS_DEV_STATS_OBJECTID 0ULL
-
-/* for storing balance parameters in the root tree */
-#define BTRFS_BALANCE_OBJECTID -4ULL
-
-/* orhpan objectid for tracking unlinked/truncated files */
-#define BTRFS_ORPHAN_OBJECTID -5ULL
-
-/* does write ahead logging to speed up fsyncs */
-#define BTRFS_TREE_LOG_OBJECTID -6ULL
-#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
-
-/* for space balancing */
-#define BTRFS_TREE_RELOC_OBJECTID -8ULL
-#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
-
-/*
- * extent checksums all have this objectid
- * this allows them to share the logging tree
- * for fsyncs
- */
-#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
-
-/* For storing free space cache */
-#define BTRFS_FREE_SPACE_OBJECTID -11ULL
-
-/*
- * The inode number assigned to the special inode for storing
- * free ino cache
- */
-#define BTRFS_FREE_INO_OBJECTID -12ULL
-
-/* dummy objectid represents multiple objectids */
-#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
-
-/*
- * All files have objectids in this range.
- */
-#define BTRFS_FIRST_FREE_OBJECTID 256ULL
-#define BTRFS_LAST_FREE_OBJECTID -256ULL
-#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
-
-
-/*
- * the device items go into the chunk tree.  The key is in the form
- * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
- */
-#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
-
-#define BTRFS_BTREE_INODE_OBJECTID 1
-
-#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
-
-#define BTRFS_DEV_REPLACE_DEVID 0ULL
-
-/*
- * inode items have the data typically returned from stat and store other
- * info about object characteristics.  There is one for every file and dir in
- * the FS
- */
-#define BTRFS_INODE_ITEM_KEY		1
-#define BTRFS_INODE_REF_KEY		12
-#define BTRFS_INODE_EXTREF_KEY		13
-#define BTRFS_XATTR_ITEM_KEY		24
-#define BTRFS_ORPHAN_ITEM_KEY		48
-/* reserve 2-15 close to the inode for later flexibility */
-
-/*
- * dir items are the name -> inode pointers in a directory.  There is one
- * for every name in a directory.
- */
-#define BTRFS_DIR_LOG_ITEM_KEY  60
-#define BTRFS_DIR_LOG_INDEX_KEY 72
-#define BTRFS_DIR_ITEM_KEY	84
-#define BTRFS_DIR_INDEX_KEY	96
-/*
- * extent data is for file data
- */
-#define BTRFS_EXTENT_DATA_KEY	108
-
-/*
- * extent csums are stored in a separate tree and hold csums for
- * an entire extent on disk.
- */
-#define BTRFS_EXTENT_CSUM_KEY	128
-
-/*
- * root items point to tree roots.  They are typically in the root
- * tree used by the super block to find all the other trees
- */
-#define BTRFS_ROOT_ITEM_KEY	132
-
-/*
- * root backrefs tie subvols and snapshots to the directory entries that
- * reference them
- */
-#define BTRFS_ROOT_BACKREF_KEY	144
-
-/*
- * root refs make a fast index for listing all of the snapshots and
- * subvolumes referenced by a given root.  They point directly to the
- * directory item in the root that references the subvol
- */
-#define BTRFS_ROOT_REF_KEY	156
-
-/*
- * extent items are in the extent map tree.  These record which blocks
- * are used, and how many references there are to each block
- */
-#define BTRFS_EXTENT_ITEM_KEY	168
-
-/*
- * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
- * the length, so we save the level in key->offset instead of the length.
- */
-#define BTRFS_METADATA_ITEM_KEY	169
-
-#define BTRFS_TREE_BLOCK_REF_KEY	176
-
-#define BTRFS_EXTENT_DATA_REF_KEY	178
-
-#define BTRFS_EXTENT_REF_V0_KEY		180
-
-#define BTRFS_SHARED_BLOCK_REF_KEY	182
-
-#define BTRFS_SHARED_DATA_REF_KEY	184
-
-/*
- * block groups give us hints into the extent allocation trees.  Which
- * blocks are free etc etc
- */
-#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
-
-/*
- * Every block group is represented in the free space tree by a free space info
- * item, which stores some accounting information. It is keyed on
- * (block_group_start, FREE_SPACE_INFO, block_group_length).
- */
-#define BTRFS_FREE_SPACE_INFO_KEY 198
-
-/*
- * A free space extent tracks an extent of space that is free in a block group.
- * It is keyed on (start, FREE_SPACE_EXTENT, length).
- */
-#define BTRFS_FREE_SPACE_EXTENT_KEY 199
-
-/*
- * When a block group becomes very fragmented, we convert it to use bitmaps
- * instead of extents. A free space bitmap is keyed on
- * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
- * (length / sectorsize) bits.
- */
-#define BTRFS_FREE_SPACE_BITMAP_KEY 200
-
-#define BTRFS_DEV_EXTENT_KEY	204
-#define BTRFS_DEV_ITEM_KEY	216
-#define BTRFS_CHUNK_ITEM_KEY	228
-
-/*
- * Records the overall state of the qgroups.
- * There's only one instance of this key present,
- * (0, BTRFS_QGROUP_STATUS_KEY, 0)
- */
-#define BTRFS_QGROUP_STATUS_KEY         240
-/*
- * Records the currently used space of the qgroup.
- * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
- */
-#define BTRFS_QGROUP_INFO_KEY           242
-/*
- * Contains the user configured limits for the qgroup.
- * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
- */
-#define BTRFS_QGROUP_LIMIT_KEY          244
-/*
- * Records the child-parent relationship of qgroups. For
- * each relation, 2 keys are present:
- * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
- * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
- */
-#define BTRFS_QGROUP_RELATION_KEY       246
-
-/*
- * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
- */
-#define BTRFS_BALANCE_ITEM_KEY	248
-
-/*
- * The key type for tree items that are stored persistently, but do not need to
- * exist for extended period of time. The items can exist in any tree.
- *
- * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
- *
- * Existing items:
- *
- * - balance status item
- *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
- */
-#define BTRFS_TEMPORARY_ITEM_KEY	248
-
-/*
- * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
- */
-#define BTRFS_DEV_STATS_KEY		249
-
-/*
- * The key type for tree items that are stored persistently and usually exist
- * for a long period, eg. filesystem lifetime. The item kinds can be status
- * information, stats or preference values. The item can exist in any tree.
- *
- * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
- *
- * Existing items:
- *
- * - device statistics, store IO stats in the device tree, one key for all
- *   stats
- *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
- */
-#define BTRFS_PERSISTENT_ITEM_KEY	249
-
-/*
- * Persistantly stores the device replace state in the device tree.
- * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
- */
-#define BTRFS_DEV_REPLACE_KEY	250
-
-/*
- * Stores items that allow to quickly map UUIDs to something else.
- * These items are part of the filesystem UUID tree.
- * The key is built like this:
- * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
- */
-#if BTRFS_UUID_SIZE != 16
-#error "UUID items require BTRFS_UUID_SIZE == 16!"
-#endif
-#define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
-#define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
-						 * received subvols */
-
-/*
- * string items are for debugging.  They just store a short string of
- * data in the FS
- */
-#define BTRFS_STRING_ITEM_KEY	253
-
-
-
-/* 32 bytes in various csum fields */
-#define BTRFS_CSUM_SIZE 32
-
-/* csum types */
-#define BTRFS_CSUM_TYPE_CRC32	0
-
-/*
- * flags definitions for directory entry item type
- *
- * Used by:
- * struct btrfs_dir_item.type
- */
-#define BTRFS_FT_UNKNOWN	0
-#define BTRFS_FT_REG_FILE	1
-#define BTRFS_FT_DIR		2
-#define BTRFS_FT_CHRDEV		3
-#define BTRFS_FT_BLKDEV		4
-#define BTRFS_FT_FIFO		5
-#define BTRFS_FT_SOCK		6
-#define BTRFS_FT_SYMLINK	7
-#define BTRFS_FT_XATTR		8
-#define BTRFS_FT_MAX		9
-
-/*
- * The key defines the order in the tree, and so it also defines (optimal)
- * block layout.
- *
- * objectid corresponds to the inode number.
- *
- * type tells us things about the object, and is a kind of stream selector.
- * so for a given inode, keys with type of 1 might refer to the inode data,
- * type of 2 may point to file data in the btree and type == 3 may point to
- * extents.
- *
- * offset is the starting byte offset for this key in the stream.
- */
-
-struct btrfs_key {
-	__u64 objectid;
-	__u8 type;
-	__u64 offset;
-} __attribute__ ((__packed__));
-
-struct btrfs_dev_item {
-	/* the internal btrfs device id */
-	__u64 devid;
-
-	/* size of the device */
-	__u64 total_bytes;
-
-	/* bytes used */
-	__u64 bytes_used;
-
-	/* optimal io alignment for this device */
-	__u32 io_align;
-
-	/* optimal io width for this device */
-	__u32 io_width;
-
-	/* minimal io size for this device */
-	__u32 sector_size;
-
-	/* type and info about this device */
-	__u64 type;
-
-	/* expected generation for this device */
-	__u64 generation;
-
-	/*
-	 * starting byte of this partition on the device,
-	 * to allow for stripe alignment in the future
-	 */
-	__u64 start_offset;
-
-	/* grouping information for allocation decisions */
-	__u32 dev_group;
-
-	/* seek speed 0-100 where 100 is fastest */
-	__u8 seek_speed;
-
-	/* bandwidth 0-100 where 100 is fastest */
-	__u8 bandwidth;
-
-	/* btrfs generated uuid for this device */
-	__u8 uuid[BTRFS_UUID_SIZE];
-
-	/* uuid of FS who owns this device */
-	__u8 fsid[BTRFS_UUID_SIZE];
-} __attribute__ ((__packed__));
-
-struct btrfs_stripe {
-	__u64 devid;
-	__u64 offset;
-	__u8 dev_uuid[BTRFS_UUID_SIZE];
-} __attribute__ ((__packed__));
-
-struct btrfs_chunk {
-	/* size of this chunk in bytes */
-	__u64 length;
-
-	/* objectid of the root referencing this chunk */
-	__u64 owner;
-
-	__u64 stripe_len;
-	__u64 type;
-
-	/* optimal io alignment for this chunk */
-	__u32 io_align;
-
-	/* optimal io width for this chunk */
-	__u32 io_width;
-
-	/* minimal io size for this chunk */
-	__u32 sector_size;
-
-	/* 2^16 stripes is quite a lot, a second limit is the size of a single
-	 * item in the btree
-	 */
-	__u16 num_stripes;
-
-	/* sub stripes only matter for raid10 */
-	__u16 sub_stripes;
-	struct btrfs_stripe stripe;
-	/* additional stripes go here */
-} __attribute__ ((__packed__));
-
-#define BTRFS_FREE_SPACE_EXTENT	1
-#define BTRFS_FREE_SPACE_BITMAP	2
-
-struct btrfs_free_space_entry {
-	__u64 offset;
-	__u64 bytes;
-	__u8 type;
-} __attribute__ ((__packed__));
-
-struct btrfs_free_space_header {
-	struct btrfs_key location;
-	__u64 generation;
-	__u64 num_entries;
-	__u64 num_bitmaps;
-} __attribute__ ((__packed__));
-
-#define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
-#define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
-
-/* Super block flags */
-/* Errors detected */
-#define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
-
-#define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
-#define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
-
-
-/*
- * items in the extent btree are used to record the objectid of the
- * owner of the block and the number of references
- */
-
-struct btrfs_extent_item {
-	__u64 refs;
-	__u64 generation;
-	__u64 flags;
-} __attribute__ ((__packed__));
-
-
-#define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
-#define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
-
-/* following flags only apply to tree blocks */
-
-/* use full backrefs for extent pointers in the block */
-#define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
-
-/*
- * this flag is only used internally by scrub and may be changed at any time
- * it is only declared here to avoid collisions
- */
-#define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
-
-struct btrfs_tree_block_info {
-	struct btrfs_key key;
-	__u8 level;
-} __attribute__ ((__packed__));
-
-struct btrfs_extent_data_ref {
-	__u64 root;
-	__u64 objectid;
-	__u64 offset;
-	__u32 count;
-} __attribute__ ((__packed__));
-
-struct btrfs_shared_data_ref {
-	__u32 count;
-} __attribute__ ((__packed__));
-
-struct btrfs_extent_inline_ref {
-	__u8 type;
-	__u64 offset;
-} __attribute__ ((__packed__));
-
-/* dev extents record free space on individual devices.  The owner
- * field points back to the chunk allocation mapping tree that allocated
- * the extent.  The chunk tree uuid field is a way to double check the owner
- */
-struct btrfs_dev_extent {
-	__u64 chunk_tree;
-	__u64 chunk_objectid;
-	__u64 chunk_offset;
-	__u64 length;
-	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
-} __attribute__ ((__packed__));
-
-struct btrfs_inode_ref {
-	__u64 index;
-	__u16 name_len;
-	/* name goes here */
-} __attribute__ ((__packed__));
-
-struct btrfs_inode_extref {
-	__u64 parent_objectid;
-	__u64 index;
-	__u16 name_len;
-	__u8   name[0];
-	/* name goes here */
-} __attribute__ ((__packed__));
-
-struct btrfs_timespec {
-	__u64 sec;
-	__u32 nsec;
-} __attribute__ ((__packed__));
-
-struct btrfs_inode_item {
-	/* nfs style generation number */
-	__u64 generation;
-	/* transid that last touched this inode */
-	__u64 transid;
-	__u64 size;
-	__u64 nbytes;
-	__u64 block_group;
-	__u32 nlink;
-	__u32 uid;
-	__u32 gid;
-	__u32 mode;
-	__u64 rdev;
-	__u64 flags;
-
-	/* modification sequence number for NFS */
-	__u64 sequence;
-
-	/*
-	 * a little future expansion, for more than this we can
-	 * just grow the inode item and version it
-	 */
-	__u64 reserved[4];
-	struct btrfs_timespec atime;
-	struct btrfs_timespec ctime;
-	struct btrfs_timespec mtime;
-	struct btrfs_timespec otime;
-} __attribute__ ((__packed__));
-
-struct btrfs_dir_log_item {
-	__u64 end;
-} __attribute__ ((__packed__));
-
-struct btrfs_dir_item {
-	struct btrfs_key location;
-	__u64 transid;
-	__u16 data_len;
-	__u16 name_len;
-	__u8 type;
-} __attribute__ ((__packed__));
-
-#define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
-
-/*
- * Internal in-memory flag that a subvolume has been marked for deletion but
- * still visible as a directory
- */
-#define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
-
-struct btrfs_root_item {
-	struct btrfs_inode_item inode;
-	__u64 generation;
-	__u64 root_dirid;
-	__u64 bytenr;
-	__u64 byte_limit;
-	__u64 bytes_used;
-	__u64 last_snapshot;
-	__u64 flags;
-	__u32 refs;
-	struct btrfs_key drop_progress;
-	__u8 drop_level;
-	__u8 level;
-
-	/*
-	 * The following fields appear after subvol_uuids+subvol_times
-	 * were introduced.
-	 */
-
-	/*
-	 * This generation number is used to test if the new fields are valid
-	 * and up to date while reading the root item. Every time the root item
-	 * is written out, the "generation" field is copied into this field. If
-	 * anyone ever mounted the fs with an older kernel, we will have
-	 * mismatching generation values here and thus must invalidate the
-	 * new fields. See btrfs_update_root and btrfs_find_last_root for
-	 * details.
-	 * the offset of generation_v2 is also used as the start for the memset
-	 * when invalidating the fields.
-	 */
-	__u64 generation_v2;
-	__u8 uuid[BTRFS_UUID_SIZE];
-	__u8 parent_uuid[BTRFS_UUID_SIZE];
-	__u8 received_uuid[BTRFS_UUID_SIZE];
-	__u64 ctransid; /* updated when an inode changes */
-	__u64 otransid; /* trans when created */
-	__u64 stransid; /* trans when sent. non-zero for received subvol */
-	__u64 rtransid; /* trans when received. non-zero for received subvol */
-	struct btrfs_timespec ctime;
-	struct btrfs_timespec otime;
-	struct btrfs_timespec stime;
-	struct btrfs_timespec rtime;
-	__u64 reserved[8]; /* for future */
-} __attribute__ ((__packed__));
-
-/*
- * this is used for both forward and backward root refs
- */
-struct btrfs_root_ref {
-	__u64 dirid;
-	__u64 sequence;
-	__u16 name_len;
-} __attribute__ ((__packed__));
-
-#define BTRFS_FILE_EXTENT_INLINE 0
-#define BTRFS_FILE_EXTENT_REG 1
-#define BTRFS_FILE_EXTENT_PREALLOC 2
-
-enum btrfs_compression_type {
-	BTRFS_COMPRESS_NONE  = 0,
-	BTRFS_COMPRESS_ZLIB  = 1,
-	BTRFS_COMPRESS_LZO   = 2,
-	BTRFS_COMPRESS_ZSTD  = 3,
-	BTRFS_COMPRESS_TYPES = 3,
-	BTRFS_COMPRESS_LAST  = 4,
-};
-
-struct btrfs_file_extent_item {
-	/*
-	 * transaction id that created this extent
-	 */
-	__u64 generation;
-	/*
-	 * max number of bytes to hold this extent in ram
-	 * when we split a compressed extent we can't know how big
-	 * each of the resulting pieces will be.  So, this is
-	 * an upper limit on the size of the extent in ram instead of
-	 * an exact limit.
-	 */
-	__u64 ram_bytes;
-
-	/*
-	 * 32 bits for the various ways we might encode the data,
-	 * including compression and encryption.  If any of these
-	 * are set to something a given disk format doesn't understand
-	 * it is treated like an incompat flag for reading and writing,
-	 * but not for stat.
-	 */
-	__u8 compression;
-	__u8 encryption;
-	__u16 other_encoding; /* spare for later use */
-
-	/* are we inline data or a real extent? */
-	__u8 type;
-
-	/*
-	 * disk space consumed by the extent, checksum blocks are included
-	 * in these numbers
-	 *
-	 * At this offset in the structure, the inline extent data start.
-	 */
-	__u64 disk_bytenr;
-	__u64 disk_num_bytes;
-	/*
-	 * the logical offset in file blocks (no csums)
-	 * this extent record is for.  This allows a file extent to point
-	 * into the middle of an existing extent on disk, sharing it
-	 * between two snapshots (useful if some bytes in the middle of the
-	 * extent have changed
-	 */
-	__u64 offset;
-	/*
-	 * the logical number of file blocks (no csums included).  This
-	 * always reflects the size uncompressed and without encoding.
-	 */
-	__u64 num_bytes;
-
-} __attribute__ ((__packed__));
-
-struct btrfs_csum_item {
-	__u8 csum;
-} __attribute__ ((__packed__));
-
-/* different types of block groups (and chunks) */
-#define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
-#define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
-#define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
-#define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
-#define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
-#define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
-#define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
-#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
-#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
-#define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
-					 BTRFS_SPACE_INFO_GLOBAL_RSV)
-
-enum btrfs_raid_types {
-	BTRFS_RAID_RAID10,
-	BTRFS_RAID_RAID1,
-	BTRFS_RAID_DUP,
-	BTRFS_RAID_RAID0,
-	BTRFS_RAID_SINGLE,
-	BTRFS_RAID_RAID5,
-	BTRFS_RAID_RAID6,
-	BTRFS_NR_RAID_TYPES
-};
-
-#define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
-					 BTRFS_BLOCK_GROUP_SYSTEM |  \
-					 BTRFS_BLOCK_GROUP_METADATA)
-
-#define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
-					 BTRFS_BLOCK_GROUP_RAID1 |   \
-					 BTRFS_BLOCK_GROUP_RAID5 |   \
-					 BTRFS_BLOCK_GROUP_RAID6 |   \
-					 BTRFS_BLOCK_GROUP_DUP |     \
-					 BTRFS_BLOCK_GROUP_RAID10)
-#define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
-					 BTRFS_BLOCK_GROUP_RAID6)
-
-/*
- * We need a bit for restriper to be able to tell when chunks of type
- * SINGLE are available.  This "extended" profile format is used in
- * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
- * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
- * to avoid remappings between two formats in future.
- */
-#define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
-
-/*
- * A fake block group type that is used to communicate global block reserve
- * size to userspace via the SPACE_INFO ioctl.
- */
-#define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
-
-#define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
-					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
-
-#endif /* __BTRFS_BTRFS_TREE_H__ */
diff --git a/fs/btrfs/ctree.h b/fs/btrfs/ctree.h
index 65c152a52fcf..156ce69ed022 100644
--- a/fs/btrfs/ctree.h
+++ b/fs/btrfs/ctree.h
@@ -11,28 +11,16 @@
 
 #include <common.h>
 #include <compiler.h>
-#include "btrfs_tree.h"
-
-#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
+#include "kernel-shared/btrfs_tree.h"
 
 #define BTRFS_MAX_MIRRORS 3
 
-#define BTRFS_MAX_LEVEL 8
-
-#define BTRFS_COMPAT_EXTENT_TREE_V0
-
 /*
  * the max metadata block size.  This limit is somewhat artificial,
  * but the memmove costs go through the roof for larger blocks.
  */
 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536
 
-/*
- * we can actually store much bigger names, but lets not confuse the rest
- * of linux
- */
-#define BTRFS_NAME_LEN 255
-
 /*
  * Theoretical limit is larger, but we keep this down to a sane
  * value. That should limit greatly the possibility of collisions on
@@ -40,8 +28,6 @@
  */
 #define BTRFS_LINK_MAX 65535U
 
-static const int btrfs_csum_sizes[] = { 4 };
-
 /* four bytes for CRC32 */
 #define BTRFS_EMPTY_DIR_SIZE 0
 
@@ -61,207 +47,12 @@ static const int btrfs_csum_sizes[] = { 4 };
 #define BTRFS_FS_STATE_DEV_REPLACING	3
 #define BTRFS_FS_STATE_DUMMY_FS_INFO	4
 
-#define BTRFS_BACKREF_REV_MAX		256
-#define BTRFS_BACKREF_REV_SHIFT		56
-#define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
-					 BTRFS_BACKREF_REV_SHIFT)
-
-#define BTRFS_OLD_BACKREF_REV		0
-#define BTRFS_MIXED_BACKREF_REV		1
-
-/*
- * every tree block (leaf or node) starts with this header.
- */
-struct btrfs_header {
-	/* these first four must match the super block */
-	__u8 csum[BTRFS_CSUM_SIZE];
-	__u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
-	__u64 bytenr; /* which block this node is supposed to live in */
-	__u64 flags;
-
-	/* allowed to be different from the super from here on down */
-	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
-	__u64 generation;
-	__u64 owner;
-	__u32 nritems;
-	__u8 level;
-} __attribute__ ((__packed__));
-
-/*
- * this is a very generous portion of the super block, giving us
- * room to translate 14 chunks with 3 stripes each.
- */
-#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
-
-/*
- * just in case we somehow lose the roots and are not able to mount,
- * we store an array of the roots from previous transactions
- * in the super.
- */
-#define BTRFS_NUM_BACKUP_ROOTS 4
-struct btrfs_root_backup {
-	__u64 tree_root;
-	__u64 tree_root_gen;
-
-	__u64 chunk_root;
-	__u64 chunk_root_gen;
-
-	__u64 extent_root;
-	__u64 extent_root_gen;
-
-	__u64 fs_root;
-	__u64 fs_root_gen;
-
-	__u64 dev_root;
-	__u64 dev_root_gen;
-
-	__u64 csum_root;
-	__u64 csum_root_gen;
-
-	__u64 total_bytes;
-	__u64 bytes_used;
-	__u64 num_devices;
-	/* future */
-	__u64 unused_64[4];
-
-	__u8 tree_root_level;
-	__u8 chunk_root_level;
-	__u8 extent_root_level;
-	__u8 fs_root_level;
-	__u8 dev_root_level;
-	__u8 csum_root_level;
-	/* future and to align */
-	__u8 unused_8[10];
-} __attribute__ ((__packed__));
-
-/*
- * the super block basically lists the main trees of the FS
- * it currently lacks any block count etc etc
- */
-struct btrfs_super_block {
-	__u8 csum[BTRFS_CSUM_SIZE];
-	/* the first 4 fields must match struct btrfs_header */
-	__u8 fsid[BTRFS_FSID_SIZE];    /* FS specific uuid */
-	__u64 bytenr; /* this block number */
-	__u64 flags;
-
-	/* allowed to be different from the btrfs_header from here own down */
-	__u64 magic;
-	__u64 generation;
-	__u64 root;
-	__u64 chunk_root;
-	__u64 log_root;
-
-	/* this will help find the new super based on the log root */
-	__u64 log_root_transid;
-	__u64 total_bytes;
-	__u64 bytes_used;
-	__u64 root_dir_objectid;
-	__u64 num_devices;
-	__u32 sectorsize;
-	__u32 nodesize;
-	__u32 __unused_leafsize;
-	__u32 stripesize;
-	__u32 sys_chunk_array_size;
-	__u64 chunk_root_generation;
-	__u64 compat_flags;
-	__u64 compat_ro_flags;
-	__u64 incompat_flags;
-	__u16 csum_type;
-	__u8 root_level;
-	__u8 chunk_root_level;
-	__u8 log_root_level;
-	struct btrfs_dev_item dev_item;
-
-	char label[BTRFS_LABEL_SIZE];
-
-	__u64 cache_generation;
-	__u64 uuid_tree_generation;
-
-	/* future expansion */
-	__u64 reserved[30];
-	__u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
-	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
-} __attribute__ ((__packed__));
-
-/*
- * Compat flags that we support.  If any incompat flags are set other than the
- * ones specified below then we will fail to mount
- */
-#define BTRFS_FEATURE_COMPAT_SUPP		0ULL
-#define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
-#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
-
-#define BTRFS_FEATURE_COMPAT_RO_SUPP			\
-	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
-	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID)
-
-#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
-#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
-
-#define BTRFS_FEATURE_INCOMPAT_SUPP			\
-	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
-	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
-	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
-	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
-	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
-	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
-	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
-	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
-	 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
-
-#define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
-	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
-#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
-
-/*
- * A leaf is full of items. offset and size tell us where to find
- * the item in the leaf (relative to the start of the data area)
- */
-struct btrfs_item {
-	struct btrfs_key key;
-	__u32 offset;
-	__u32 size;
-} __attribute__ ((__packed__));
-
-/*
- * leaves have an item area and a data area:
- * [item0, item1....itemN] [free space] [dataN...data1, data0]
- *
- * The data is separate from the items to get the keys closer together
- * during searches.
- */
-struct btrfs_leaf {
-	struct btrfs_header header;
-	struct btrfs_item items[];
-} __attribute__ ((__packed__));
-
-/*
- * all non-leaf blocks are nodes, they hold only keys and pointers to
- * other blocks
- */
-struct btrfs_key_ptr {
-	struct btrfs_key key;
-	__u64 blockptr;
-	__u64 generation;
-} __attribute__ ((__packed__));
-
-struct btrfs_node {
-	struct btrfs_header header;
-	struct btrfs_key_ptr ptrs[];
-} __attribute__ ((__packed__));
-
 union btrfs_tree_node {
 	struct btrfs_header header;
 	struct btrfs_leaf leaf;
 	struct btrfs_node node;
 };
 
-typedef __u8 u8;
-typedef __u16 u16;
-typedef __u32 u32;
-typedef __u64 u64;
-
 struct btrfs_path {
 	union btrfs_tree_node *nodes[BTRFS_MAX_LEVEL];
 	u32 slots[BTRFS_MAX_LEVEL];
@@ -283,7 +74,8 @@ int btrfs_prev_slot(struct btrfs_path *);
 int btrfs_next_slot(struct btrfs_path *);
 
 static inline struct btrfs_key *btrfs_path_leaf_key(struct btrfs_path *p) {
-	return &p->nodes[0]->leaf.items[p->slots[0]].key;
+	/* At tree read time we have converted the endian for btrfs_disk_key */
+	return (struct btrfs_key *)&p->nodes[0]->leaf.items[p->slots[0]].key;
 }
 
 static inline struct btrfs_key *
diff --git a/fs/btrfs/inode.c b/fs/btrfs/inode.c
index 991c2f68c3b7..d88ae67217b1 100644
--- a/fs/btrfs/inode.c
+++ b/fs/btrfs/inode.c
@@ -29,7 +29,7 @@ u64 btrfs_lookup_inode_ref(struct btrfs_root *root, u64 inr,
 		*refp = *ref;
 
 	if (name) {
-		if (ref->name_len > BTRFS_NAME_MAX) {
+		if (ref->name_len > BTRFS_NAME_LEN) {
 			printf("%s: inode name too long: %u\n", __func__,
 			        ref->name_len);
 			goto out;
@@ -255,7 +255,8 @@ u64 btrfs_lookup_path(struct btrfs_root *root, u64 inr, const char *path,
 
 		type = item.type;
 		have_inode = 1;
-		if (btrfs_lookup_inode(root, &item.location, &inode_item, root))
+		if (btrfs_lookup_inode(root, (struct btrfs_key *)&item.location,
+					&inode_item, root))
 			return -1ULL;
 
 		if (item.type == BTRFS_FT_SYMLINK && symlink_limit >= 0) {
diff --git a/fs/btrfs/kernel-shared/btrfs_tree.h b/fs/btrfs/kernel-shared/btrfs_tree.h
new file mode 100644
index 000000000000..7d245f900104
--- /dev/null
+++ b/fs/btrfs/kernel-shared/btrfs_tree.h
@@ -0,0 +1,1333 @@
+/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
+/*
+ * Copied from kernel/include/uapi/linux/btrfs_btree.h.
+ *
+ * Only modified the header.
+ */
+/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
+#ifndef __BTRFS_TREE_H__
+#define __BTRFS_TREE_H__
+
+#include <linux/types.h>
+
+#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
+
+/*
+ * The max metadata block size (node size).
+ *
+ * This limit is somewhat artificial. The memmove and tree block locking cost
+ * go up with larger node size.
+ */
+#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
+
+/*
+ * We can actually store much bigger names, but lets not confuse the rest
+ * of linux.
+ *
+ * btrfs_dir_item::name_len follows this limitation.
+ */
+#define BTRFS_NAME_LEN 255
+
+/*
+ * Objectids start from here.
+ *
+ * Check btrfs_disk_key for the meaning of objectids.
+ */
+
+/*
+ * Root tree holds pointers to all of the tree roots.
+ * Without special mention, the root tree contains the root bytenr of all other 
+ * trees, except the chunk tree and the log tree.
+ *
+ * The super block contains the root bytenr of this tree.
+ */
+#define BTRFS_ROOT_TREE_OBJECTID 1ULL
+
+/*
+ * Extent tree stores information about which extents are in use, and backrefs
+ * for each extent.
+ */
+#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
+
+/*
+ * Chunk tree stores btrfs logical address -> physical address mapping.
+ *
+ * The super block contains part of chunk tree for bootstrap, and contains
+ * the root bytenr of this tree.
+ */
+#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
+
+/*
+ * Device tree stores info about which areas of a given device are in use,
+ * and physical address -> btrfs logical address mapping.
+ */
+#define BTRFS_DEV_TREE_OBJECTID 4ULL
+
+/* The fs tree is the first subvolume tree, storing files and directories. */
+#define BTRFS_FS_TREE_OBJECTID 5ULL
+
+/* Shows the directory objectid inside the root tree. */
+#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
+
+/* Csum tree holds checksums of all the data extents. */
+#define BTRFS_CSUM_TREE_OBJECTID 7ULL
+
+/* Quota tree holds quota configuration and tracking. */
+#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
+
+/* UUID tree stores items that use the BTRFS_UUID_KEY* types. */
+#define BTRFS_UUID_TREE_OBJECTID 9ULL
+
+/* Free space cache tree (v2 space cache) tracks free space in block groups. */
+#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
+
+/* Indicates device stats in the device tree. */
+#define BTRFS_DEV_STATS_OBJECTID 0ULL
+
+/* For storing balance parameters in the root tree. */
+#define BTRFS_BALANCE_OBJECTID -4ULL
+
+/* Orhpan objectid for tracking unlinked/truncated files. */
+#define BTRFS_ORPHAN_OBJECTID -5ULL
+
+/* Does write ahead logging to speed up fsyncs. */
+#define BTRFS_TREE_LOG_OBJECTID -6ULL
+#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
+
+/* For space balancing. */
+#define BTRFS_TREE_RELOC_OBJECTID -8ULL
+#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
+
+/* Extent checksums, shared between the csum tree and log trees. */
+#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
+
+/* For storing free space cache (v1 space cache). */
+#define BTRFS_FREE_SPACE_OBJECTID -11ULL
+
+/* The inode number assigned to the special inode for storing free ino cache. */
+#define BTRFS_FREE_INO_OBJECTID -12ULL
+
+/* Dummy objectid represents multiple objectids. */
+#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
+
+/* All files have objectids in this range. */
+#define BTRFS_FIRST_FREE_OBJECTID 256ULL
+#define BTRFS_LAST_FREE_OBJECTID -256ULL
+#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
+
+
+/*
+ * The device items go into the chunk tree.
+ *
+ * The key is in the form
+ * (BTRFS_DEV_ITEMS_OBJECTID, BTRFS_DEV_ITEM_KEY,  <device_id>)
+ */
+#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
+
+#define BTRFS_BTREE_INODE_OBJECTID 1
+
+#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
+
+#define BTRFS_DEV_REPLACE_DEVID 0ULL
+
+/*
+ * Types start from here.
+ *
+ * Check btrfs_disk_key for details about types.
+ */
+
+/*
+ * Inode items have the data typically returned from stat and store other
+ * info about object characteristics.
+ *
+ * There is one for every file and dir in the FS.
+ */
+#define BTRFS_INODE_ITEM_KEY		1
+/* reserve 2-11 close to the inode for later flexibility */
+#define BTRFS_INODE_REF_KEY		12
+#define BTRFS_INODE_EXTREF_KEY		13
+#define BTRFS_XATTR_ITEM_KEY		24
+#define BTRFS_ORPHAN_ITEM_KEY		48
+
+/*
+ * Dir items are the name -> inode pointers in a directory.
+ *
+ * There is one for every name in a directory.
+ */
+#define BTRFS_DIR_LOG_ITEM_KEY  60
+#define BTRFS_DIR_LOG_INDEX_KEY 72
+#define BTRFS_DIR_ITEM_KEY	84
+#define BTRFS_DIR_INDEX_KEY	96
+
+/* Stores info (position, size ...) about a data extent of a file */
+#define BTRFS_EXTENT_DATA_KEY	108
+
+/*
+ * Extent csums are stored in a separate tree and hold csums for
+ * an entire extent on disk.
+ */
+#define BTRFS_EXTENT_CSUM_KEY	128
+
+/*
+ * Root items point to tree roots.
+ *
+ * They are typically in the root tree used by the super block to find all the
+ * other trees.
+ */
+#define BTRFS_ROOT_ITEM_KEY	132
+
+/*
+ * Root backrefs tie subvols and snapshots to the directory entries that
+ * reference them.
+ */
+#define BTRFS_ROOT_BACKREF_KEY	144
+
+/*
+ * Root refs make a fast index for listing all of the snapshots and
+ * subvolumes referenced by a given root.  They point directly to the
+ * directory item in the root that references the subvol.
+ */
+#define BTRFS_ROOT_REF_KEY	156
+
+/*
+ * Extent items are in the extent tree.
+ *
+ * These record which blocks are used, and how many references there are.
+ */
+#define BTRFS_EXTENT_ITEM_KEY	168
+
+/*
+ * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
+ * the length, so we save the level in key->offset instead of the length.
+ */
+#define BTRFS_METADATA_ITEM_KEY	169
+
+#define BTRFS_TREE_BLOCK_REF_KEY	176
+
+#define BTRFS_EXTENT_DATA_REF_KEY	178
+
+#define BTRFS_EXTENT_REF_V0_KEY		180
+
+#define BTRFS_SHARED_BLOCK_REF_KEY	182
+
+#define BTRFS_SHARED_DATA_REF_KEY	184
+
+/*
+ * Block groups give us hints into the extent allocation trees.
+ *
+ * Stores how many free space there is in a block group.
+ */
+#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
+
+/*
+ * Every block group is represented in the free space tree by a free space info
+ * item, which stores some accounting information. It is keyed on
+ * (block_group_start, FREE_SPACE_INFO, block_group_length).
+ */
+#define BTRFS_FREE_SPACE_INFO_KEY 198
+
+/*
+ * A free space extent tracks an extent of space that is free in a block group.
+ * It is keyed on (start, FREE_SPACE_EXTENT, length).
+ */
+#define BTRFS_FREE_SPACE_EXTENT_KEY 199
+
+/*
+ * When a block group becomes very fragmented, we convert it to use bitmaps
+ * instead of extents.
+ *
+ * A free space bitmap is keyed on (start, FREE_SPACE_BITMAP, length).
+ * The corresponding item is a bitmap with (length / sectorsize) bits.
+ */
+#define BTRFS_FREE_SPACE_BITMAP_KEY 200
+
+#define BTRFS_DEV_EXTENT_KEY	204
+#define BTRFS_DEV_ITEM_KEY	216
+#define BTRFS_CHUNK_ITEM_KEY	228
+
+/*
+ * Records the overall state of the qgroups.
+ *
+ * There's only one instance of this key present,
+ * (0, BTRFS_QGROUP_STATUS_KEY, 0)
+ */
+#define BTRFS_QGROUP_STATUS_KEY         240
+/*
+ * Records the currently used space of the qgroup.
+ *
+ * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
+ */
+#define BTRFS_QGROUP_INFO_KEY           242
+
+/*
+ * Contains the user configured limits for the qgroup.
+ *
+ * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
+ */
+#define BTRFS_QGROUP_LIMIT_KEY          244
+
+/*
+ * Records the child-parent relationship of qgroups. For
+ * each relation, 2 keys are present:
+ * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
+ * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
+ */
+#define BTRFS_QGROUP_RELATION_KEY       246
+
+/* Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. */
+#define BTRFS_BALANCE_ITEM_KEY	248
+
+/*
+ * The key type for tree items that are stored persistently, but do not need to
+ * exist for extended period of time. The items can exist in any tree.
+ *
+ * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
+ *
+ * Existing items:
+ *
+ * - balance status item
+ *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
+ */
+#define BTRFS_TEMPORARY_ITEM_KEY	248
+
+/* Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY */
+#define BTRFS_DEV_STATS_KEY		249
+
+/*
+ * The key type for tree items that are stored persistently and usually exist
+ * for a long period, eg. filesystem lifetime. The item kinds can be status
+ * information, stats or preference values. The item can exist in any tree.
+ *
+ * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
+ *
+ * Existing items:
+ *
+ * - device statistics, store IO stats in the device tree, one key for all
+ *   stats
+ *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
+ */
+#define BTRFS_PERSISTENT_ITEM_KEY	249
+
+/*
+ * Persistently stores the device replace state in the device tree.
+ *
+ * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
+ */
+#define BTRFS_DEV_REPLACE_KEY	250
+
+/*
+ * Stores items that allow to quickly map UUIDs to something else.
+ *
+ * These items are part of the filesystem UUID tree.
+ * The key is built like this:
+ * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
+ */
+#define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
+#define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
+						 * received subvols */
+
+/*
+ * String items are for debugging.
+ *
+ * They just store a short string of data in the FS.
+ */
+#define BTRFS_STRING_ITEM_KEY	253
+
+
+
+/* 32 bytes in various csum fields */
+#define BTRFS_CSUM_SIZE 32
+
+/* Csum types */
+enum btrfs_csum_type {
+	BTRFS_CSUM_TYPE_CRC32	= 0,
+	BTRFS_CSUM_TYPE_XXHASH	= 1,
+	BTRFS_CSUM_TYPE_SHA256	= 2,
+	BTRFS_CSUM_TYPE_BLAKE2	= 3,
+};
+
+/*
+ * Flags definitions for directory entry item type.
+ *
+ * Used by:
+ * struct btrfs_dir_item.type
+ *
+ * Values 0..7 must match common file type values in fs_types.h.
+ */
+#define BTRFS_FT_UNKNOWN	0
+#define BTRFS_FT_REG_FILE	1
+#define BTRFS_FT_DIR		2
+#define BTRFS_FT_CHRDEV		3
+#define BTRFS_FT_BLKDEV		4
+#define BTRFS_FT_FIFO		5
+#define BTRFS_FT_SOCK		6
+#define BTRFS_FT_SYMLINK	7
+#define BTRFS_FT_XATTR		8
+#define BTRFS_FT_MAX		9
+
+#define BTRFS_FSID_SIZE 16
+#define BTRFS_UUID_SIZE 16
+
+/*
+ * The key defines the order in the tree, and so it also defines (optimal)
+ * block layout.
+ *
+ * Objectid and offset are interpreted based on type.
+ * While normally for objectid, it either represents a root number, or an
+ * inode number.
+ *
+ * Type tells us things about the object, and is a kind of stream selector.
+ * Check the following URL for full references about btrfs_disk_key/btrfs_key:
+ * https://btrfs.wiki.kernel.org/index.php/Btree_Items
+ *
+ * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
+ * in cpu native order.  Otherwise they are identical and their sizes
+ * should be the same (ie both packed)
+ */
+struct btrfs_disk_key {
+	__le64 objectid;
+	__u8 type;
+	__le64 offset;
+} __attribute__ ((__packed__));
+
+struct btrfs_key {
+	__u64 objectid;
+	__u8 type;
+	__u64 offset;
+} __attribute__ ((__packed__));
+
+struct btrfs_dev_item {
+	/* The internal btrfs device id */
+	__le64 devid;
+
+	/* Size of the device */
+	__le64 total_bytes;
+
+	/* Bytes used */
+	__le64 bytes_used;
+
+	/* Optimal io alignment for this device */
+	__le32 io_align;
+
+	/* Optimal io width for this device */
+	__le32 io_width;
+
+	/* Minimal io size for this device */
+	__le32 sector_size;
+
+	/* Type and info about this device */
+	__le64 type;
+
+	/* Expected generation for this device */
+	__le64 generation;
+
+	/*
+	 * Starting byte of this partition on the device,
+	 * to allow for stripe alignment in the future.
+	 */
+	__le64 start_offset;
+
+	/* Grouping information for allocation decisions */
+	__le32 dev_group;
+
+	/* Optimal seek speed 0-100 where 100 is fastest */
+	__u8 seek_speed;
+
+	/* Optimal bandwidth 0-100 where 100 is fastest */
+	__u8 bandwidth;
+
+	/* Btrfs generated uuid for this device */
+	__u8 uuid[BTRFS_UUID_SIZE];
+
+	/* UUID of FS who owns this device */
+	__u8 fsid[BTRFS_UUID_SIZE];
+} __attribute__ ((__packed__));
+
+struct btrfs_stripe {
+	__le64 devid;
+	__le64 offset;
+	__u8 dev_uuid[BTRFS_UUID_SIZE];
+} __attribute__ ((__packed__));
+
+struct btrfs_chunk {
+	/* Size of this chunk in bytes */
+	__le64 length;
+
+	/* Objectid of the root referencing this chunk */
+	__le64 owner;
+
+	__le64 stripe_len;
+	__le64 type;
+
+	/* Optimal io alignment for this chunk */
+	__le32 io_align;
+
+	/* Optimal io width for this chunk */
+	__le32 io_width;
+
+	/* Minimal io size for this chunk */
+	__le32 sector_size;
+
+	/*
+	 * 2^16 stripes is quite a lot, a second limit is the size of a single
+	 * item in the btree.
+	 */
+	__le16 num_stripes;
+
+	/* Sub stripes only matter for raid10 */
+	__le16 sub_stripes;
+	struct btrfs_stripe stripe;
+	/* additional stripes go here */
+} __attribute__ ((__packed__));
+
+#define BTRFS_FREE_SPACE_EXTENT	1
+#define BTRFS_FREE_SPACE_BITMAP	2
+
+struct btrfs_free_space_entry {
+	__le64 offset;
+	__le64 bytes;
+	__u8 type;
+} __attribute__ ((__packed__));
+
+struct btrfs_free_space_header {
+	struct btrfs_disk_key location;
+	__le64 generation;
+	__le64 num_entries;
+	__le64 num_bitmaps;
+} __attribute__ ((__packed__));
+
+#define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
+#define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
+
+/* Super block flags */
+/* Errors detected */
+#define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
+
+#define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
+#define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
+#define BTRFS_SUPER_FLAG_METADUMP_V2	(1ULL << 34)
+#define BTRFS_SUPER_FLAG_CHANGING_FSID	(1ULL << 35)
+#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
+
+
+/*
+ * Items in the extent tree are used to record the objectid of the
+ * owner of the block and the number of references.
+ */
+struct btrfs_extent_item {
+	__le64 refs;
+	__le64 generation;
+	__le64 flags;
+} __attribute__ ((__packed__));
+
+struct btrfs_extent_item_v0 {
+	__le32 refs;
+} __attribute__ ((__packed__));
+
+
+#define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
+#define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
+
+/* Use full backrefs for extent pointers in the block */
+#define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
+
+/*
+ * This flag is only used internally by scrub and may be changed at any time
+ * it is only declared here to avoid collisions.
+ */
+#define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
+
+struct btrfs_tree_block_info {
+	struct btrfs_disk_key key;
+	__u8 level;
+} __attribute__ ((__packed__));
+
+struct btrfs_extent_data_ref {
+	__le64 root;
+	__le64 objectid;
+	__le64 offset;
+	__le32 count;
+} __attribute__ ((__packed__));
+
+struct btrfs_shared_data_ref {
+	__le32 count;
+} __attribute__ ((__packed__));
+
+struct btrfs_extent_inline_ref {
+	__u8 type;
+	__le64 offset;
+} __attribute__ ((__packed__));
+
+/* Old style backrefs item */
+struct btrfs_extent_ref_v0 {
+	__le64 root;
+	__le64 generation;
+	__le64 objectid;
+	__le32 count;
+} __attribute__ ((__packed__));
+
+
+/* Dev extents record used space on individual devices.
+ *
+ * The owner field points back to the chunk allocation mapping tree that
+ * allocated the extent.
+ * The chunk tree uuid field is a way to double check the owner.
+ */
+struct btrfs_dev_extent {
+	__le64 chunk_tree;
+	__le64 chunk_objectid;
+	__le64 chunk_offset;
+	__le64 length;
+	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
+} __attribute__ ((__packed__));
+
+struct btrfs_inode_ref {
+	__le64 index;
+	__le16 name_len;
+	/* Name goes here */
+} __attribute__ ((__packed__));
+
+struct btrfs_inode_extref {
+	__le64 parent_objectid;
+	__le64 index;
+	__le16 name_len;
+	__u8   name[0];
+	/* Name goes here */
+} __attribute__ ((__packed__));
+
+struct btrfs_timespec {
+	__le64 sec;
+	__le32 nsec;
+} __attribute__ ((__packed__));
+
+/* Inode flags */
+#define BTRFS_INODE_NODATASUM		(1 << 0)
+#define BTRFS_INODE_NODATACOW		(1 << 1)
+#define BTRFS_INODE_READONLY		(1 << 2)
+#define BTRFS_INODE_NOCOMPRESS		(1 << 3)
+#define BTRFS_INODE_PREALLOC		(1 << 4)
+#define BTRFS_INODE_SYNC		(1 << 5)
+#define BTRFS_INODE_IMMUTABLE		(1 << 6)
+#define BTRFS_INODE_APPEND		(1 << 7)
+#define BTRFS_INODE_NODUMP		(1 << 8)
+#define BTRFS_INODE_NOATIME		(1 << 9)
+#define BTRFS_INODE_DIRSYNC		(1 << 10)
+#define BTRFS_INODE_COMPRESS		(1 << 11)
+
+#define BTRFS_INODE_ROOT_ITEM_INIT	(1 << 31)
+
+#define BTRFS_INODE_FLAG_MASK						\
+	(BTRFS_INODE_NODATASUM |					\
+	 BTRFS_INODE_NODATACOW |					\
+	 BTRFS_INODE_READONLY |						\
+	 BTRFS_INODE_NOCOMPRESS |					\
+	 BTRFS_INODE_PREALLOC |						\
+	 BTRFS_INODE_SYNC |						\
+	 BTRFS_INODE_IMMUTABLE |					\
+	 BTRFS_INODE_APPEND |						\
+	 BTRFS_INODE_NODUMP |						\
+	 BTRFS_INODE_NOATIME |						\
+	 BTRFS_INODE_DIRSYNC |						\
+	 BTRFS_INODE_COMPRESS |						\
+	 BTRFS_INODE_ROOT_ITEM_INIT)
+
+struct btrfs_inode_item {
+	/* Nfs style generation number */
+	__le64 generation;
+	/* Transid that last touched this inode */
+	__le64 transid;
+	__le64 size;
+	__le64 nbytes;
+	__le64 block_group;
+	__le32 nlink;
+	__le32 uid;
+	__le32 gid;
+	__le32 mode;
+	__le64 rdev;
+	__le64 flags;
+
+	/* Modification sequence number for NFS */
+	__le64 sequence;
+
+	/*
+	 * A little future expansion, for more than this we can just grow the
+	 * inode item and version it
+	 */
+	__le64 reserved[4];
+	struct btrfs_timespec atime;
+	struct btrfs_timespec ctime;
+	struct btrfs_timespec mtime;
+	struct btrfs_timespec otime;
+} __attribute__ ((__packed__));
+
+struct btrfs_dir_log_item {
+	__le64 end;
+} __attribute__ ((__packed__));
+
+struct btrfs_dir_item {
+	struct btrfs_disk_key location;
+	__le64 transid;
+	__le16 data_len;
+	__le16 name_len;
+	__u8 type;
+} __attribute__ ((__packed__));
+
+#define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
+
+/*
+ * Internal in-memory flag that a subvolume has been marked for deletion but
+ * still visible as a directory
+ */
+#define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
+
+struct btrfs_root_item {
+	struct btrfs_inode_item inode;
+	__le64 generation;
+	__le64 root_dirid;
+	__le64 bytenr;
+	__le64 byte_limit;
+	__le64 bytes_used;
+	__le64 last_snapshot;
+	__le64 flags;
+	__le32 refs;
+	struct btrfs_disk_key drop_progress;
+	__u8 drop_level;
+	__u8 level;
+
+	/*
+	 * The following fields appear after subvol_uuids+subvol_times
+	 * were introduced.
+	 */
+
+	/*
+	 * This generation number is used to test if the new fields are valid
+	 * and up to date while reading the root item. Every time the root item
+	 * is written out, the "generation" field is copied into this field. If
+	 * anyone ever mounted the fs with an older kernel, we will have
+	 * mismatching generation values here and thus must invalidate the
+	 * new fields. See btrfs_update_root and btrfs_find_last_root for
+	 * details.
+	 * The offset of generation_v2 is also used as the start for the memset
+	 * when invalidating the fields.
+	 */
+	__le64 generation_v2;
+	__u8 uuid[BTRFS_UUID_SIZE];
+	__u8 parent_uuid[BTRFS_UUID_SIZE];
+	__u8 received_uuid[BTRFS_UUID_SIZE];
+	__le64 ctransid; /* Updated when an inode changes */
+	__le64 otransid; /* Trans when created */
+	__le64 stransid; /* Trans when sent. Non-zero for received subvol. */
+	__le64 rtransid; /* Trans when received. Non-zero for received subvol.*/
+	struct btrfs_timespec ctime;
+	struct btrfs_timespec otime;
+	struct btrfs_timespec stime;
+	struct btrfs_timespec rtime;
+	__le64 reserved[8]; /* For future */
+} __attribute__ ((__packed__));
+
+/* This is used for both forward and backward root refs */
+struct btrfs_root_ref {
+	__le64 dirid;
+	__le64 sequence;
+	__le16 name_len;
+} __attribute__ ((__packed__));
+
+struct btrfs_disk_balance_args {
+	/*
+	 * Profiles to operate on.
+	 *
+	 * SINGLE is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE.
+	 */
+	__le64 profiles;
+
+	/*
+	 * Usage filter
+	 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
+	 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
+	 */
+	union {
+		__le64 usage;
+		struct {
+			__le32 usage_min;
+			__le32 usage_max;
+		};
+	};
+
+	/* Devid filter */
+	__le64 devid;
+
+	/* Devid subset filter [pstart..pend) */
+	__le64 pstart;
+	__le64 pend;
+
+	/* Btrfs virtual address space subset filter [vstart..vend) */
+	__le64 vstart;
+	__le64 vend;
+
+	/*
+	 * Profile to convert to.
+	 *
+	 * SINGLE is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE.
+	 */
+	__le64 target;
+
+	/* BTRFS_BALANCE_ARGS_* */
+	__le64 flags;
+
+	/*
+	 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'.
+	 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
+	 * and maximum.
+	 */
+	union {
+		__le64 limit;
+		struct {
+			__le32 limit_min;
+			__le32 limit_max;
+		};
+	};
+
+	/*
+	 * Process chunks that cross stripes_min..stripes_max devices,
+	 * BTRFS_BALANCE_ARGS_STRIPES_RANGE.
+	 */
+	__le32 stripes_min;
+	__le32 stripes_max;
+
+	__le64 unused[6];
+} __attribute__ ((__packed__));
+
+/*
+ * Stores balance parameters to disk so that balance can be properly
+ * resumed after crash or unmount.
+ */
+struct btrfs_balance_item {
+	/* BTRFS_BALANCE_* */
+	__le64 flags;
+
+	struct btrfs_disk_balance_args data;
+	struct btrfs_disk_balance_args meta;
+	struct btrfs_disk_balance_args sys;
+
+	__le64 unused[4];
+} __attribute__ ((__packed__));
+
+enum {
+	BTRFS_FILE_EXTENT_INLINE   = 0,
+	BTRFS_FILE_EXTENT_REG      = 1,
+	BTRFS_FILE_EXTENT_PREALLOC = 2,
+	BTRFS_NR_FILE_EXTENT_TYPES = 3,
+};
+
+enum btrfs_compression_type {
+	BTRFS_COMPRESS_NONE  = 0,
+	BTRFS_COMPRESS_ZLIB  = 1,
+	BTRFS_COMPRESS_LZO   = 2,
+	BTRFS_COMPRESS_ZSTD  = 3,
+	BTRFS_NR_COMPRESS_TYPES = 4,
+};
+
+struct btrfs_file_extent_item {
+	/* Transaction id that created this extent */
+	__le64 generation;
+	/*
+	 * Max number of bytes to hold this extent in ram.
+	 *
+	 * When we split a compressed extent we can't know how big each of the
+	 * resulting pieces will be.  So, this is an upper limit on the size of
+	 * the extent in ram instead of an exact limit.
+	 */
+	__le64 ram_bytes;
+
+	/*
+	 * 32 bits for the various ways we might encode the data,
+	 * including compression and encryption.  If any of these
+	 * are set to something a given disk format doesn't understand
+	 * it is treated like an incompat flag for reading and writing,
+	 * but not for stat.
+	 */
+	__u8 compression;
+	__u8 encryption;
+	__le16 other_encoding; /* Spare for later use */
+
+	/* Are we inline data or a real extent? */
+	__u8 type;
+
+	/*
+	 * Disk space consumed by the extent, checksum blocks are not included
+	 * in these numbers
+	 *
+	 * At this offset in the structure, the inline extent data start.
+	 */
+	__le64 disk_bytenr;
+	__le64 disk_num_bytes;
+
+	/*
+	 * The logical offset inside the file extent.
+	 *
+	 * This allows a file extent to point into the middle of an existing
+	 * extent on disk, sharing it between two snapshots (useful if some
+	 * bytes in the middle of the extent have changed).
+	 */
+	__le64 offset;
+
+	/*
+	 * The logical number of bytes this file extent is referencing (no
+	 * csums included).
+	 *
+	 * This always reflects the size uncompressed and without encoding.
+	 */
+	__le64 num_bytes;
+
+} __attribute__ ((__packed__));
+
+struct btrfs_csum_item {
+	__u8 csum;
+} __attribute__ ((__packed__));
+
+enum btrfs_dev_stat_values {
+	/* Disk I/O failure stats */
+	BTRFS_DEV_STAT_WRITE_ERRS, /* EIO or EREMOTEIO from lower layers */
+	BTRFS_DEV_STAT_READ_ERRS, /* EIO or EREMOTEIO from lower layers */
+	BTRFS_DEV_STAT_FLUSH_ERRS, /* EIO or EREMOTEIO from lower layers */
+
+	/* Stats for indirect indications for I/O failures */
+	BTRFS_DEV_STAT_CORRUPTION_ERRS, /* Checksum error, bytenr error or
+					 * contents is illegal: this is an
+					 * indication that the block was damaged
+					 * during read or write, or written to
+					 * wrong location or read from wrong
+					 * location */
+	BTRFS_DEV_STAT_GENERATION_ERRS, /* An indication that blocks have not
+					 * been written */
+
+	BTRFS_DEV_STAT_VALUES_MAX
+};
+
+struct btrfs_dev_stats_item {
+	/*
+	 * Grow this item struct at the end for future enhancements and keep
+	 * the existing values unchanged.
+	 */
+	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
+} __attribute__ ((__packed__));
+
+#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
+#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
+
+struct btrfs_dev_replace_item {
+	/*
+	 * Grow this item struct at the end for future enhancements and keep
+	 * the existing values unchanged.
+	 */
+	__le64 src_devid;
+	__le64 cursor_left;
+	__le64 cursor_right;
+	__le64 cont_reading_from_srcdev_mode;
+
+	__le64 replace_state;
+	__le64 time_started;
+	__le64 time_stopped;
+	__le64 num_write_errors;
+	__le64 num_uncorrectable_read_errors;
+} __attribute__ ((__packed__));
+
+/* Different types of block groups (and chunks) */
+#define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
+#define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
+#define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
+#define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
+#define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
+#define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
+#define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
+#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
+#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
+#define BTRFS_BLOCK_GROUP_RAID1C3       (1ULL << 9)
+#define BTRFS_BLOCK_GROUP_RAID1C4       (1ULL << 10)
+#define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
+					 BTRFS_SPACE_INFO_GLOBAL_RSV)
+
+enum btrfs_raid_types {
+	BTRFS_RAID_RAID10,
+	BTRFS_RAID_RAID1,
+	BTRFS_RAID_DUP,
+	BTRFS_RAID_RAID0,
+	BTRFS_RAID_SINGLE,
+	BTRFS_RAID_RAID5,
+	BTRFS_RAID_RAID6,
+	BTRFS_RAID_RAID1C3,
+	BTRFS_RAID_RAID1C4,
+	BTRFS_NR_RAID_TYPES
+};
+
+#define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
+					 BTRFS_BLOCK_GROUP_SYSTEM |  \
+					 BTRFS_BLOCK_GROUP_METADATA)
+
+#define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
+					 BTRFS_BLOCK_GROUP_RAID1 |   \
+					 BTRFS_BLOCK_GROUP_RAID1C3 | \
+					 BTRFS_BLOCK_GROUP_RAID1C4 | \
+					 BTRFS_BLOCK_GROUP_RAID5 |   \
+					 BTRFS_BLOCK_GROUP_RAID6 |   \
+					 BTRFS_BLOCK_GROUP_DUP |     \
+					 BTRFS_BLOCK_GROUP_RAID10)
+#define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
+					 BTRFS_BLOCK_GROUP_RAID6)
+
+#define BTRFS_BLOCK_GROUP_RAID1_MASK	(BTRFS_BLOCK_GROUP_RAID1 |   \
+					 BTRFS_BLOCK_GROUP_RAID1C3 | \
+					 BTRFS_BLOCK_GROUP_RAID1C4)
+
+/*
+ * We need a bit for restriper to be able to tell when chunks of type
+ * SINGLE are available.  This "extended" profile format is used in
+ * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
+ * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
+ * to avoid remappings between two formats in future.
+ */
+#define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
+
+/*
+ * A fake block group type that is used to communicate global block reserve
+ * size to userspace via the SPACE_INFO ioctl.
+ */
+#define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
+
+#define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
+					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
+
+static inline __u64 chunk_to_extended(__u64 flags)
+{
+	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
+		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
+
+	return flags;
+}
+static inline __u64 extended_to_chunk(__u64 flags)
+{
+	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
+}
+
+struct btrfs_block_group_item {
+	__le64 used;
+	__le64 chunk_objectid;
+	__le64 flags;
+} __attribute__ ((__packed__));
+
+struct btrfs_free_space_info {
+	__le32 extent_count;
+	__le32 flags;
+} __attribute__ ((__packed__));
+
+#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
+
+#define BTRFS_QGROUP_LEVEL_SHIFT		48
+static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
+{
+	return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
+}
+
+/* Is subvolume quota turned on? */
+#define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
+
+/* Is qgroup rescan running? */
+#define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
+
+/*
+ * Some qgroup entries are known to be out of date, either because the
+ * configuration has changed in a way that makes a rescan necessary, or
+ * because the fs has been mounted with a non-qgroup-aware version.
+ */
+#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
+
+#define BTRFS_QGROUP_STATUS_VERSION        1
+
+struct btrfs_qgroup_status_item {
+	__le64 version;
+	/*
+	 * The generation is updated during every commit. As older
+	 * versions of btrfs are not aware of qgroups, it will be
+	 * possible to detect inconsistencies by checking the
+	 * generation on mount time.
+	 */
+	__le64 generation;
+
+	/* Flag definitions see above */
+	__le64 flags;
+
+	/*
+	 * Only used during scanning to record the progress of the scan.
+	 * It contains a logical address.
+	 */
+	__le64 rescan;
+} __attribute__ ((__packed__));
+
+struct btrfs_qgroup_info_item {
+	__le64 generation;
+	__le64 rfer;
+	__le64 rfer_cmpr;
+	__le64 excl;
+	__le64 excl_cmpr;
+} __attribute__ ((__packed__));
+
+/*
+ * Flags definition for qgroup limits
+ *
+ * Used by:
+ * struct btrfs_qgroup_limit.flags
+ * struct btrfs_qgroup_limit_item.flags
+ */
+#define BTRFS_QGROUP_LIMIT_MAX_RFER	(1ULL << 0)
+#define BTRFS_QGROUP_LIMIT_MAX_EXCL	(1ULL << 1)
+#define BTRFS_QGROUP_LIMIT_RSV_RFER	(1ULL << 2)
+#define BTRFS_QGROUP_LIMIT_RSV_EXCL	(1ULL << 3)
+#define BTRFS_QGROUP_LIMIT_RFER_CMPR	(1ULL << 4)
+#define BTRFS_QGROUP_LIMIT_EXCL_CMPR	(1ULL << 5)
+
+struct btrfs_qgroup_limit_item {
+	/* Only updated when any of the other values change. */
+	__le64 flags;
+	__le64 max_rfer;
+	__le64 max_excl;
+	__le64 rsv_rfer;
+	__le64 rsv_excl;
+} __attribute__ ((__packed__));
+
+/*
+ * Just in case we somehow lose the roots and are not able to mount,
+ * we store an array of the roots from previous transactions in the super.
+ */
+#define BTRFS_NUM_BACKUP_ROOTS 4
+struct btrfs_root_backup {
+	__le64 tree_root;
+	__le64 tree_root_gen;
+
+	__le64 chunk_root;
+	__le64 chunk_root_gen;
+
+	__le64 extent_root;
+	__le64 extent_root_gen;
+
+	__le64 fs_root;
+	__le64 fs_root_gen;
+
+	__le64 dev_root;
+	__le64 dev_root_gen;
+
+	__le64 csum_root;
+	__le64 csum_root_gen;
+
+	__le64 total_bytes;
+	__le64 bytes_used;
+	__le64 num_devices;
+	/* future */
+	__le64 unused_64[4];
+
+	u8 tree_root_level;
+	u8 chunk_root_level;
+	u8 extent_root_level;
+	u8 fs_root_level;
+	u8 dev_root_level;
+	u8 csum_root_level;
+	/* future and to align */
+	u8 unused_8[10];
+} __attribute__ ((__packed__));
+
+/*
+ * This is a very generous portion of the super block, giving us room to
+ * translate 14 chunks with 3 stripes each.
+ */
+#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
+
+#define BTRFS_LABEL_SIZE 256
+
+/* The super block basically lists the main trees of the FS. */
+struct btrfs_super_block {
+	/* The first 4 fields must match struct btrfs_header */
+	u8 csum[BTRFS_CSUM_SIZE];
+	/* FS specific UUID, visible to user */
+	u8 fsid[BTRFS_FSID_SIZE];
+	__le64 bytenr; /* this block number */
+	__le64 flags;
+
+	/* Allowed to be different from the btrfs_header from here own down. */
+	__le64 magic;
+	__le64 generation;
+	__le64 root;
+	__le64 chunk_root;
+	__le64 log_root;
+
+	/* This will help find the new super based on the log root. */
+	__le64 log_root_transid;
+	__le64 total_bytes;
+	__le64 bytes_used;
+	__le64 root_dir_objectid;
+	__le64 num_devices;
+	__le32 sectorsize;
+	__le32 nodesize;
+	__le32 __unused_leafsize;
+	__le32 stripesize;
+	__le32 sys_chunk_array_size;
+	__le64 chunk_root_generation;
+	__le64 compat_flags;
+	__le64 compat_ro_flags;
+	__le64 incompat_flags;
+	__le16 csum_type;
+	u8 root_level;
+	u8 chunk_root_level;
+	u8 log_root_level;
+	struct btrfs_dev_item dev_item;
+
+	char label[BTRFS_LABEL_SIZE];
+
+	__le64 cache_generation;
+	__le64 uuid_tree_generation;
+
+	/* The UUID written into btree blocks */
+	u8 metadata_uuid[BTRFS_FSID_SIZE];
+
+	/* Future expansion */
+	__le64 reserved[28];
+	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
+	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
+} __attribute__ ((__packed__));
+
+/*
+ * Feature flags
+ *
+ * Used by:
+ * struct btrfs_super_block::(compat|compat_ro|incompat)_flags
+ * struct btrfs_ioctl_feature_flags
+ */
+#define BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE		(1ULL << 0)
+
+/*
+ * Older kernels (< 4.9) on big-endian systems produced broken free space tree
+ * bitmaps, and btrfs-progs also used to corrupt the free space tree (versions
+ * < 4.7.3).  If this bit is clear, then the free space tree cannot be trusted.
+ * btrfs-progs can also intentionally clear this bit to ask the kernel to
+ * rebuild the free space tree, however this might not work on older kernels
+ * that do not know about this bit. If not sure, clear the cache manually on
+ * first mount when booting older kernel versions.
+ */
+#define BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID	(1ULL << 1)
+
+#define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF	(1ULL << 0)
+#define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL	(1ULL << 1)
+#define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS	(1ULL << 2)
+#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO	(1ULL << 3)
+#define BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD	(1ULL << 4)
+
+/*
+ * Older kernels tried to do bigger metadata blocks, but the
+ * code was pretty buggy.  Lets not let them try anymore.
+ */
+#define BTRFS_FEATURE_INCOMPAT_BIG_METADATA	(1ULL << 5)
+
+#define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF	(1ULL << 6)
+#define BTRFS_FEATURE_INCOMPAT_RAID56		(1ULL << 7)
+#define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA	(1ULL << 8)
+#define BTRFS_FEATURE_INCOMPAT_NO_HOLES		(1ULL << 9)
+#define BTRFS_FEATURE_INCOMPAT_METADATA_UUID	(1ULL << 10)
+#define BTRFS_FEATURE_INCOMPAT_RAID1C34		(1ULL << 11)
+
+/*
+ * Compat flags that we support.
+ *
+ * If any incompat flags are set other than the ones specified below then we
+ * will fail to mount.
+ */
+#define BTRFS_FEATURE_COMPAT_SUPP		0ULL
+#define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
+#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
+
+#define BTRFS_FEATURE_COMPAT_RO_SUPP			\
+	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
+	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID)
+
+#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
+#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
+
+#define BTRFS_FEATURE_INCOMPAT_SUPP			\
+	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
+	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
+	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
+	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
+	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
+	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
+	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
+	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
+	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
+	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
+	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
+	 BTRFS_FEATURE_INCOMPAT_RAID1C34)
+
+#define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
+	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
+#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
+
+#define BTRFS_BACKREF_REV_MAX		256
+#define BTRFS_BACKREF_REV_SHIFT		56
+#define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
+					 BTRFS_BACKREF_REV_SHIFT)
+
+#define BTRFS_OLD_BACKREF_REV		0
+#define BTRFS_MIXED_BACKREF_REV		1
+
+#define BTRFS_MAX_LEVEL 8
+
+/* Every tree block (leaf or node) starts with this header. */
+struct btrfs_header {
+	/* These first four must match the super block */
+	u8 csum[BTRFS_CSUM_SIZE];
+	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
+	__le64 bytenr; /* Which block this node is supposed to live in */
+	__le64 flags;
+
+	/* Allowed to be different from the super from here on down. */
+	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
+	__le64 generation;
+	__le64 owner;
+	__le32 nritems;
+	u8 level;
+} __attribute__ ((__packed__));
+
+/*
+ * A leaf is full of items. Offset and size tell us where to find
+ * the item in the leaf (relative to the start of the data area).
+ */
+struct btrfs_item {
+	struct btrfs_disk_key key;
+	__le32 offset;
+	__le32 size;
+} __attribute__ ((__packed__));
+
+/*
+ * leaves have an item area and a data area:
+ * [item0, item1....itemN] [free space] [dataN...data1, data0]
+ *
+ * The data is separate from the items to get the keys closer together
+ * during searches.
+ */
+struct btrfs_leaf {
+	struct btrfs_header header;
+	struct btrfs_item items[];
+} __attribute__ ((__packed__));
+
+/*
+ * All non-leaf blocks are nodes, they hold only keys and pointers to children
+ * blocks.
+ */
+struct btrfs_key_ptr {
+	struct btrfs_disk_key key;
+	__le64 blockptr;
+	__le64 generation;
+} __attribute__ ((__packed__));
+
+struct btrfs_node {
+	struct btrfs_header header;
+	struct btrfs_key_ptr ptrs[];
+} __attribute__ ((__packed__));
+
+#endif /* __BTRFS_TREE_H__ */
diff --git a/fs/btrfs/root.c b/fs/btrfs/root.c
index 127b67fd1c89..61155e8918b8 100644
--- a/fs/btrfs/root.c
+++ b/fs/btrfs/root.c
@@ -75,7 +75,7 @@ u64 btrfs_lookup_root_ref(u64 subvolid, struct btrfs_root_ref *refp, char *name)
 		*refp = *ref;
 
 	if (name) {
-		if (ref->name_len > BTRFS_VOL_NAME_MAX) {
+		if (ref->name_len > BTRFS_NAME_LEN) {
 			printf("%s: volume name too long: %u\n", __func__,
 			       ref->name_len);
 			goto out;
diff --git a/fs/btrfs/subvolume.c b/fs/btrfs/subvolume.c
index 06e54f331098..dbe92d13cb81 100644
--- a/fs/btrfs/subvolume.c
+++ b/fs/btrfs/subvolume.c
@@ -14,7 +14,7 @@ static int get_subvol_name(u64 subvolid, char *name, int max_len)
 	struct btrfs_inode_ref iref;
 	struct btrfs_root root;
 	u64 dir;
-	char tmp[max(BTRFS_VOL_NAME_MAX, BTRFS_NAME_MAX)];
+	char tmp[BTRFS_NAME_LEN];
 	char *ptr;
 
 	ptr = name + max_len - 1;
-- 
2.26.0


WARNING: multiple messages have this Message-ID (diff)
From: Qu Wenruo <wqu@suse.com>
To: u-boot@lists.denx.de
Subject: [PATCH U-BOOT 01/26] fs: btrfs: Sync btrfs_btree.h from kernel
Date: Wed, 22 Apr 2020 14:49:44 +0800	[thread overview]
Message-ID: <20200422065009.69392-2-wqu@suse.com> (raw)
In-Reply-To: <20200422065009.69392-1-wqu@suse.com>

This version includes all needed on-disk format from kernel.

Only need to modify the include headers for u-boot, everything else is
untouched.

Also, since u-boot btrfs is using a different endian convert timing (at
tree block read time), it needs some forced type conversion before
proper cross port.

Signed-off-by: Qu Wenruo <wqu@suse.com>
---
 fs/btrfs/btrfs.c                    |    3 +-
 fs/btrfs/btrfs_tree.h               |  766 ---------------
 fs/btrfs/ctree.h                    |  214 +----
 fs/btrfs/inode.c                    |    5 +-
 fs/btrfs/kernel-shared/btrfs_tree.h | 1333 +++++++++++++++++++++++++++
 fs/btrfs/root.c                     |    2 +-
 fs/btrfs/subvolume.c                |    2 +-
 7 files changed, 1343 insertions(+), 982 deletions(-)
 delete mode 100644 fs/btrfs/btrfs_tree.h
 create mode 100644 fs/btrfs/kernel-shared/btrfs_tree.h

diff --git a/fs/btrfs/btrfs.c b/fs/btrfs/btrfs.c
index cb7e18274221..5d3ddd5931f0 100644
--- a/fs/btrfs/btrfs.c
+++ b/fs/btrfs/btrfs.c
@@ -31,7 +31,8 @@ static int readdir_callback(const struct btrfs_root *root,
 	char filetime[32], *target = NULL;
 	time_t mtime;
 
-	if (btrfs_lookup_inode(root, &item->location, &inode, NULL)) {
+	if (btrfs_lookup_inode(root, (struct btrfs_key *)&item->location,
+			       &inode, NULL)) {
 		printf("%s: Cannot find inode item for directory entry %.*s!\n",
 		       __func__, item->name_len, name);
 		return 0;
diff --git a/fs/btrfs/btrfs_tree.h b/fs/btrfs/btrfs_tree.h
deleted file mode 100644
index aa0f3d6c86dd..000000000000
--- a/fs/btrfs/btrfs_tree.h
+++ /dev/null
@@ -1,766 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0+ */
-/*
- * From linux/include/uapi/linux/btrfs_tree.h
- */
-
-#ifndef __BTRFS_BTRFS_TREE_H__
-#define __BTRFS_BTRFS_TREE_H__
-
-#include <common.h>
-
-#define BTRFS_VOL_NAME_MAX 255
-#define BTRFS_NAME_MAX 255
-#define BTRFS_LABEL_SIZE 256
-#define BTRFS_FSID_SIZE 16
-#define BTRFS_UUID_SIZE 16
-
-/*
- * This header contains the structure definitions and constants used
- * by file system objects that can be retrieved using
- * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
- * is needed to describe a leaf node's key or item contents.
- */
-
-/* holds pointers to all of the tree roots */
-#define BTRFS_ROOT_TREE_OBJECTID 1ULL
-
-/* stores information about which extents are in use, and reference counts */
-#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
-
-/*
- * chunk tree stores translations from logical -> physical block numbering
- * the super block points to the chunk tree
- */
-#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
-
-/*
- * stores information about which areas of a given device are in use.
- * one per device.  The tree of tree roots points to the device tree
- */
-#define BTRFS_DEV_TREE_OBJECTID 4ULL
-
-/* one per subvolume, storing files and directories */
-#define BTRFS_FS_TREE_OBJECTID 5ULL
-
-/* directory objectid inside the root tree */
-#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
-
-/* holds checksums of all the data extents */
-#define BTRFS_CSUM_TREE_OBJECTID 7ULL
-
-/* holds quota configuration and tracking */
-#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
-
-/* for storing items that use the BTRFS_UUID_KEY* types */
-#define BTRFS_UUID_TREE_OBJECTID 9ULL
-
-/* tracks free space in block groups. */
-#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
-
-/* device stats in the device tree */
-#define BTRFS_DEV_STATS_OBJECTID 0ULL
-
-/* for storing balance parameters in the root tree */
-#define BTRFS_BALANCE_OBJECTID -4ULL
-
-/* orhpan objectid for tracking unlinked/truncated files */
-#define BTRFS_ORPHAN_OBJECTID -5ULL
-
-/* does write ahead logging to speed up fsyncs */
-#define BTRFS_TREE_LOG_OBJECTID -6ULL
-#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
-
-/* for space balancing */
-#define BTRFS_TREE_RELOC_OBJECTID -8ULL
-#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
-
-/*
- * extent checksums all have this objectid
- * this allows them to share the logging tree
- * for fsyncs
- */
-#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
-
-/* For storing free space cache */
-#define BTRFS_FREE_SPACE_OBJECTID -11ULL
-
-/*
- * The inode number assigned to the special inode for storing
- * free ino cache
- */
-#define BTRFS_FREE_INO_OBJECTID -12ULL
-
-/* dummy objectid represents multiple objectids */
-#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
-
-/*
- * All files have objectids in this range.
- */
-#define BTRFS_FIRST_FREE_OBJECTID 256ULL
-#define BTRFS_LAST_FREE_OBJECTID -256ULL
-#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
-
-
-/*
- * the device items go into the chunk tree.  The key is in the form
- * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
- */
-#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
-
-#define BTRFS_BTREE_INODE_OBJECTID 1
-
-#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
-
-#define BTRFS_DEV_REPLACE_DEVID 0ULL
-
-/*
- * inode items have the data typically returned from stat and store other
- * info about object characteristics.  There is one for every file and dir in
- * the FS
- */
-#define BTRFS_INODE_ITEM_KEY		1
-#define BTRFS_INODE_REF_KEY		12
-#define BTRFS_INODE_EXTREF_KEY		13
-#define BTRFS_XATTR_ITEM_KEY		24
-#define BTRFS_ORPHAN_ITEM_KEY		48
-/* reserve 2-15 close to the inode for later flexibility */
-
-/*
- * dir items are the name -> inode pointers in a directory.  There is one
- * for every name in a directory.
- */
-#define BTRFS_DIR_LOG_ITEM_KEY  60
-#define BTRFS_DIR_LOG_INDEX_KEY 72
-#define BTRFS_DIR_ITEM_KEY	84
-#define BTRFS_DIR_INDEX_KEY	96
-/*
- * extent data is for file data
- */
-#define BTRFS_EXTENT_DATA_KEY	108
-
-/*
- * extent csums are stored in a separate tree and hold csums for
- * an entire extent on disk.
- */
-#define BTRFS_EXTENT_CSUM_KEY	128
-
-/*
- * root items point to tree roots.  They are typically in the root
- * tree used by the super block to find all the other trees
- */
-#define BTRFS_ROOT_ITEM_KEY	132
-
-/*
- * root backrefs tie subvols and snapshots to the directory entries that
- * reference them
- */
-#define BTRFS_ROOT_BACKREF_KEY	144
-
-/*
- * root refs make a fast index for listing all of the snapshots and
- * subvolumes referenced by a given root.  They point directly to the
- * directory item in the root that references the subvol
- */
-#define BTRFS_ROOT_REF_KEY	156
-
-/*
- * extent items are in the extent map tree.  These record which blocks
- * are used, and how many references there are to each block
- */
-#define BTRFS_EXTENT_ITEM_KEY	168
-
-/*
- * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
- * the length, so we save the level in key->offset instead of the length.
- */
-#define BTRFS_METADATA_ITEM_KEY	169
-
-#define BTRFS_TREE_BLOCK_REF_KEY	176
-
-#define BTRFS_EXTENT_DATA_REF_KEY	178
-
-#define BTRFS_EXTENT_REF_V0_KEY		180
-
-#define BTRFS_SHARED_BLOCK_REF_KEY	182
-
-#define BTRFS_SHARED_DATA_REF_KEY	184
-
-/*
- * block groups give us hints into the extent allocation trees.  Which
- * blocks are free etc etc
- */
-#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
-
-/*
- * Every block group is represented in the free space tree by a free space info
- * item, which stores some accounting information. It is keyed on
- * (block_group_start, FREE_SPACE_INFO, block_group_length).
- */
-#define BTRFS_FREE_SPACE_INFO_KEY 198
-
-/*
- * A free space extent tracks an extent of space that is free in a block group.
- * It is keyed on (start, FREE_SPACE_EXTENT, length).
- */
-#define BTRFS_FREE_SPACE_EXTENT_KEY 199
-
-/*
- * When a block group becomes very fragmented, we convert it to use bitmaps
- * instead of extents. A free space bitmap is keyed on
- * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
- * (length / sectorsize) bits.
- */
-#define BTRFS_FREE_SPACE_BITMAP_KEY 200
-
-#define BTRFS_DEV_EXTENT_KEY	204
-#define BTRFS_DEV_ITEM_KEY	216
-#define BTRFS_CHUNK_ITEM_KEY	228
-
-/*
- * Records the overall state of the qgroups.
- * There's only one instance of this key present,
- * (0, BTRFS_QGROUP_STATUS_KEY, 0)
- */
-#define BTRFS_QGROUP_STATUS_KEY         240
-/*
- * Records the currently used space of the qgroup.
- * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
- */
-#define BTRFS_QGROUP_INFO_KEY           242
-/*
- * Contains the user configured limits for the qgroup.
- * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
- */
-#define BTRFS_QGROUP_LIMIT_KEY          244
-/*
- * Records the child-parent relationship of qgroups. For
- * each relation, 2 keys are present:
- * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
- * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
- */
-#define BTRFS_QGROUP_RELATION_KEY       246
-
-/*
- * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
- */
-#define BTRFS_BALANCE_ITEM_KEY	248
-
-/*
- * The key type for tree items that are stored persistently, but do not need to
- * exist for extended period of time. The items can exist in any tree.
- *
- * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
- *
- * Existing items:
- *
- * - balance status item
- *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
- */
-#define BTRFS_TEMPORARY_ITEM_KEY	248
-
-/*
- * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
- */
-#define BTRFS_DEV_STATS_KEY		249
-
-/*
- * The key type for tree items that are stored persistently and usually exist
- * for a long period, eg. filesystem lifetime. The item kinds can be status
- * information, stats or preference values. The item can exist in any tree.
- *
- * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
- *
- * Existing items:
- *
- * - device statistics, store IO stats in the device tree, one key for all
- *   stats
- *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
- */
-#define BTRFS_PERSISTENT_ITEM_KEY	249
-
-/*
- * Persistantly stores the device replace state in the device tree.
- * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
- */
-#define BTRFS_DEV_REPLACE_KEY	250
-
-/*
- * Stores items that allow to quickly map UUIDs to something else.
- * These items are part of the filesystem UUID tree.
- * The key is built like this:
- * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
- */
-#if BTRFS_UUID_SIZE != 16
-#error "UUID items require BTRFS_UUID_SIZE == 16!"
-#endif
-#define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
-#define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
-						 * received subvols */
-
-/*
- * string items are for debugging.  They just store a short string of
- * data in the FS
- */
-#define BTRFS_STRING_ITEM_KEY	253
-
-
-
-/* 32 bytes in various csum fields */
-#define BTRFS_CSUM_SIZE 32
-
-/* csum types */
-#define BTRFS_CSUM_TYPE_CRC32	0
-
-/*
- * flags definitions for directory entry item type
- *
- * Used by:
- * struct btrfs_dir_item.type
- */
-#define BTRFS_FT_UNKNOWN	0
-#define BTRFS_FT_REG_FILE	1
-#define BTRFS_FT_DIR		2
-#define BTRFS_FT_CHRDEV		3
-#define BTRFS_FT_BLKDEV		4
-#define BTRFS_FT_FIFO		5
-#define BTRFS_FT_SOCK		6
-#define BTRFS_FT_SYMLINK	7
-#define BTRFS_FT_XATTR		8
-#define BTRFS_FT_MAX		9
-
-/*
- * The key defines the order in the tree, and so it also defines (optimal)
- * block layout.
- *
- * objectid corresponds to the inode number.
- *
- * type tells us things about the object, and is a kind of stream selector.
- * so for a given inode, keys with type of 1 might refer to the inode data,
- * type of 2 may point to file data in the btree and type == 3 may point to
- * extents.
- *
- * offset is the starting byte offset for this key in the stream.
- */
-
-struct btrfs_key {
-	__u64 objectid;
-	__u8 type;
-	__u64 offset;
-} __attribute__ ((__packed__));
-
-struct btrfs_dev_item {
-	/* the internal btrfs device id */
-	__u64 devid;
-
-	/* size of the device */
-	__u64 total_bytes;
-
-	/* bytes used */
-	__u64 bytes_used;
-
-	/* optimal io alignment for this device */
-	__u32 io_align;
-
-	/* optimal io width for this device */
-	__u32 io_width;
-
-	/* minimal io size for this device */
-	__u32 sector_size;
-
-	/* type and info about this device */
-	__u64 type;
-
-	/* expected generation for this device */
-	__u64 generation;
-
-	/*
-	 * starting byte of this partition on the device,
-	 * to allow for stripe alignment in the future
-	 */
-	__u64 start_offset;
-
-	/* grouping information for allocation decisions */
-	__u32 dev_group;
-
-	/* seek speed 0-100 where 100 is fastest */
-	__u8 seek_speed;
-
-	/* bandwidth 0-100 where 100 is fastest */
-	__u8 bandwidth;
-
-	/* btrfs generated uuid for this device */
-	__u8 uuid[BTRFS_UUID_SIZE];
-
-	/* uuid of FS who owns this device */
-	__u8 fsid[BTRFS_UUID_SIZE];
-} __attribute__ ((__packed__));
-
-struct btrfs_stripe {
-	__u64 devid;
-	__u64 offset;
-	__u8 dev_uuid[BTRFS_UUID_SIZE];
-} __attribute__ ((__packed__));
-
-struct btrfs_chunk {
-	/* size of this chunk in bytes */
-	__u64 length;
-
-	/* objectid of the root referencing this chunk */
-	__u64 owner;
-
-	__u64 stripe_len;
-	__u64 type;
-
-	/* optimal io alignment for this chunk */
-	__u32 io_align;
-
-	/* optimal io width for this chunk */
-	__u32 io_width;
-
-	/* minimal io size for this chunk */
-	__u32 sector_size;
-
-	/* 2^16 stripes is quite a lot, a second limit is the size of a single
-	 * item in the btree
-	 */
-	__u16 num_stripes;
-
-	/* sub stripes only matter for raid10 */
-	__u16 sub_stripes;
-	struct btrfs_stripe stripe;
-	/* additional stripes go here */
-} __attribute__ ((__packed__));
-
-#define BTRFS_FREE_SPACE_EXTENT	1
-#define BTRFS_FREE_SPACE_BITMAP	2
-
-struct btrfs_free_space_entry {
-	__u64 offset;
-	__u64 bytes;
-	__u8 type;
-} __attribute__ ((__packed__));
-
-struct btrfs_free_space_header {
-	struct btrfs_key location;
-	__u64 generation;
-	__u64 num_entries;
-	__u64 num_bitmaps;
-} __attribute__ ((__packed__));
-
-#define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
-#define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
-
-/* Super block flags */
-/* Errors detected */
-#define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
-
-#define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
-#define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
-
-
-/*
- * items in the extent btree are used to record the objectid of the
- * owner of the block and the number of references
- */
-
-struct btrfs_extent_item {
-	__u64 refs;
-	__u64 generation;
-	__u64 flags;
-} __attribute__ ((__packed__));
-
-
-#define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
-#define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
-
-/* following flags only apply to tree blocks */
-
-/* use full backrefs for extent pointers in the block */
-#define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
-
-/*
- * this flag is only used internally by scrub and may be changed@any time
- * it is only declared here to avoid collisions
- */
-#define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
-
-struct btrfs_tree_block_info {
-	struct btrfs_key key;
-	__u8 level;
-} __attribute__ ((__packed__));
-
-struct btrfs_extent_data_ref {
-	__u64 root;
-	__u64 objectid;
-	__u64 offset;
-	__u32 count;
-} __attribute__ ((__packed__));
-
-struct btrfs_shared_data_ref {
-	__u32 count;
-} __attribute__ ((__packed__));
-
-struct btrfs_extent_inline_ref {
-	__u8 type;
-	__u64 offset;
-} __attribute__ ((__packed__));
-
-/* dev extents record free space on individual devices.  The owner
- * field points back to the chunk allocation mapping tree that allocated
- * the extent.  The chunk tree uuid field is a way to double check the owner
- */
-struct btrfs_dev_extent {
-	__u64 chunk_tree;
-	__u64 chunk_objectid;
-	__u64 chunk_offset;
-	__u64 length;
-	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
-} __attribute__ ((__packed__));
-
-struct btrfs_inode_ref {
-	__u64 index;
-	__u16 name_len;
-	/* name goes here */
-} __attribute__ ((__packed__));
-
-struct btrfs_inode_extref {
-	__u64 parent_objectid;
-	__u64 index;
-	__u16 name_len;
-	__u8   name[0];
-	/* name goes here */
-} __attribute__ ((__packed__));
-
-struct btrfs_timespec {
-	__u64 sec;
-	__u32 nsec;
-} __attribute__ ((__packed__));
-
-struct btrfs_inode_item {
-	/* nfs style generation number */
-	__u64 generation;
-	/* transid that last touched this inode */
-	__u64 transid;
-	__u64 size;
-	__u64 nbytes;
-	__u64 block_group;
-	__u32 nlink;
-	__u32 uid;
-	__u32 gid;
-	__u32 mode;
-	__u64 rdev;
-	__u64 flags;
-
-	/* modification sequence number for NFS */
-	__u64 sequence;
-
-	/*
-	 * a little future expansion, for more than this we can
-	 * just grow the inode item and version it
-	 */
-	__u64 reserved[4];
-	struct btrfs_timespec atime;
-	struct btrfs_timespec ctime;
-	struct btrfs_timespec mtime;
-	struct btrfs_timespec otime;
-} __attribute__ ((__packed__));
-
-struct btrfs_dir_log_item {
-	__u64 end;
-} __attribute__ ((__packed__));
-
-struct btrfs_dir_item {
-	struct btrfs_key location;
-	__u64 transid;
-	__u16 data_len;
-	__u16 name_len;
-	__u8 type;
-} __attribute__ ((__packed__));
-
-#define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
-
-/*
- * Internal in-memory flag that a subvolume has been marked for deletion but
- * still visible as a directory
- */
-#define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
-
-struct btrfs_root_item {
-	struct btrfs_inode_item inode;
-	__u64 generation;
-	__u64 root_dirid;
-	__u64 bytenr;
-	__u64 byte_limit;
-	__u64 bytes_used;
-	__u64 last_snapshot;
-	__u64 flags;
-	__u32 refs;
-	struct btrfs_key drop_progress;
-	__u8 drop_level;
-	__u8 level;
-
-	/*
-	 * The following fields appear after subvol_uuids+subvol_times
-	 * were introduced.
-	 */
-
-	/*
-	 * This generation number is used to test if the new fields are valid
-	 * and up to date while reading the root item. Every time the root item
-	 * is written out, the "generation" field is copied into this field. If
-	 * anyone ever mounted the fs with an older kernel, we will have
-	 * mismatching generation values here and thus must invalidate the
-	 * new fields. See btrfs_update_root and btrfs_find_last_root for
-	 * details.
-	 * the offset of generation_v2 is also used as the start for the memset
-	 * when invalidating the fields.
-	 */
-	__u64 generation_v2;
-	__u8 uuid[BTRFS_UUID_SIZE];
-	__u8 parent_uuid[BTRFS_UUID_SIZE];
-	__u8 received_uuid[BTRFS_UUID_SIZE];
-	__u64 ctransid; /* updated when an inode changes */
-	__u64 otransid; /* trans when created */
-	__u64 stransid; /* trans when sent. non-zero for received subvol */
-	__u64 rtransid; /* trans when received. non-zero for received subvol */
-	struct btrfs_timespec ctime;
-	struct btrfs_timespec otime;
-	struct btrfs_timespec stime;
-	struct btrfs_timespec rtime;
-	__u64 reserved[8]; /* for future */
-} __attribute__ ((__packed__));
-
-/*
- * this is used for both forward and backward root refs
- */
-struct btrfs_root_ref {
-	__u64 dirid;
-	__u64 sequence;
-	__u16 name_len;
-} __attribute__ ((__packed__));
-
-#define BTRFS_FILE_EXTENT_INLINE 0
-#define BTRFS_FILE_EXTENT_REG 1
-#define BTRFS_FILE_EXTENT_PREALLOC 2
-
-enum btrfs_compression_type {
-	BTRFS_COMPRESS_NONE  = 0,
-	BTRFS_COMPRESS_ZLIB  = 1,
-	BTRFS_COMPRESS_LZO   = 2,
-	BTRFS_COMPRESS_ZSTD  = 3,
-	BTRFS_COMPRESS_TYPES = 3,
-	BTRFS_COMPRESS_LAST  = 4,
-};
-
-struct btrfs_file_extent_item {
-	/*
-	 * transaction id that created this extent
-	 */
-	__u64 generation;
-	/*
-	 * max number of bytes to hold this extent in ram
-	 * when we split a compressed extent we can't know how big
-	 * each of the resulting pieces will be.  So, this is
-	 * an upper limit on the size of the extent in ram instead of
-	 * an exact limit.
-	 */
-	__u64 ram_bytes;
-
-	/*
-	 * 32 bits for the various ways we might encode the data,
-	 * including compression and encryption.  If any of these
-	 * are set to something a given disk format doesn't understand
-	 * it is treated like an incompat flag for reading and writing,
-	 * but not for stat.
-	 */
-	__u8 compression;
-	__u8 encryption;
-	__u16 other_encoding; /* spare for later use */
-
-	/* are we inline data or a real extent? */
-	__u8 type;
-
-	/*
-	 * disk space consumed by the extent, checksum blocks are included
-	 * in these numbers
-	 *
-	 * At this offset in the structure, the inline extent data start.
-	 */
-	__u64 disk_bytenr;
-	__u64 disk_num_bytes;
-	/*
-	 * the logical offset in file blocks (no csums)
-	 * this extent record is for.  This allows a file extent to point
-	 * into the middle of an existing extent on disk, sharing it
-	 * between two snapshots (useful if some bytes in the middle of the
-	 * extent have changed
-	 */
-	__u64 offset;
-	/*
-	 * the logical number of file blocks (no csums included).  This
-	 * always reflects the size uncompressed and without encoding.
-	 */
-	__u64 num_bytes;
-
-} __attribute__ ((__packed__));
-
-struct btrfs_csum_item {
-	__u8 csum;
-} __attribute__ ((__packed__));
-
-/* different types of block groups (and chunks) */
-#define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
-#define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
-#define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
-#define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
-#define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
-#define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
-#define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
-#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
-#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
-#define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
-					 BTRFS_SPACE_INFO_GLOBAL_RSV)
-
-enum btrfs_raid_types {
-	BTRFS_RAID_RAID10,
-	BTRFS_RAID_RAID1,
-	BTRFS_RAID_DUP,
-	BTRFS_RAID_RAID0,
-	BTRFS_RAID_SINGLE,
-	BTRFS_RAID_RAID5,
-	BTRFS_RAID_RAID6,
-	BTRFS_NR_RAID_TYPES
-};
-
-#define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
-					 BTRFS_BLOCK_GROUP_SYSTEM |  \
-					 BTRFS_BLOCK_GROUP_METADATA)
-
-#define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
-					 BTRFS_BLOCK_GROUP_RAID1 |   \
-					 BTRFS_BLOCK_GROUP_RAID5 |   \
-					 BTRFS_BLOCK_GROUP_RAID6 |   \
-					 BTRFS_BLOCK_GROUP_DUP |     \
-					 BTRFS_BLOCK_GROUP_RAID10)
-#define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
-					 BTRFS_BLOCK_GROUP_RAID6)
-
-/*
- * We need a bit for restriper to be able to tell when chunks of type
- * SINGLE are available.  This "extended" profile format is used in
- * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
- * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
- * to avoid remappings between two formats in future.
- */
-#define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
-
-/*
- * A fake block group type that is used to communicate global block reserve
- * size to userspace via the SPACE_INFO ioctl.
- */
-#define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
-
-#define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
-					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
-
-#endif /* __BTRFS_BTRFS_TREE_H__ */
diff --git a/fs/btrfs/ctree.h b/fs/btrfs/ctree.h
index 65c152a52fcf..156ce69ed022 100644
--- a/fs/btrfs/ctree.h
+++ b/fs/btrfs/ctree.h
@@ -11,28 +11,16 @@
 
 #include <common.h>
 #include <compiler.h>
-#include "btrfs_tree.h"
-
-#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
+#include "kernel-shared/btrfs_tree.h"
 
 #define BTRFS_MAX_MIRRORS 3
 
-#define BTRFS_MAX_LEVEL 8
-
-#define BTRFS_COMPAT_EXTENT_TREE_V0
-
 /*
  * the max metadata block size.  This limit is somewhat artificial,
  * but the memmove costs go through the roof for larger blocks.
  */
 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536
 
-/*
- * we can actually store much bigger names, but lets not confuse the rest
- * of linux
- */
-#define BTRFS_NAME_LEN 255
-
 /*
  * Theoretical limit is larger, but we keep this down to a sane
  * value. That should limit greatly the possibility of collisions on
@@ -40,8 +28,6 @@
  */
 #define BTRFS_LINK_MAX 65535U
 
-static const int btrfs_csum_sizes[] = { 4 };
-
 /* four bytes for CRC32 */
 #define BTRFS_EMPTY_DIR_SIZE 0
 
@@ -61,207 +47,12 @@ static const int btrfs_csum_sizes[] = { 4 };
 #define BTRFS_FS_STATE_DEV_REPLACING	3
 #define BTRFS_FS_STATE_DUMMY_FS_INFO	4
 
-#define BTRFS_BACKREF_REV_MAX		256
-#define BTRFS_BACKREF_REV_SHIFT		56
-#define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
-					 BTRFS_BACKREF_REV_SHIFT)
-
-#define BTRFS_OLD_BACKREF_REV		0
-#define BTRFS_MIXED_BACKREF_REV		1
-
-/*
- * every tree block (leaf or node) starts with this header.
- */
-struct btrfs_header {
-	/* these first four must match the super block */
-	__u8 csum[BTRFS_CSUM_SIZE];
-	__u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
-	__u64 bytenr; /* which block this node is supposed to live in */
-	__u64 flags;
-
-	/* allowed to be different from the super from here on down */
-	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
-	__u64 generation;
-	__u64 owner;
-	__u32 nritems;
-	__u8 level;
-} __attribute__ ((__packed__));
-
-/*
- * this is a very generous portion of the super block, giving us
- * room to translate 14 chunks with 3 stripes each.
- */
-#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
-
-/*
- * just in case we somehow lose the roots and are not able to mount,
- * we store an array of the roots from previous transactions
- * in the super.
- */
-#define BTRFS_NUM_BACKUP_ROOTS 4
-struct btrfs_root_backup {
-	__u64 tree_root;
-	__u64 tree_root_gen;
-
-	__u64 chunk_root;
-	__u64 chunk_root_gen;
-
-	__u64 extent_root;
-	__u64 extent_root_gen;
-
-	__u64 fs_root;
-	__u64 fs_root_gen;
-
-	__u64 dev_root;
-	__u64 dev_root_gen;
-
-	__u64 csum_root;
-	__u64 csum_root_gen;
-
-	__u64 total_bytes;
-	__u64 bytes_used;
-	__u64 num_devices;
-	/* future */
-	__u64 unused_64[4];
-
-	__u8 tree_root_level;
-	__u8 chunk_root_level;
-	__u8 extent_root_level;
-	__u8 fs_root_level;
-	__u8 dev_root_level;
-	__u8 csum_root_level;
-	/* future and to align */
-	__u8 unused_8[10];
-} __attribute__ ((__packed__));
-
-/*
- * the super block basically lists the main trees of the FS
- * it currently lacks any block count etc etc
- */
-struct btrfs_super_block {
-	__u8 csum[BTRFS_CSUM_SIZE];
-	/* the first 4 fields must match struct btrfs_header */
-	__u8 fsid[BTRFS_FSID_SIZE];    /* FS specific uuid */
-	__u64 bytenr; /* this block number */
-	__u64 flags;
-
-	/* allowed to be different from the btrfs_header from here own down */
-	__u64 magic;
-	__u64 generation;
-	__u64 root;
-	__u64 chunk_root;
-	__u64 log_root;
-
-	/* this will help find the new super based on the log root */
-	__u64 log_root_transid;
-	__u64 total_bytes;
-	__u64 bytes_used;
-	__u64 root_dir_objectid;
-	__u64 num_devices;
-	__u32 sectorsize;
-	__u32 nodesize;
-	__u32 __unused_leafsize;
-	__u32 stripesize;
-	__u32 sys_chunk_array_size;
-	__u64 chunk_root_generation;
-	__u64 compat_flags;
-	__u64 compat_ro_flags;
-	__u64 incompat_flags;
-	__u16 csum_type;
-	__u8 root_level;
-	__u8 chunk_root_level;
-	__u8 log_root_level;
-	struct btrfs_dev_item dev_item;
-
-	char label[BTRFS_LABEL_SIZE];
-
-	__u64 cache_generation;
-	__u64 uuid_tree_generation;
-
-	/* future expansion */
-	__u64 reserved[30];
-	__u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
-	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
-} __attribute__ ((__packed__));
-
-/*
- * Compat flags that we support.  If any incompat flags are set other than the
- * ones specified below then we will fail to mount
- */
-#define BTRFS_FEATURE_COMPAT_SUPP		0ULL
-#define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
-#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
-
-#define BTRFS_FEATURE_COMPAT_RO_SUPP			\
-	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
-	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID)
-
-#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
-#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
-
-#define BTRFS_FEATURE_INCOMPAT_SUPP			\
-	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
-	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
-	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
-	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
-	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
-	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
-	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
-	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
-	 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
-
-#define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
-	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
-#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
-
-/*
- * A leaf is full of items. offset and size tell us where to find
- * the item in the leaf (relative to the start of the data area)
- */
-struct btrfs_item {
-	struct btrfs_key key;
-	__u32 offset;
-	__u32 size;
-} __attribute__ ((__packed__));
-
-/*
- * leaves have an item area and a data area:
- * [item0, item1....itemN] [free space] [dataN...data1, data0]
- *
- * The data is separate from the items to get the keys closer together
- * during searches.
- */
-struct btrfs_leaf {
-	struct btrfs_header header;
-	struct btrfs_item items[];
-} __attribute__ ((__packed__));
-
-/*
- * all non-leaf blocks are nodes, they hold only keys and pointers to
- * other blocks
- */
-struct btrfs_key_ptr {
-	struct btrfs_key key;
-	__u64 blockptr;
-	__u64 generation;
-} __attribute__ ((__packed__));
-
-struct btrfs_node {
-	struct btrfs_header header;
-	struct btrfs_key_ptr ptrs[];
-} __attribute__ ((__packed__));
-
 union btrfs_tree_node {
 	struct btrfs_header header;
 	struct btrfs_leaf leaf;
 	struct btrfs_node node;
 };
 
-typedef __u8 u8;
-typedef __u16 u16;
-typedef __u32 u32;
-typedef __u64 u64;
-
 struct btrfs_path {
 	union btrfs_tree_node *nodes[BTRFS_MAX_LEVEL];
 	u32 slots[BTRFS_MAX_LEVEL];
@@ -283,7 +74,8 @@ int btrfs_prev_slot(struct btrfs_path *);
 int btrfs_next_slot(struct btrfs_path *);
 
 static inline struct btrfs_key *btrfs_path_leaf_key(struct btrfs_path *p) {
-	return &p->nodes[0]->leaf.items[p->slots[0]].key;
+	/* At tree read time we have converted the endian for btrfs_disk_key */
+	return (struct btrfs_key *)&p->nodes[0]->leaf.items[p->slots[0]].key;
 }
 
 static inline struct btrfs_key *
diff --git a/fs/btrfs/inode.c b/fs/btrfs/inode.c
index 991c2f68c3b7..d88ae67217b1 100644
--- a/fs/btrfs/inode.c
+++ b/fs/btrfs/inode.c
@@ -29,7 +29,7 @@ u64 btrfs_lookup_inode_ref(struct btrfs_root *root, u64 inr,
 		*refp = *ref;
 
 	if (name) {
-		if (ref->name_len > BTRFS_NAME_MAX) {
+		if (ref->name_len > BTRFS_NAME_LEN) {
 			printf("%s: inode name too long: %u\n", __func__,
 			        ref->name_len);
 			goto out;
@@ -255,7 +255,8 @@ u64 btrfs_lookup_path(struct btrfs_root *root, u64 inr, const char *path,
 
 		type = item.type;
 		have_inode = 1;
-		if (btrfs_lookup_inode(root, &item.location, &inode_item, root))
+		if (btrfs_lookup_inode(root, (struct btrfs_key *)&item.location,
+					&inode_item, root))
 			return -1ULL;
 
 		if (item.type == BTRFS_FT_SYMLINK && symlink_limit >= 0) {
diff --git a/fs/btrfs/kernel-shared/btrfs_tree.h b/fs/btrfs/kernel-shared/btrfs_tree.h
new file mode 100644
index 000000000000..7d245f900104
--- /dev/null
+++ b/fs/btrfs/kernel-shared/btrfs_tree.h
@@ -0,0 +1,1333 @@
+/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
+/*
+ * Copied from kernel/include/uapi/linux/btrfs_btree.h.
+ *
+ * Only modified the header.
+ */
+/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
+#ifndef __BTRFS_TREE_H__
+#define __BTRFS_TREE_H__
+
+#include <linux/types.h>
+
+#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
+
+/*
+ * The max metadata block size (node size).
+ *
+ * This limit is somewhat artificial. The memmove and tree block locking cost
+ * go up with larger node size.
+ */
+#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
+
+/*
+ * We can actually store much bigger names, but lets not confuse the rest
+ * of linux.
+ *
+ * btrfs_dir_item::name_len follows this limitation.
+ */
+#define BTRFS_NAME_LEN 255
+
+/*
+ * Objectids start from here.
+ *
+ * Check btrfs_disk_key for the meaning of objectids.
+ */
+
+/*
+ * Root tree holds pointers to all of the tree roots.
+ * Without special mention, the root tree contains the root bytenr of all other 
+ * trees, except the chunk tree and the log tree.
+ *
+ * The super block contains the root bytenr of this tree.
+ */
+#define BTRFS_ROOT_TREE_OBJECTID 1ULL
+
+/*
+ * Extent tree stores information about which extents are in use, and backrefs
+ * for each extent.
+ */
+#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
+
+/*
+ * Chunk tree stores btrfs logical address -> physical address mapping.
+ *
+ * The super block contains part of chunk tree for bootstrap, and contains
+ * the root bytenr of this tree.
+ */
+#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
+
+/*
+ * Device tree stores info about which areas of a given device are in use,
+ * and physical address -> btrfs logical address mapping.
+ */
+#define BTRFS_DEV_TREE_OBJECTID 4ULL
+
+/* The fs tree is the first subvolume tree, storing files and directories. */
+#define BTRFS_FS_TREE_OBJECTID 5ULL
+
+/* Shows the directory objectid inside the root tree. */
+#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
+
+/* Csum tree holds checksums of all the data extents. */
+#define BTRFS_CSUM_TREE_OBJECTID 7ULL
+
+/* Quota tree holds quota configuration and tracking. */
+#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
+
+/* UUID tree stores items that use the BTRFS_UUID_KEY* types. */
+#define BTRFS_UUID_TREE_OBJECTID 9ULL
+
+/* Free space cache tree (v2 space cache) tracks free space in block groups. */
+#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
+
+/* Indicates device stats in the device tree. */
+#define BTRFS_DEV_STATS_OBJECTID 0ULL
+
+/* For storing balance parameters in the root tree. */
+#define BTRFS_BALANCE_OBJECTID -4ULL
+
+/* Orhpan objectid for tracking unlinked/truncated files. */
+#define BTRFS_ORPHAN_OBJECTID -5ULL
+
+/* Does write ahead logging to speed up fsyncs. */
+#define BTRFS_TREE_LOG_OBJECTID -6ULL
+#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
+
+/* For space balancing. */
+#define BTRFS_TREE_RELOC_OBJECTID -8ULL
+#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
+
+/* Extent checksums, shared between the csum tree and log trees. */
+#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
+
+/* For storing free space cache (v1 space cache). */
+#define BTRFS_FREE_SPACE_OBJECTID -11ULL
+
+/* The inode number assigned to the special inode for storing free ino cache. */
+#define BTRFS_FREE_INO_OBJECTID -12ULL
+
+/* Dummy objectid represents multiple objectids. */
+#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
+
+/* All files have objectids in this range. */
+#define BTRFS_FIRST_FREE_OBJECTID 256ULL
+#define BTRFS_LAST_FREE_OBJECTID -256ULL
+#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
+
+
+/*
+ * The device items go into the chunk tree.
+ *
+ * The key is in the form
+ * (BTRFS_DEV_ITEMS_OBJECTID, BTRFS_DEV_ITEM_KEY,  <device_id>)
+ */
+#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
+
+#define BTRFS_BTREE_INODE_OBJECTID 1
+
+#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
+
+#define BTRFS_DEV_REPLACE_DEVID 0ULL
+
+/*
+ * Types start from here.
+ *
+ * Check btrfs_disk_key for details about types.
+ */
+
+/*
+ * Inode items have the data typically returned from stat and store other
+ * info about object characteristics.
+ *
+ * There is one for every file and dir in the FS.
+ */
+#define BTRFS_INODE_ITEM_KEY		1
+/* reserve 2-11 close to the inode for later flexibility */
+#define BTRFS_INODE_REF_KEY		12
+#define BTRFS_INODE_EXTREF_KEY		13
+#define BTRFS_XATTR_ITEM_KEY		24
+#define BTRFS_ORPHAN_ITEM_KEY		48
+
+/*
+ * Dir items are the name -> inode pointers in a directory.
+ *
+ * There is one for every name in a directory.
+ */
+#define BTRFS_DIR_LOG_ITEM_KEY  60
+#define BTRFS_DIR_LOG_INDEX_KEY 72
+#define BTRFS_DIR_ITEM_KEY	84
+#define BTRFS_DIR_INDEX_KEY	96
+
+/* Stores info (position, size ...) about a data extent of a file */
+#define BTRFS_EXTENT_DATA_KEY	108
+
+/*
+ * Extent csums are stored in a separate tree and hold csums for
+ * an entire extent on disk.
+ */
+#define BTRFS_EXTENT_CSUM_KEY	128
+
+/*
+ * Root items point to tree roots.
+ *
+ * They are typically in the root tree used by the super block to find all the
+ * other trees.
+ */
+#define BTRFS_ROOT_ITEM_KEY	132
+
+/*
+ * Root backrefs tie subvols and snapshots to the directory entries that
+ * reference them.
+ */
+#define BTRFS_ROOT_BACKREF_KEY	144
+
+/*
+ * Root refs make a fast index for listing all of the snapshots and
+ * subvolumes referenced by a given root.  They point directly to the
+ * directory item in the root that references the subvol.
+ */
+#define BTRFS_ROOT_REF_KEY	156
+
+/*
+ * Extent items are in the extent tree.
+ *
+ * These record which blocks are used, and how many references there are.
+ */
+#define BTRFS_EXTENT_ITEM_KEY	168
+
+/*
+ * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
+ * the length, so we save the level in key->offset instead of the length.
+ */
+#define BTRFS_METADATA_ITEM_KEY	169
+
+#define BTRFS_TREE_BLOCK_REF_KEY	176
+
+#define BTRFS_EXTENT_DATA_REF_KEY	178
+
+#define BTRFS_EXTENT_REF_V0_KEY		180
+
+#define BTRFS_SHARED_BLOCK_REF_KEY	182
+
+#define BTRFS_SHARED_DATA_REF_KEY	184
+
+/*
+ * Block groups give us hints into the extent allocation trees.
+ *
+ * Stores how many free space there is in a block group.
+ */
+#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
+
+/*
+ * Every block group is represented in the free space tree by a free space info
+ * item, which stores some accounting information. It is keyed on
+ * (block_group_start, FREE_SPACE_INFO, block_group_length).
+ */
+#define BTRFS_FREE_SPACE_INFO_KEY 198
+
+/*
+ * A free space extent tracks an extent of space that is free in a block group.
+ * It is keyed on (start, FREE_SPACE_EXTENT, length).
+ */
+#define BTRFS_FREE_SPACE_EXTENT_KEY 199
+
+/*
+ * When a block group becomes very fragmented, we convert it to use bitmaps
+ * instead of extents.
+ *
+ * A free space bitmap is keyed on (start, FREE_SPACE_BITMAP, length).
+ * The corresponding item is a bitmap with (length / sectorsize) bits.
+ */
+#define BTRFS_FREE_SPACE_BITMAP_KEY 200
+
+#define BTRFS_DEV_EXTENT_KEY	204
+#define BTRFS_DEV_ITEM_KEY	216
+#define BTRFS_CHUNK_ITEM_KEY	228
+
+/*
+ * Records the overall state of the qgroups.
+ *
+ * There's only one instance of this key present,
+ * (0, BTRFS_QGROUP_STATUS_KEY, 0)
+ */
+#define BTRFS_QGROUP_STATUS_KEY         240
+/*
+ * Records the currently used space of the qgroup.
+ *
+ * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
+ */
+#define BTRFS_QGROUP_INFO_KEY           242
+
+/*
+ * Contains the user configured limits for the qgroup.
+ *
+ * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
+ */
+#define BTRFS_QGROUP_LIMIT_KEY          244
+
+/*
+ * Records the child-parent relationship of qgroups. For
+ * each relation, 2 keys are present:
+ * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
+ * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
+ */
+#define BTRFS_QGROUP_RELATION_KEY       246
+
+/* Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. */
+#define BTRFS_BALANCE_ITEM_KEY	248
+
+/*
+ * The key type for tree items that are stored persistently, but do not need to
+ * exist for extended period of time. The items can exist in any tree.
+ *
+ * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
+ *
+ * Existing items:
+ *
+ * - balance status item
+ *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
+ */
+#define BTRFS_TEMPORARY_ITEM_KEY	248
+
+/* Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY */
+#define BTRFS_DEV_STATS_KEY		249
+
+/*
+ * The key type for tree items that are stored persistently and usually exist
+ * for a long period, eg. filesystem lifetime. The item kinds can be status
+ * information, stats or preference values. The item can exist in any tree.
+ *
+ * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
+ *
+ * Existing items:
+ *
+ * - device statistics, store IO stats in the device tree, one key for all
+ *   stats
+ *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
+ */
+#define BTRFS_PERSISTENT_ITEM_KEY	249
+
+/*
+ * Persistently stores the device replace state in the device tree.
+ *
+ * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
+ */
+#define BTRFS_DEV_REPLACE_KEY	250
+
+/*
+ * Stores items that allow to quickly map UUIDs to something else.
+ *
+ * These items are part of the filesystem UUID tree.
+ * The key is built like this:
+ * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
+ */
+#define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
+#define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
+						 * received subvols */
+
+/*
+ * String items are for debugging.
+ *
+ * They just store a short string of data in the FS.
+ */
+#define BTRFS_STRING_ITEM_KEY	253
+
+
+
+/* 32 bytes in various csum fields */
+#define BTRFS_CSUM_SIZE 32
+
+/* Csum types */
+enum btrfs_csum_type {
+	BTRFS_CSUM_TYPE_CRC32	= 0,
+	BTRFS_CSUM_TYPE_XXHASH	= 1,
+	BTRFS_CSUM_TYPE_SHA256	= 2,
+	BTRFS_CSUM_TYPE_BLAKE2	= 3,
+};
+
+/*
+ * Flags definitions for directory entry item type.
+ *
+ * Used by:
+ * struct btrfs_dir_item.type
+ *
+ * Values 0..7 must match common file type values in fs_types.h.
+ */
+#define BTRFS_FT_UNKNOWN	0
+#define BTRFS_FT_REG_FILE	1
+#define BTRFS_FT_DIR		2
+#define BTRFS_FT_CHRDEV		3
+#define BTRFS_FT_BLKDEV		4
+#define BTRFS_FT_FIFO		5
+#define BTRFS_FT_SOCK		6
+#define BTRFS_FT_SYMLINK	7
+#define BTRFS_FT_XATTR		8
+#define BTRFS_FT_MAX		9
+
+#define BTRFS_FSID_SIZE 16
+#define BTRFS_UUID_SIZE 16
+
+/*
+ * The key defines the order in the tree, and so it also defines (optimal)
+ * block layout.
+ *
+ * Objectid and offset are interpreted based on type.
+ * While normally for objectid, it either represents a root number, or an
+ * inode number.
+ *
+ * Type tells us things about the object, and is a kind of stream selector.
+ * Check the following URL for full references about btrfs_disk_key/btrfs_key:
+ * https://btrfs.wiki.kernel.org/index.php/Btree_Items
+ *
+ * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
+ * in cpu native order.  Otherwise they are identical and their sizes
+ * should be the same (ie both packed)
+ */
+struct btrfs_disk_key {
+	__le64 objectid;
+	__u8 type;
+	__le64 offset;
+} __attribute__ ((__packed__));
+
+struct btrfs_key {
+	__u64 objectid;
+	__u8 type;
+	__u64 offset;
+} __attribute__ ((__packed__));
+
+struct btrfs_dev_item {
+	/* The internal btrfs device id */
+	__le64 devid;
+
+	/* Size of the device */
+	__le64 total_bytes;
+
+	/* Bytes used */
+	__le64 bytes_used;
+
+	/* Optimal io alignment for this device */
+	__le32 io_align;
+
+	/* Optimal io width for this device */
+	__le32 io_width;
+
+	/* Minimal io size for this device */
+	__le32 sector_size;
+
+	/* Type and info about this device */
+	__le64 type;
+
+	/* Expected generation for this device */
+	__le64 generation;
+
+	/*
+	 * Starting byte of this partition on the device,
+	 * to allow for stripe alignment in the future.
+	 */
+	__le64 start_offset;
+
+	/* Grouping information for allocation decisions */
+	__le32 dev_group;
+
+	/* Optimal seek speed 0-100 where 100 is fastest */
+	__u8 seek_speed;
+
+	/* Optimal bandwidth 0-100 where 100 is fastest */
+	__u8 bandwidth;
+
+	/* Btrfs generated uuid for this device */
+	__u8 uuid[BTRFS_UUID_SIZE];
+
+	/* UUID of FS who owns this device */
+	__u8 fsid[BTRFS_UUID_SIZE];
+} __attribute__ ((__packed__));
+
+struct btrfs_stripe {
+	__le64 devid;
+	__le64 offset;
+	__u8 dev_uuid[BTRFS_UUID_SIZE];
+} __attribute__ ((__packed__));
+
+struct btrfs_chunk {
+	/* Size of this chunk in bytes */
+	__le64 length;
+
+	/* Objectid of the root referencing this chunk */
+	__le64 owner;
+
+	__le64 stripe_len;
+	__le64 type;
+
+	/* Optimal io alignment for this chunk */
+	__le32 io_align;
+
+	/* Optimal io width for this chunk */
+	__le32 io_width;
+
+	/* Minimal io size for this chunk */
+	__le32 sector_size;
+
+	/*
+	 * 2^16 stripes is quite a lot, a second limit is the size of a single
+	 * item in the btree.
+	 */
+	__le16 num_stripes;
+
+	/* Sub stripes only matter for raid10 */
+	__le16 sub_stripes;
+	struct btrfs_stripe stripe;
+	/* additional stripes go here */
+} __attribute__ ((__packed__));
+
+#define BTRFS_FREE_SPACE_EXTENT	1
+#define BTRFS_FREE_SPACE_BITMAP	2
+
+struct btrfs_free_space_entry {
+	__le64 offset;
+	__le64 bytes;
+	__u8 type;
+} __attribute__ ((__packed__));
+
+struct btrfs_free_space_header {
+	struct btrfs_disk_key location;
+	__le64 generation;
+	__le64 num_entries;
+	__le64 num_bitmaps;
+} __attribute__ ((__packed__));
+
+#define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
+#define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
+
+/* Super block flags */
+/* Errors detected */
+#define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
+
+#define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
+#define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
+#define BTRFS_SUPER_FLAG_METADUMP_V2	(1ULL << 34)
+#define BTRFS_SUPER_FLAG_CHANGING_FSID	(1ULL << 35)
+#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
+
+
+/*
+ * Items in the extent tree are used to record the objectid of the
+ * owner of the block and the number of references.
+ */
+struct btrfs_extent_item {
+	__le64 refs;
+	__le64 generation;
+	__le64 flags;
+} __attribute__ ((__packed__));
+
+struct btrfs_extent_item_v0 {
+	__le32 refs;
+} __attribute__ ((__packed__));
+
+
+#define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
+#define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
+
+/* Use full backrefs for extent pointers in the block */
+#define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
+
+/*
+ * This flag is only used internally by scrub and may be changed at any time
+ * it is only declared here to avoid collisions.
+ */
+#define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
+
+struct btrfs_tree_block_info {
+	struct btrfs_disk_key key;
+	__u8 level;
+} __attribute__ ((__packed__));
+
+struct btrfs_extent_data_ref {
+	__le64 root;
+	__le64 objectid;
+	__le64 offset;
+	__le32 count;
+} __attribute__ ((__packed__));
+
+struct btrfs_shared_data_ref {
+	__le32 count;
+} __attribute__ ((__packed__));
+
+struct btrfs_extent_inline_ref {
+	__u8 type;
+	__le64 offset;
+} __attribute__ ((__packed__));
+
+/* Old style backrefs item */
+struct btrfs_extent_ref_v0 {
+	__le64 root;
+	__le64 generation;
+	__le64 objectid;
+	__le32 count;
+} __attribute__ ((__packed__));
+
+
+/* Dev extents record used space on individual devices.
+ *
+ * The owner field points back to the chunk allocation mapping tree that
+ * allocated the extent.
+ * The chunk tree uuid field is a way to double check the owner.
+ */
+struct btrfs_dev_extent {
+	__le64 chunk_tree;
+	__le64 chunk_objectid;
+	__le64 chunk_offset;
+	__le64 length;
+	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
+} __attribute__ ((__packed__));
+
+struct btrfs_inode_ref {
+	__le64 index;
+	__le16 name_len;
+	/* Name goes here */
+} __attribute__ ((__packed__));
+
+struct btrfs_inode_extref {
+	__le64 parent_objectid;
+	__le64 index;
+	__le16 name_len;
+	__u8   name[0];
+	/* Name goes here */
+} __attribute__ ((__packed__));
+
+struct btrfs_timespec {
+	__le64 sec;
+	__le32 nsec;
+} __attribute__ ((__packed__));
+
+/* Inode flags */
+#define BTRFS_INODE_NODATASUM		(1 << 0)
+#define BTRFS_INODE_NODATACOW		(1 << 1)
+#define BTRFS_INODE_READONLY		(1 << 2)
+#define BTRFS_INODE_NOCOMPRESS		(1 << 3)
+#define BTRFS_INODE_PREALLOC		(1 << 4)
+#define BTRFS_INODE_SYNC		(1 << 5)
+#define BTRFS_INODE_IMMUTABLE		(1 << 6)
+#define BTRFS_INODE_APPEND		(1 << 7)
+#define BTRFS_INODE_NODUMP		(1 << 8)
+#define BTRFS_INODE_NOATIME		(1 << 9)
+#define BTRFS_INODE_DIRSYNC		(1 << 10)
+#define BTRFS_INODE_COMPRESS		(1 << 11)
+
+#define BTRFS_INODE_ROOT_ITEM_INIT	(1 << 31)
+
+#define BTRFS_INODE_FLAG_MASK						\
+	(BTRFS_INODE_NODATASUM |					\
+	 BTRFS_INODE_NODATACOW |					\
+	 BTRFS_INODE_READONLY |						\
+	 BTRFS_INODE_NOCOMPRESS |					\
+	 BTRFS_INODE_PREALLOC |						\
+	 BTRFS_INODE_SYNC |						\
+	 BTRFS_INODE_IMMUTABLE |					\
+	 BTRFS_INODE_APPEND |						\
+	 BTRFS_INODE_NODUMP |						\
+	 BTRFS_INODE_NOATIME |						\
+	 BTRFS_INODE_DIRSYNC |						\
+	 BTRFS_INODE_COMPRESS |						\
+	 BTRFS_INODE_ROOT_ITEM_INIT)
+
+struct btrfs_inode_item {
+	/* Nfs style generation number */
+	__le64 generation;
+	/* Transid that last touched this inode */
+	__le64 transid;
+	__le64 size;
+	__le64 nbytes;
+	__le64 block_group;
+	__le32 nlink;
+	__le32 uid;
+	__le32 gid;
+	__le32 mode;
+	__le64 rdev;
+	__le64 flags;
+
+	/* Modification sequence number for NFS */
+	__le64 sequence;
+
+	/*
+	 * A little future expansion, for more than this we can just grow the
+	 * inode item and version it
+	 */
+	__le64 reserved[4];
+	struct btrfs_timespec atime;
+	struct btrfs_timespec ctime;
+	struct btrfs_timespec mtime;
+	struct btrfs_timespec otime;
+} __attribute__ ((__packed__));
+
+struct btrfs_dir_log_item {
+	__le64 end;
+} __attribute__ ((__packed__));
+
+struct btrfs_dir_item {
+	struct btrfs_disk_key location;
+	__le64 transid;
+	__le16 data_len;
+	__le16 name_len;
+	__u8 type;
+} __attribute__ ((__packed__));
+
+#define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
+
+/*
+ * Internal in-memory flag that a subvolume has been marked for deletion but
+ * still visible as a directory
+ */
+#define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
+
+struct btrfs_root_item {
+	struct btrfs_inode_item inode;
+	__le64 generation;
+	__le64 root_dirid;
+	__le64 bytenr;
+	__le64 byte_limit;
+	__le64 bytes_used;
+	__le64 last_snapshot;
+	__le64 flags;
+	__le32 refs;
+	struct btrfs_disk_key drop_progress;
+	__u8 drop_level;
+	__u8 level;
+
+	/*
+	 * The following fields appear after subvol_uuids+subvol_times
+	 * were introduced.
+	 */
+
+	/*
+	 * This generation number is used to test if the new fields are valid
+	 * and up to date while reading the root item. Every time the root item
+	 * is written out, the "generation" field is copied into this field. If
+	 * anyone ever mounted the fs with an older kernel, we will have
+	 * mismatching generation values here and thus must invalidate the
+	 * new fields. See btrfs_update_root and btrfs_find_last_root for
+	 * details.
+	 * The offset of generation_v2 is also used as the start for the memset
+	 * when invalidating the fields.
+	 */
+	__le64 generation_v2;
+	__u8 uuid[BTRFS_UUID_SIZE];
+	__u8 parent_uuid[BTRFS_UUID_SIZE];
+	__u8 received_uuid[BTRFS_UUID_SIZE];
+	__le64 ctransid; /* Updated when an inode changes */
+	__le64 otransid; /* Trans when created */
+	__le64 stransid; /* Trans when sent. Non-zero for received subvol. */
+	__le64 rtransid; /* Trans when received. Non-zero for received subvol.*/
+	struct btrfs_timespec ctime;
+	struct btrfs_timespec otime;
+	struct btrfs_timespec stime;
+	struct btrfs_timespec rtime;
+	__le64 reserved[8]; /* For future */
+} __attribute__ ((__packed__));
+
+/* This is used for both forward and backward root refs */
+struct btrfs_root_ref {
+	__le64 dirid;
+	__le64 sequence;
+	__le16 name_len;
+} __attribute__ ((__packed__));
+
+struct btrfs_disk_balance_args {
+	/*
+	 * Profiles to operate on.
+	 *
+	 * SINGLE is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE.
+	 */
+	__le64 profiles;
+
+	/*
+	 * Usage filter
+	 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
+	 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
+	 */
+	union {
+		__le64 usage;
+		struct {
+			__le32 usage_min;
+			__le32 usage_max;
+		};
+	};
+
+	/* Devid filter */
+	__le64 devid;
+
+	/* Devid subset filter [pstart..pend) */
+	__le64 pstart;
+	__le64 pend;
+
+	/* Btrfs virtual address space subset filter [vstart..vend) */
+	__le64 vstart;
+	__le64 vend;
+
+	/*
+	 * Profile to convert to.
+	 *
+	 * SINGLE is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE.
+	 */
+	__le64 target;
+
+	/* BTRFS_BALANCE_ARGS_* */
+	__le64 flags;
+
+	/*
+	 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'.
+	 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
+	 * and maximum.
+	 */
+	union {
+		__le64 limit;
+		struct {
+			__le32 limit_min;
+			__le32 limit_max;
+		};
+	};
+
+	/*
+	 * Process chunks that cross stripes_min..stripes_max devices,
+	 * BTRFS_BALANCE_ARGS_STRIPES_RANGE.
+	 */
+	__le32 stripes_min;
+	__le32 stripes_max;
+
+	__le64 unused[6];
+} __attribute__ ((__packed__));
+
+/*
+ * Stores balance parameters to disk so that balance can be properly
+ * resumed after crash or unmount.
+ */
+struct btrfs_balance_item {
+	/* BTRFS_BALANCE_* */
+	__le64 flags;
+
+	struct btrfs_disk_balance_args data;
+	struct btrfs_disk_balance_args meta;
+	struct btrfs_disk_balance_args sys;
+
+	__le64 unused[4];
+} __attribute__ ((__packed__));
+
+enum {
+	BTRFS_FILE_EXTENT_INLINE   = 0,
+	BTRFS_FILE_EXTENT_REG      = 1,
+	BTRFS_FILE_EXTENT_PREALLOC = 2,
+	BTRFS_NR_FILE_EXTENT_TYPES = 3,
+};
+
+enum btrfs_compression_type {
+	BTRFS_COMPRESS_NONE  = 0,
+	BTRFS_COMPRESS_ZLIB  = 1,
+	BTRFS_COMPRESS_LZO   = 2,
+	BTRFS_COMPRESS_ZSTD  = 3,
+	BTRFS_NR_COMPRESS_TYPES = 4,
+};
+
+struct btrfs_file_extent_item {
+	/* Transaction id that created this extent */
+	__le64 generation;
+	/*
+	 * Max number of bytes to hold this extent in ram.
+	 *
+	 * When we split a compressed extent we can't know how big each of the
+	 * resulting pieces will be.  So, this is an upper limit on the size of
+	 * the extent in ram instead of an exact limit.
+	 */
+	__le64 ram_bytes;
+
+	/*
+	 * 32 bits for the various ways we might encode the data,
+	 * including compression and encryption.  If any of these
+	 * are set to something a given disk format doesn't understand
+	 * it is treated like an incompat flag for reading and writing,
+	 * but not for stat.
+	 */
+	__u8 compression;
+	__u8 encryption;
+	__le16 other_encoding; /* Spare for later use */
+
+	/* Are we inline data or a real extent? */
+	__u8 type;
+
+	/*
+	 * Disk space consumed by the extent, checksum blocks are not included
+	 * in these numbers
+	 *
+	 * At this offset in the structure, the inline extent data start.
+	 */
+	__le64 disk_bytenr;
+	__le64 disk_num_bytes;
+
+	/*
+	 * The logical offset inside the file extent.
+	 *
+	 * This allows a file extent to point into the middle of an existing
+	 * extent on disk, sharing it between two snapshots (useful if some
+	 * bytes in the middle of the extent have changed).
+	 */
+	__le64 offset;
+
+	/*
+	 * The logical number of bytes this file extent is referencing (no
+	 * csums included).
+	 *
+	 * This always reflects the size uncompressed and without encoding.
+	 */
+	__le64 num_bytes;
+
+} __attribute__ ((__packed__));
+
+struct btrfs_csum_item {
+	__u8 csum;
+} __attribute__ ((__packed__));
+
+enum btrfs_dev_stat_values {
+	/* Disk I/O failure stats */
+	BTRFS_DEV_STAT_WRITE_ERRS, /* EIO or EREMOTEIO from lower layers */
+	BTRFS_DEV_STAT_READ_ERRS, /* EIO or EREMOTEIO from lower layers */
+	BTRFS_DEV_STAT_FLUSH_ERRS, /* EIO or EREMOTEIO from lower layers */
+
+	/* Stats for indirect indications for I/O failures */
+	BTRFS_DEV_STAT_CORRUPTION_ERRS, /* Checksum error, bytenr error or
+					 * contents is illegal: this is an
+					 * indication that the block was damaged
+					 * during read or write, or written to
+					 * wrong location or read from wrong
+					 * location */
+	BTRFS_DEV_STAT_GENERATION_ERRS, /* An indication that blocks have not
+					 * been written */
+
+	BTRFS_DEV_STAT_VALUES_MAX
+};
+
+struct btrfs_dev_stats_item {
+	/*
+	 * Grow this item struct at the end for future enhancements and keep
+	 * the existing values unchanged.
+	 */
+	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
+} __attribute__ ((__packed__));
+
+#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
+#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
+
+struct btrfs_dev_replace_item {
+	/*
+	 * Grow this item struct@the end for future enhancements and keep
+	 * the existing values unchanged.
+	 */
+	__le64 src_devid;
+	__le64 cursor_left;
+	__le64 cursor_right;
+	__le64 cont_reading_from_srcdev_mode;
+
+	__le64 replace_state;
+	__le64 time_started;
+	__le64 time_stopped;
+	__le64 num_write_errors;
+	__le64 num_uncorrectable_read_errors;
+} __attribute__ ((__packed__));
+
+/* Different types of block groups (and chunks) */
+#define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
+#define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
+#define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
+#define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
+#define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
+#define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
+#define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
+#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
+#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
+#define BTRFS_BLOCK_GROUP_RAID1C3       (1ULL << 9)
+#define BTRFS_BLOCK_GROUP_RAID1C4       (1ULL << 10)
+#define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
+					 BTRFS_SPACE_INFO_GLOBAL_RSV)
+
+enum btrfs_raid_types {
+	BTRFS_RAID_RAID10,
+	BTRFS_RAID_RAID1,
+	BTRFS_RAID_DUP,
+	BTRFS_RAID_RAID0,
+	BTRFS_RAID_SINGLE,
+	BTRFS_RAID_RAID5,
+	BTRFS_RAID_RAID6,
+	BTRFS_RAID_RAID1C3,
+	BTRFS_RAID_RAID1C4,
+	BTRFS_NR_RAID_TYPES
+};
+
+#define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
+					 BTRFS_BLOCK_GROUP_SYSTEM |  \
+					 BTRFS_BLOCK_GROUP_METADATA)
+
+#define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
+					 BTRFS_BLOCK_GROUP_RAID1 |   \
+					 BTRFS_BLOCK_GROUP_RAID1C3 | \
+					 BTRFS_BLOCK_GROUP_RAID1C4 | \
+					 BTRFS_BLOCK_GROUP_RAID5 |   \
+					 BTRFS_BLOCK_GROUP_RAID6 |   \
+					 BTRFS_BLOCK_GROUP_DUP |     \
+					 BTRFS_BLOCK_GROUP_RAID10)
+#define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
+					 BTRFS_BLOCK_GROUP_RAID6)
+
+#define BTRFS_BLOCK_GROUP_RAID1_MASK	(BTRFS_BLOCK_GROUP_RAID1 |   \
+					 BTRFS_BLOCK_GROUP_RAID1C3 | \
+					 BTRFS_BLOCK_GROUP_RAID1C4)
+
+/*
+ * We need a bit for restriper to be able to tell when chunks of type
+ * SINGLE are available.  This "extended" profile format is used in
+ * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
+ * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
+ * to avoid remappings between two formats in future.
+ */
+#define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
+
+/*
+ * A fake block group type that is used to communicate global block reserve
+ * size to userspace via the SPACE_INFO ioctl.
+ */
+#define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
+
+#define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
+					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
+
+static inline __u64 chunk_to_extended(__u64 flags)
+{
+	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
+		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
+
+	return flags;
+}
+static inline __u64 extended_to_chunk(__u64 flags)
+{
+	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
+}
+
+struct btrfs_block_group_item {
+	__le64 used;
+	__le64 chunk_objectid;
+	__le64 flags;
+} __attribute__ ((__packed__));
+
+struct btrfs_free_space_info {
+	__le32 extent_count;
+	__le32 flags;
+} __attribute__ ((__packed__));
+
+#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
+
+#define BTRFS_QGROUP_LEVEL_SHIFT		48
+static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
+{
+	return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
+}
+
+/* Is subvolume quota turned on? */
+#define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
+
+/* Is qgroup rescan running? */
+#define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
+
+/*
+ * Some qgroup entries are known to be out of date, either because the
+ * configuration has changed in a way that makes a rescan necessary, or
+ * because the fs has been mounted with a non-qgroup-aware version.
+ */
+#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
+
+#define BTRFS_QGROUP_STATUS_VERSION        1
+
+struct btrfs_qgroup_status_item {
+	__le64 version;
+	/*
+	 * The generation is updated during every commit. As older
+	 * versions of btrfs are not aware of qgroups, it will be
+	 * possible to detect inconsistencies by checking the
+	 * generation on mount time.
+	 */
+	__le64 generation;
+
+	/* Flag definitions see above */
+	__le64 flags;
+
+	/*
+	 * Only used during scanning to record the progress of the scan.
+	 * It contains a logical address.
+	 */
+	__le64 rescan;
+} __attribute__ ((__packed__));
+
+struct btrfs_qgroup_info_item {
+	__le64 generation;
+	__le64 rfer;
+	__le64 rfer_cmpr;
+	__le64 excl;
+	__le64 excl_cmpr;
+} __attribute__ ((__packed__));
+
+/*
+ * Flags definition for qgroup limits
+ *
+ * Used by:
+ * struct btrfs_qgroup_limit.flags
+ * struct btrfs_qgroup_limit_item.flags
+ */
+#define BTRFS_QGROUP_LIMIT_MAX_RFER	(1ULL << 0)
+#define BTRFS_QGROUP_LIMIT_MAX_EXCL	(1ULL << 1)
+#define BTRFS_QGROUP_LIMIT_RSV_RFER	(1ULL << 2)
+#define BTRFS_QGROUP_LIMIT_RSV_EXCL	(1ULL << 3)
+#define BTRFS_QGROUP_LIMIT_RFER_CMPR	(1ULL << 4)
+#define BTRFS_QGROUP_LIMIT_EXCL_CMPR	(1ULL << 5)
+
+struct btrfs_qgroup_limit_item {
+	/* Only updated when any of the other values change. */
+	__le64 flags;
+	__le64 max_rfer;
+	__le64 max_excl;
+	__le64 rsv_rfer;
+	__le64 rsv_excl;
+} __attribute__ ((__packed__));
+
+/*
+ * Just in case we somehow lose the roots and are not able to mount,
+ * we store an array of the roots from previous transactions in the super.
+ */
+#define BTRFS_NUM_BACKUP_ROOTS 4
+struct btrfs_root_backup {
+	__le64 tree_root;
+	__le64 tree_root_gen;
+
+	__le64 chunk_root;
+	__le64 chunk_root_gen;
+
+	__le64 extent_root;
+	__le64 extent_root_gen;
+
+	__le64 fs_root;
+	__le64 fs_root_gen;
+
+	__le64 dev_root;
+	__le64 dev_root_gen;
+
+	__le64 csum_root;
+	__le64 csum_root_gen;
+
+	__le64 total_bytes;
+	__le64 bytes_used;
+	__le64 num_devices;
+	/* future */
+	__le64 unused_64[4];
+
+	u8 tree_root_level;
+	u8 chunk_root_level;
+	u8 extent_root_level;
+	u8 fs_root_level;
+	u8 dev_root_level;
+	u8 csum_root_level;
+	/* future and to align */
+	u8 unused_8[10];
+} __attribute__ ((__packed__));
+
+/*
+ * This is a very generous portion of the super block, giving us room to
+ * translate 14 chunks with 3 stripes each.
+ */
+#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
+
+#define BTRFS_LABEL_SIZE 256
+
+/* The super block basically lists the main trees of the FS. */
+struct btrfs_super_block {
+	/* The first 4 fields must match struct btrfs_header */
+	u8 csum[BTRFS_CSUM_SIZE];
+	/* FS specific UUID, visible to user */
+	u8 fsid[BTRFS_FSID_SIZE];
+	__le64 bytenr; /* this block number */
+	__le64 flags;
+
+	/* Allowed to be different from the btrfs_header from here own down. */
+	__le64 magic;
+	__le64 generation;
+	__le64 root;
+	__le64 chunk_root;
+	__le64 log_root;
+
+	/* This will help find the new super based on the log root. */
+	__le64 log_root_transid;
+	__le64 total_bytes;
+	__le64 bytes_used;
+	__le64 root_dir_objectid;
+	__le64 num_devices;
+	__le32 sectorsize;
+	__le32 nodesize;
+	__le32 __unused_leafsize;
+	__le32 stripesize;
+	__le32 sys_chunk_array_size;
+	__le64 chunk_root_generation;
+	__le64 compat_flags;
+	__le64 compat_ro_flags;
+	__le64 incompat_flags;
+	__le16 csum_type;
+	u8 root_level;
+	u8 chunk_root_level;
+	u8 log_root_level;
+	struct btrfs_dev_item dev_item;
+
+	char label[BTRFS_LABEL_SIZE];
+
+	__le64 cache_generation;
+	__le64 uuid_tree_generation;
+
+	/* The UUID written into btree blocks */
+	u8 metadata_uuid[BTRFS_FSID_SIZE];
+
+	/* Future expansion */
+	__le64 reserved[28];
+	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
+	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
+} __attribute__ ((__packed__));
+
+/*
+ * Feature flags
+ *
+ * Used by:
+ * struct btrfs_super_block::(compat|compat_ro|incompat)_flags
+ * struct btrfs_ioctl_feature_flags
+ */
+#define BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE		(1ULL << 0)
+
+/*
+ * Older kernels (< 4.9) on big-endian systems produced broken free space tree
+ * bitmaps, and btrfs-progs also used to corrupt the free space tree (versions
+ * < 4.7.3).  If this bit is clear, then the free space tree cannot be trusted.
+ * btrfs-progs can also intentionally clear this bit to ask the kernel to
+ * rebuild the free space tree, however this might not work on older kernels
+ * that do not know about this bit. If not sure, clear the cache manually on
+ * first mount when booting older kernel versions.
+ */
+#define BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID	(1ULL << 1)
+
+#define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF	(1ULL << 0)
+#define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL	(1ULL << 1)
+#define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS	(1ULL << 2)
+#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO	(1ULL << 3)
+#define BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD	(1ULL << 4)
+
+/*
+ * Older kernels tried to do bigger metadata blocks, but the
+ * code was pretty buggy.  Lets not let them try anymore.
+ */
+#define BTRFS_FEATURE_INCOMPAT_BIG_METADATA	(1ULL << 5)
+
+#define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF	(1ULL << 6)
+#define BTRFS_FEATURE_INCOMPAT_RAID56		(1ULL << 7)
+#define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA	(1ULL << 8)
+#define BTRFS_FEATURE_INCOMPAT_NO_HOLES		(1ULL << 9)
+#define BTRFS_FEATURE_INCOMPAT_METADATA_UUID	(1ULL << 10)
+#define BTRFS_FEATURE_INCOMPAT_RAID1C34		(1ULL << 11)
+
+/*
+ * Compat flags that we support.
+ *
+ * If any incompat flags are set other than the ones specified below then we
+ * will fail to mount.
+ */
+#define BTRFS_FEATURE_COMPAT_SUPP		0ULL
+#define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
+#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
+
+#define BTRFS_FEATURE_COMPAT_RO_SUPP			\
+	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
+	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID)
+
+#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
+#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
+
+#define BTRFS_FEATURE_INCOMPAT_SUPP			\
+	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
+	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
+	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
+	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
+	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
+	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
+	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
+	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
+	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
+	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
+	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
+	 BTRFS_FEATURE_INCOMPAT_RAID1C34)
+
+#define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
+	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
+#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
+
+#define BTRFS_BACKREF_REV_MAX		256
+#define BTRFS_BACKREF_REV_SHIFT		56
+#define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
+					 BTRFS_BACKREF_REV_SHIFT)
+
+#define BTRFS_OLD_BACKREF_REV		0
+#define BTRFS_MIXED_BACKREF_REV		1
+
+#define BTRFS_MAX_LEVEL 8
+
+/* Every tree block (leaf or node) starts with this header. */
+struct btrfs_header {
+	/* These first four must match the super block */
+	u8 csum[BTRFS_CSUM_SIZE];
+	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
+	__le64 bytenr; /* Which block this node is supposed to live in */
+	__le64 flags;
+
+	/* Allowed to be different from the super from here on down. */
+	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
+	__le64 generation;
+	__le64 owner;
+	__le32 nritems;
+	u8 level;
+} __attribute__ ((__packed__));
+
+/*
+ * A leaf is full of items. Offset and size tell us where to find
+ * the item in the leaf (relative to the start of the data area).
+ */
+struct btrfs_item {
+	struct btrfs_disk_key key;
+	__le32 offset;
+	__le32 size;
+} __attribute__ ((__packed__));
+
+/*
+ * leaves have an item area and a data area:
+ * [item0, item1....itemN] [free space] [dataN...data1, data0]
+ *
+ * The data is separate from the items to get the keys closer together
+ * during searches.
+ */
+struct btrfs_leaf {
+	struct btrfs_header header;
+	struct btrfs_item items[];
+} __attribute__ ((__packed__));
+
+/*
+ * All non-leaf blocks are nodes, they hold only keys and pointers to children
+ * blocks.
+ */
+struct btrfs_key_ptr {
+	struct btrfs_disk_key key;
+	__le64 blockptr;
+	__le64 generation;
+} __attribute__ ((__packed__));
+
+struct btrfs_node {
+	struct btrfs_header header;
+	struct btrfs_key_ptr ptrs[];
+} __attribute__ ((__packed__));
+
+#endif /* __BTRFS_TREE_H__ */
diff --git a/fs/btrfs/root.c b/fs/btrfs/root.c
index 127b67fd1c89..61155e8918b8 100644
--- a/fs/btrfs/root.c
+++ b/fs/btrfs/root.c
@@ -75,7 +75,7 @@ u64 btrfs_lookup_root_ref(u64 subvolid, struct btrfs_root_ref *refp, char *name)
 		*refp = *ref;
 
 	if (name) {
-		if (ref->name_len > BTRFS_VOL_NAME_MAX) {
+		if (ref->name_len > BTRFS_NAME_LEN) {
 			printf("%s: volume name too long: %u\n", __func__,
 			       ref->name_len);
 			goto out;
diff --git a/fs/btrfs/subvolume.c b/fs/btrfs/subvolume.c
index 06e54f331098..dbe92d13cb81 100644
--- a/fs/btrfs/subvolume.c
+++ b/fs/btrfs/subvolume.c
@@ -14,7 +14,7 @@ static int get_subvol_name(u64 subvolid, char *name, int max_len)
 	struct btrfs_inode_ref iref;
 	struct btrfs_root root;
 	u64 dir;
-	char tmp[max(BTRFS_VOL_NAME_MAX, BTRFS_NAME_MAX)];
+	char tmp[BTRFS_NAME_LEN];
 	char *ptr;
 
 	ptr = name + max_len - 1;
-- 
2.26.0

  reply	other threads:[~2020-04-22  6:50 UTC|newest]

Thread overview: 85+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2020-04-22  6:49 [PATCH U-BOOT 00/26] fs: btrfs: Re-implement btrfs support using the more widely used extent buffer base code Qu Wenruo
2020-04-22  6:49 ` Qu Wenruo
2020-04-22  6:49 ` Qu Wenruo [this message]
2020-04-22  6:49   ` [PATCH U-BOOT 01/26] fs: btrfs: Sync btrfs_btree.h from kernel Qu Wenruo
2020-04-22  6:49 ` [PATCH U-BOOT 02/26] fs: btrfs: Add More checksum algorithm support to btrfs Qu Wenruo
2020-04-22  6:49   ` Qu Wenruo
2020-04-22  6:49 ` [PATCH U-BOOT 03/26] fs: btrfs: Cross-port btrfs_read_dev_super() from btrfs-progs Qu Wenruo
2020-04-22  6:49   ` Qu Wenruo
2020-04-22  8:26   ` Marek Behun
2020-04-22  8:26     ` Marek Behun
2020-04-22  8:34     ` Qu Wenruo
2020-04-22  8:34       ` Qu Wenruo
2020-04-22  6:49 ` [PATCH U-BOOT 04/26] fs: btrfs: Cross-port rbtree-utils " Qu Wenruo
2020-04-22  6:49   ` Qu Wenruo
2020-04-22  6:49 ` [PATCH U-BOOT 05/26] fs: btrfs: Cross-port extent-cache.[ch] " Qu Wenruo
2020-04-22  6:49   ` Qu Wenruo
2020-04-22  6:49 ` [PATCH U-BOOT 06/26] fs: btrfs: Cross-port extent-io.[ch] " Qu Wenruo
2020-04-22  6:49   ` Qu Wenruo
2020-04-22  6:49 ` [PATCH U-BOOT 07/26] fs: btrfs: Cross port structure accessor into ctree.h Qu Wenruo
2020-04-22  6:49   ` Qu Wenruo
2020-04-22  6:49 ` [PATCH U-BOOT 08/26] fs: btrfs: Cross port volumes.[ch] from btrfs-progs Qu Wenruo
2020-04-22  6:49   ` Qu Wenruo
2020-04-22  6:49 ` [PATCH U-BOOT 09/26] fs: btrfs: Crossport read_tree_block() " Qu Wenruo
2020-04-22  6:49   ` Qu Wenruo
2020-04-22  6:49 ` [PATCH U-BOOT 10/26] fs: btrfs: Rename struct btrfs_path to struct __btrfs_path Qu Wenruo
2020-04-22  6:49   ` Qu Wenruo
2020-04-22  6:49 ` [PATCH U-BOOT 11/26] fs: btrfs: Rename btrfs_root to __btrfs_root Qu Wenruo
2020-04-22  6:49   ` Qu Wenruo
2020-04-22  6:49 ` [PATCH U-BOOT 12/26] fs: btrfs: Cross port struct btrfs_root to ctree.h Qu Wenruo
2020-04-22  6:49   ` Qu Wenruo
2020-04-22  6:49 ` [PATCH U-BOOT 13/26] fs: btrfs: Crossport btrfs_search_slot() from btrfs-progs Qu Wenruo
2020-04-22  6:49   ` Qu Wenruo
2020-04-22  6:49 ` [PATCH U-BOOT 14/26] fs: btrfs: Crossport btrfs_read_sys_array() and btrfs_read_chunk_tree() Qu Wenruo
2020-04-22  6:49   ` Qu Wenruo
2020-04-22  6:49 ` [PATCH U-BOOT 15/26] fs: btrfs: Crossport open_ctree_fs_info() Qu Wenruo
2020-04-22  6:49   ` Qu Wenruo
2020-04-22  6:49 ` [PATCH U-BOOT 16/26] fs: btrfs: Rename path resolve related functions to avoid name conflicts Qu Wenruo
2020-04-22  6:49   ` Qu Wenruo
2020-04-22  6:50 ` [PATCH U-BOOT 17/26] fs: btrfs: Use btrfs_readlink() to implement __btrfs_readlink() Qu Wenruo
2020-04-22  6:50   ` Qu Wenruo
2020-04-22  6:50 ` [PATCH U-BOOT 18/26] fs: btrfs: Implement btrfs_lookup_path() Qu Wenruo
2020-04-22  6:50   ` Qu Wenruo
2020-04-22  9:37   ` Su Yue
2020-04-22  9:46   ` Su Yue
2020-04-22  9:46     ` Su Yue
2020-04-22 10:04     ` Marek Behun
2020-04-22 10:04       ` Marek Behun
2020-04-22 14:17       ` Su Yue
2020-04-22 14:17         ` Su Yue
2020-04-22 14:44   ` Su Yue
2020-04-22 14:44     ` Su Yue
2020-04-22 14:49     ` Marek Behun
2020-04-22 14:49       ` Marek Behun
2020-04-22  6:50 ` [PATCH U-BOOT 19/26] fs: btrfs: Use btrfs_iter_dir() to replace btrfs_readdir() Qu Wenruo
2020-04-22  6:50   ` Qu Wenruo
2020-04-22  6:50 ` [PATCH U-BOOT 20/26] fs: btrfs: Use btrfs_lookup_path() to implement btrfs_exists() and btrfs_size() Qu Wenruo
2020-04-22  6:50   ` Qu Wenruo
2020-04-22  6:50 ` [PATCH U-BOOT 21/26] fs: btrfs: Rename btrfs_file_read() and its callees to avoid name conflicts Qu Wenruo
2020-04-22  6:50   ` Qu Wenruo
2020-04-22  6:50 ` [PATCH U-BOOT 22/26] fs: btrfs: Introduce btrfs_read_extent_inline() and btrfs_read_extent_reg() Qu Wenruo
2020-04-22  6:50   ` Qu Wenruo
2020-04-22  6:50 ` [PATCH U-BOOT 23/26] fs: btrfs: Introduce lookup_data_extent() for later use Qu Wenruo
2020-04-22  6:50   ` Qu Wenruo
2020-04-22  6:50 ` [PATCH U-BOOT 24/26] fs: btrfs: Implement btrfs_file_read() Qu Wenruo
2020-04-22  6:50   ` Qu Wenruo
2020-04-22  6:50 ` [PATCH U-BOOT 25/26] fs: btrfs: Cleanup the old implementation Qu Wenruo
2020-04-22  6:50   ` Qu Wenruo
2020-04-22  6:50 ` [PATCH U-BOOT 26/26] MAINTAINERS: Add btrfs mail list Qu Wenruo
2020-04-22  6:50   ` Qu Wenruo
2020-04-22  7:46 ` [PATCH U-BOOT 00/26] fs: btrfs: Re-implement btrfs support using the more widely used extent buffer base code Marek Behun
2020-04-22  7:46   ` Marek Behun
2020-04-22  7:52   ` Qu Wenruo
2020-04-22  7:52     ` Qu Wenruo
2020-04-22  7:56     ` Qu Wenruo
2020-04-22  7:56       ` Qu Wenruo
2020-04-22  9:33     ` Marek Behun
2020-04-22  9:33       ` Marek Behun
2020-04-22  7:52 ` Marek Behun
2020-04-22  7:52   ` Marek Behun
2020-04-22  7:59 ` Marek Behun
2020-04-22  7:59   ` Marek Behun
2020-04-22  8:12   ` Qu Wenruo
2020-04-22  8:12     ` Qu Wenruo
2020-04-22  8:13 ` Marek Behun
2020-04-22  8:13   ` Marek Behun

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20200422065009.69392-2-wqu@suse.com \
    --to=wqu@suse.com \
    --cc=fstests@vger.kernel.org \
    --cc=linux-btrfs@vger.kernel.org \
    --cc=marek.behun@nic.cz \
    --cc=u-boot@lists.denx.de \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.