qemu-devel.nongnu.org archive mirror
 help / color / mirror / Atom feed
From: Michael Rolnik <mrolnik@gmail.com>
To: Aleksandar Markovic <aleksandar.m.mail@gmail.com>
Cc: "thuth@redhat.com" <thuth@redhat.com>,
	"me@xcancerberox.com.ar" <me@xcancerberox.com.ar>,
	"richard.henderson@linaro.org" <richard.henderson@linaro.org>,
	"qemu-devel@nongnu.org" <qemu-devel@nongnu.org>,
	"dovgaluk@ispras.ru" <dovgaluk@ispras.ru>,
	"imammedo@redhat.com" <imammedo@redhat.com>,
	"philmd@redhat.com" <philmd@redhat.com>
Subject: Re: [PATCH v37 07/17] target/avr: Add instruction translation - Bit and Bit-test Instructions
Date: Thu, 5 Dec 2019 15:28:53 +0200	[thread overview]
Message-ID: <CAK4993iTLV2f-8CjOA62qkPLbNyVSjMu+JF3qcRD6tMPKw8b0g@mail.gmail.com> (raw)
In-Reply-To: <CAK4993h+rahNxEQD14kfmRJ_ZJ251TxEkCwrpV7P66TKdTS7eA@mail.gmail.com>

[-- Attachment #1: Type: text/plain, Size: 40101 bytes --]

my mistake. Thanks. I will split it.

On Thu, Dec 5, 2019 at 3:17 PM Michael Rolnik <mrolnik@gmail.com> wrote:

> I think they do follow the division in the docs.
>
> On Thu, Dec 5, 2019 at 2:28 PM Aleksandar Markovic <
> aleksandar.m.mail@gmail.com> wrote:
>
>>
>>
>> On Wednesday, November 27, 2019, Michael Rolnik <mrolnik@gmail.com>
>> wrote:
>>
>>> This includes:
>>>     - LSR, ROR
>>>     - ASR
>>>     - SWAP
>>>     - SBI, CBI
>>>     - BST, BLD
>>>     - BSET, BCLR
>>>
>>> Signed-off-by: Michael Rolnik <mrolnik@gmail.com>
>>> ---
>>>  target/avr/translate.c | 1123 ++++++++++++++++++++++++++++++++++++++++
>>>  1 file changed, 1123 insertions(+)
>>>
>>>
>> Hello, Michael
>>
>> I said I am on vacation, and truly I am, but, fir the next version if the
>> series, I would like to ask you to extract "data transfer" instruction (as
>> defined in avr docs, MOV LD ST etc) from this patch, and create a new patch
>> for them - so that the patches follow the division from docs.
>>
>> Yours,
>> Aleksandar
>>
>>
>>
>>
>>
>>> diff --git a/target/avr/translate.c b/target/avr/translate.c
>>> index 48a42c984a..dc6a1af2fc 100644
>>> --- a/target/avr/translate.c
>>> +++ b/target/avr/translate.c
>>> @@ -317,6 +317,15 @@ static void gen_goto_tb(DisasContext *ctx, int n,
>>> target_ulong dest)
>>>  }
>>>
>>>
>>> +static void gen_rshift_ZNVSf(TCGv R)
>>> +{
>>> +    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */
>>> +    tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
>>> +    tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
>>> +    tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
>>> +}
>>> +
>>> +
>>>  /*
>>>   *  Adds two registers without the C Flag and places the result in the
>>>   *  destination register Rd.
>>> @@ -1508,3 +1517,1117 @@ static bool trans_BRBS(DisasContext *ctx,
>>> arg_BRBS *a)
>>>      return true;
>>>  }
>>>
>>> +
>>> +/*
>>> + *  This instruction makes a copy of one register into another. The
>>> source
>>> + *  register Rr is left unchanged, while the destination register Rd is
>>> loaded
>>> + *  with a copy of Rr.
>>> + */
>>> +static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv Rr = cpu_r[a->rr];
>>> +
>>> +    tcg_gen_mov_tl(Rd, Rr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  This instruction makes a copy of one register pair into another
>>> register
>>> + *  pair. The source register pair Rr+1:Rr is left unchanged, while the
>>> + *  destination register pair Rd+1:Rd is loaded with a copy of Rr +
>>> 1:Rr.  This
>>> + *  instruction is not available in all devices. Refer to the device
>>> specific
>>> + *  instruction set summary.
>>> + */
>>> +static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv RdL = cpu_r[a->rd];
>>> +    TCGv RdH = cpu_r[a->rd + 1];
>>> +    TCGv RrL = cpu_r[a->rr];
>>> +    TCGv RrH = cpu_r[a->rr + 1];
>>> +
>>> +    tcg_gen_mov_tl(RdH, RrH);
>>> +    tcg_gen_mov_tl(RdL, RrL);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + * Loads an 8 bit constant directly to register 16 to 31.
>>> + */
>>> +static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    int imm = a->imm;
>>> +
>>> +    tcg_gen_movi_tl(Rd, imm);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Loads one byte from the data space to a register. For parts with
>>> SRAM,
>>> + *  the data space consists of the Register File, I/O memory and
>>> internal SRAM
>>> + *  (and external SRAM if applicable). For parts without SRAM, the data
>>> space
>>> + *  consists of the register file only. The EEPROM has a separate
>>> address space.
>>> + *  A 16-bit address must be supplied. Memory access is limited to the
>>> current
>>> + *  data segment of 64KB. The LDS instruction uses the RAMPD Register
>>> to access
>>> + *  memory above 64KB. To access another data segment in devices with
>>> more than
>>> + *  64KB data space, the RAMPD in register in the I/O area has to be
>>> changed.
>>> + *  This instruction is not available in all devices. Refer to the
>>> device
>>> + *  specific instruction set summary.
>>> + */
>>> +static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = tcg_temp_new_i32();
>>> +    TCGv H = cpu_rampD;
>>> +    a->imm = next_word(ctx);
>>> +
>>> +    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
>>> +    tcg_gen_shli_tl(addr, addr, 16);
>>> +    tcg_gen_ori_tl(addr, addr, a->imm);
>>> +
>>> +    gen_data_load(ctx, Rd, addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Loads one byte indirect from the data space to a register. For parts
>>> + *  with SRAM, the data space consists of the Register File, I/O memory
>>> and
>>> + *  internal SRAM (and external SRAM if applicable). For parts without
>>> SRAM, the
>>> + *  data space consists of the Register File only. In some parts the
>>> Flash
>>> + *  Memory has been mapped to the data space and can be read using this
>>> command.
>>> + *  The EEPROM has a separate address space.  The data location is
>>> pointed to by
>>> + *  the X (16 bits) Pointer Register in the Register File. Memory
>>> access is
>>> + *  limited to the current data segment of 64KB. To access another data
>>> segment
>>> + *  in devices with more than 64KB data space, the RAMPX in register in
>>> the I/O
>>> + *  area has to be changed.  The X-pointer Register can either be left
>>> unchanged
>>> + *  by the operation, or it can be post-incremented or predecremented.
>>> These
>>> + *  features are especially suited for accessing arrays, tables, and
>>> Stack
>>> + *  Pointer usage of the X-pointer Register. Note that only the low
>>> byte of the
>>> + *  X-pointer is updated in devices with no more than 256 bytes data
>>> space. For
>>> + *  such devices, the high byte of the pointer is not used by this
>>> instruction
>>> + *  and can be used for other purposes. The RAMPX Register in the I/O
>>> area is
>>> + *  updated in parts with more than 64KB data space or more than 64KB
>>> Program
>>> + *  memory, and the increment/decrement is added to the entire 24-bit
>>> address on
>>> + *  such devices.  Not all variants of this instruction is available in
>>> all
>>> + *  devices. Refer to the device specific instruction set summary.  In
>>> the
>>> + *  Reduced Core tinyAVR the LD instruction can be used to achieve the
>>> same
>>> + *  operation as LPM since the program memory is mapped to the data
>>> memory
>>> + *  space.
>>> + */
>>> +static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_xaddr();
>>> +
>>> +    gen_data_load(ctx, Rd, addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_xaddr();
>>> +
>>> +    gen_data_load(ctx, Rd, addr);
>>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> +    gen_set_xaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_xaddr();
>>> +
>>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> +    gen_data_load(ctx, Rd, addr);
>>> +    gen_set_xaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STX1(DisasContext *ctx, arg_STX1 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rr];
>>> +    TCGv addr = gen_get_xaddr();
>>> +
>>> +    gen_data_store(ctx, Rd, addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +static bool trans_STX2(DisasContext *ctx, arg_STX2 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rr];
>>> +    TCGv addr = gen_get_xaddr();
>>> +
>>> +    gen_data_store(ctx, Rd, addr);
>>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +    gen_set_xaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +static bool trans_STX3(DisasContext *ctx, arg_STX3 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rr];
>>> +    TCGv addr = gen_get_xaddr();
>>> +
>>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> +    gen_data_store(ctx, Rd, addr);
>>> +    gen_set_xaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Loads one byte indirect with or without displacement from the data
>>> space
>>> + *  to a register. For parts with SRAM, the data space consists of the
>>> Register
>>> + *  File, I/O memory and internal SRAM (and external SRAM if
>>> applicable). For
>>> + *  parts without SRAM, the data space consists of the Register File
>>> only. In
>>> + *  some parts the Flash Memory has been mapped to the data space and
>>> can be
>>> + *  read using this command. The EEPROM has a separate address space.
>>> The data
>>> + *  location is pointed to by the Y (16 bits) Pointer Register in the
>>> Register
>>> + *  File. Memory access is limited to the current data segment of 64KB.
>>> To
>>> + *  access another data segment in devices with more than 64KB data
>>> space, the
>>> + *  RAMPY in register in the I/O area has to be changed.  The Y-pointer
>>> Register
>>> + *  can either be left unchanged by the operation, or it can be
>>> post-incremented
>>> + *  or predecremented.  These features are especially suited for
>>> accessing
>>> + *  arrays, tables, and Stack Pointer usage of the Y-pointer Register.
>>> Note that
>>> + *  only the low byte of the Y-pointer is updated in devices with no
>>> more than
>>> + *  256 bytes data space. For such devices, the high byte of the
>>> pointer is not
>>> + *  used by this instruction and can be used for other purposes. The
>>> RAMPY
>>> + *  Register in the I/O area is updated in parts with more than 64KB
>>> data space
>>> + *  or more than 64KB Program memory, and the
>>> increment/decrement/displacement
>>> + *  is added to the entire 24-bit address on such devices.  Not all
>>> variants of
>>> + *  this instruction is available in all devices. Refer to the device
>>> specific
>>> + *  instruction set summary.  In the Reduced Core tinyAVR the LD
>>> instruction can
>>> + *  be used to achieve the same operation as LPM since the program
>>> memory is
>>> + *  mapped to the data memory space.
>>> + */
>>> +static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_yaddr();
>>> +
>>> +    gen_data_load(ctx, Rd, addr);
>>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> +    gen_set_yaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_yaddr();
>>> +
>>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> +    gen_data_load(ctx, Rd, addr);
>>> +    gen_set_yaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_yaddr();
>>> +
>>> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>>> +    gen_data_load(ctx, Rd, addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STY2(DisasContext *ctx, arg_STY2 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_yaddr();
>>> +
>>> +    gen_data_store(ctx, Rd, addr);
>>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +    gen_set_yaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STY3(DisasContext *ctx, arg_STY3 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_yaddr();
>>> +
>>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> +    gen_data_store(ctx, Rd, addr);
>>> +    gen_set_yaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STDY(DisasContext *ctx, arg_STDY *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_yaddr();
>>> +
>>> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>>> +    gen_data_store(ctx, Rd, addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Loads one byte indirect with or without displacement from the data
>>> space
>>> + *  to a register. For parts with SRAM, the data space consists of the
>>> Register
>>> + *  File, I/O memory and internal SRAM (and external SRAM if
>>> applicable). For
>>> + *  parts without SRAM, the data space consists of the Register File
>>> only. In
>>> + *  some parts the Flash Memory has been mapped to the data space and
>>> can be
>>> + *  read using this command. The EEPROM has a separate address space.
>>> The data
>>> + *  location is pointed to by the Z (16 bits) Pointer Register in the
>>> Register
>>> + *  File. Memory access is limited to the current data segment of 64KB.
>>> To
>>> + *  access another data segment in devices with more than 64KB data
>>> space, the
>>> + *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer
>>> Register
>>> + *  can either be left unchanged by the operation, or it can be
>>> post-incremented
>>> + *  or predecremented.  These features are especially suited for Stack
>>> Pointer
>>> + *  usage of the Z-pointer Register, however because the Z-pointer
>>> Register can
>>> + *  be used for indirect subroutine calls, indirect jumps and table
>>> lookup, it
>>> + *  is often more convenient to use the X or Y-pointer as a dedicated
>>> Stack
>>> + *  Pointer. Note that only the low byte of the Z-pointer is updated in
>>> devices
>>> + *  with no more than 256 bytes data space. For such devices, the high
>>> byte of
>>> + *  the pointer is not used by this instruction and can be used for
>>> other
>>> + *  purposes. The RAMPZ Register in the I/O area is updated in parts
>>> with more
>>> + *  than 64KB data space or more than 64KB Program memory, and the
>>> + *  increment/decrement/displacement is added to the entire 24-bit
>>> address on
>>> + *  such devices.  Not all variants of this instruction is available in
>>> all
>>> + *  devices. Refer to the device specific instruction set summary.  In
>>> the
>>> + *  Reduced Core tinyAVR the LD instruction can be used to achieve the
>>> same
>>> + *  operation as LPM since the program memory is mapped to the data
>>> memory
>>> + *  space.  For using the Z-pointer for table lookup in Program memory
>>> see the
>>> + *  LPM and ELPM instructions.
>>> + */
>>> +static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    gen_data_load(ctx, Rd, addr);
>>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> +    gen_set_zaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> +    gen_data_load(ctx, Rd, addr);
>>> +
>>> +    gen_set_zaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>>> +    gen_data_load(ctx, Rd, addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    gen_data_store(ctx, Rd, addr);
>>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> +    gen_set_zaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
>>> +    gen_data_store(ctx, Rd, addr);
>>> +
>>> +    gen_set_zaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
>>> +    gen_data_store(ctx, Rd, addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +
>>> +/*
>>> + *  Stores one byte from a Register to the data space. For parts with
>>> SRAM,
>>> + *  the data space consists of the Register File, I/O memory and
>>> internal SRAM
>>> + *  (and external SRAM if applicable). For parts without SRAM, the data
>>> space
>>> + *  consists of the Register File only. The EEPROM has a separate
>>> address space.
>>> + *  A 16-bit address must be supplied. Memory access is limited to the
>>> current
>>> + *  data segment of 64KB. The STS instruction uses the RAMPD Register
>>> to access
>>> + *  memory above 64KB. To access another data segment in devices with
>>> more than
>>> + *  64KB data space, the RAMPD in register in the I/O area has to be
>>> changed.
>>> + *  This instruction is not available in all devices. Refer to the
>>> device
>>> + *  specific instruction set summary.
>>> + */
>>> +static bool trans_STS(DisasContext *ctx, arg_STS *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = tcg_temp_new_i32();
>>> +    TCGv H = cpu_rampD;
>>> +    a->imm = next_word(ctx);
>>> +
>>> +    tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
>>> +    tcg_gen_shli_tl(addr, addr, 16);
>>> +    tcg_gen_ori_tl(addr, addr, a->imm);
>>> +
>>> +    gen_data_store(ctx, Rd, addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Loads one byte pointed to by the Z-register into the destination
>>> + *  register Rd. This instruction features a 100% space effective
>>> constant
>>> + *  initialization or constant data fetch. The Program memory is
>>> organized in
>>> + *  16-bit words while the Z-pointer is a byte address. Thus, the least
>>> + *  significant bit of the Z-pointer selects either low byte (ZLSB = 0)
>>> or high
>>> + *  byte (ZLSB = 1). This instruction can address the first 64KB (32K
>>> words) of
>>> + *  Program memory. The Zpointer Register can either be left unchanged
>>> by the
>>> + *  operation, or it can be incremented. The incrementation does not
>>> apply to
>>> + *  the RAMPZ Register.  Devices with Self-Programming capability can
>>> use the
>>> + *  LPM instruction to read the Fuse and Lock bit values.  Refer to the
>>> device
>>> + *  documentation for a detailed description.  The LPM instruction is
>>> not
>>> + *  available in all devices. Refer to the device specific instruction
>>> set
>>> + *  summary
>>> + */
>>> +static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rd = cpu_r[0];
>>> +    TCGv addr = tcg_temp_new_i32();
>>> +    TCGv H = cpu_r[31];
>>> +    TCGv L = cpu_r[30];
>>> +
>>> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>>> +    tcg_gen_or_tl(addr, addr, L);
>>> +
>>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = tcg_temp_new_i32();
>>> +    TCGv H = cpu_r[31];
>>> +    TCGv L = cpu_r[30];
>>> +
>>> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>>> +    tcg_gen_or_tl(addr, addr, L);
>>> +
>>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = tcg_temp_new_i32();
>>> +    TCGv H = cpu_r[31];
>>> +    TCGv L = cpu_r[30];
>>> +
>>> +    tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
>>> +    tcg_gen_or_tl(addr, addr, L);
>>> +
>>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> +    tcg_gen_andi_tl(L, addr, 0xff);
>>> +
>>> +    tcg_gen_shri_tl(addr, addr, 8);
>>> +    tcg_gen_andi_tl(H, addr, 0xff);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Loads one byte pointed to by the Z-register and the RAMPZ Register
>>> in
>>> + *  the I/O space, and places this byte in the destination register Rd.
>>> This
>>> + *  instruction features a 100% space effective constant initialization
>>> or
>>> + *  constant data fetch. The Program memory is organized in 16-bit
>>> words while
>>> + *  the Z-pointer is a byte address. Thus, the least significant bit of
>>> the
>>> + *  Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB =
>>> 1). This
>>> + *  instruction can address the entire Program memory space. The
>>> Z-pointer
>>> + *  Register can either be left unchanged by the operation, or it can be
>>> + *  incremented. The incrementation applies to the entire 24-bit
>>> concatenation
>>> + *  of the RAMPZ and Z-pointer Registers.  Devices with Self-Programming
>>> + *  capability can use the ELPM instruction to read the Fuse and Lock
>>> bit value.
>>> + *  Refer to the device documentation for a detailed description.  This
>>> + *  instruction is not available in all devices. Refer to the device
>>> specific
>>> + *  instruction set summary.
>>> + */
>>> +static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rd = cpu_r[0];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
>>> +
>>> +    tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
>>> +
>>> +    gen_set_zaddr(addr);
>>> +
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  SPM can be used to erase a page in the Program memory, to write a
>>> page
>>> + *  in the Program memory (that is already erased), and to set Boot
>>> Loader Lock
>>> + *  bits. In some devices, the Program memory can be written one word
>>> at a time,
>>> + *  in other devices an entire page can be programmed simultaneously
>>> after first
>>> + *  filling a temporary page buffer. In all cases, the Program memory
>>> must be
>>> + *  erased one page at a time. When erasing the Program memory, the
>>> RAMPZ and
>>> + *  Z-register are used as page address. When writing the Program
>>> memory, the
>>> + *  RAMPZ and Z-register are used as page or word address, and the R1:R0
>>> + *  register pair is used as data(1). When setting the Boot Loader Lock
>>> bits,
>>> + *  the R1:R0 register pair is used as data. Refer to the device
>>> documentation
>>> + *  for detailed description of SPM usage. This instruction can address
>>> the
>>> + *  entire Program memory.  The SPM instruction is not available in all
>>> devices.
>>> + *  Refer to the device specific instruction set summary.  Note: 1. R1
>>> + *  determines the instruction high byte, and R0 determines the
>>> instruction low
>>> + *  byte.
>>> + */
>>> +static bool trans_SPM(DisasContext *ctx, arg_SPM *a)
>>> +{
>>> +    /* TODO */
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
>>> +{
>>> +    /* TODO */
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Loads data from the I/O Space (Ports, Timers, Configuration
>>> Registers,
>>> + *  etc.) into register Rd in the Register File.
>>> + */
>>> +static bool trans_IN(DisasContext *ctx, arg_IN *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv port = tcg_const_i32(a->imm);
>>> +
>>> +    gen_helper_inb(Rd, cpu_env, port);
>>> +
>>> +    tcg_temp_free_i32(port);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Stores data from register Rr in the Register File to I/O Space
>>> (Ports,
>>> + *  Timers, Configuration Registers, etc.).
>>> + */
>>> +static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv port = tcg_const_i32(a->imm);
>>> +
>>> +    gen_helper_outb(cpu_env, port, Rd);
>>> +
>>> +    tcg_temp_free_i32(port);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  This instruction stores the contents of register Rr on the STACK.
>>> The
>>> + *  Stack Pointer is post-decremented by 1 after the PUSH.  This
>>> instruction is
>>> + *  not available in all devices. Refer to the device specific
>>> instruction set
>>> + *  summary.
>>> + */
>>> +static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +
>>> +    gen_data_store(ctx, Rd, cpu_sp);
>>> +    tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  This instruction loads register Rd with a byte from the STACK. The
>>> Stack
>>> + *  Pointer is pre-incremented by 1 before the POP.  This instruction
>>> is not
>>> + *  available in all devices. Refer to the device specific instruction
>>> set
>>> + *  summary.
>>> + */
>>> +static bool trans_POP(DisasContext *ctx, arg_POP *a)
>>> +{
>>> +    /*
>>> +     * Using a temp to work around some strange behaviour:
>>> +     * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
>>> +     * gen_data_load(ctx, Rd, cpu_sp);
>>> +     * seems to cause the add to happen twice.
>>> +     * This doesn't happen if either the add or the load is removed.
>>> +     */
>>> +    TCGv t1 = tcg_temp_new_i32();
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +
>>> +    tcg_gen_addi_tl(t1, cpu_sp, 1);
>>> +    gen_data_load(ctx, Rd, t1);
>>> +    tcg_gen_mov_tl(cpu_sp, t1);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Exchanges one byte indirect between register and data space.  The
>>> data
>>> + *  location is pointed to by the Z (16 bits) Pointer Register in the
>>> Register
>>> + *  File. Memory access is limited to the current data segment of 64KB.
>>> To
>>> + *  access another data segment in devices with more than 64KB data
>>> space, the
>>> + *  RAMPZ in register in the I/O area has to be changed.  The Z-pointer
>>> Register
>>> + *  is left unchanged by the operation. This instruction is especially
>>> suited
>>> + *  for writing/reading status bits stored in SRAM.
>>> + */
>>> +static bool trans_XCH(DisasContext *ctx, arg_XCH *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv t0 = tcg_temp_new_i32();
>>> +    TCGv addr = gen_get_zaddr();
>>> +
>>> +    gen_data_load(ctx, t0, addr);
>>> +    gen_data_store(ctx, Rd, addr);
>>> +    tcg_gen_mov_tl(Rd, t0);
>>> +
>>> +    tcg_temp_free_i32(t0);
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Load one byte indirect from data space to register and set bits in
>>> data
>>> + *  space specified by the register. The instruction can only be used
>>> towards
>>> + *  internal SRAM.  The data location is pointed to by the Z (16 bits)
>>> Pointer
>>> + *  Register in the Register File. Memory access is limited to the
>>> current data
>>> + *  segment of 64KB. To access another data segment in devices with
>>> more than
>>> + *  64KB data space, the RAMPZ in register in the I/O area has to be
>>> changed.
>>> + *  The Z-pointer Register is left unchanged by the operation. This
>>> instruction
>>> + *  is especially suited for setting status bits stored in SRAM.
>>> + */
>>> +static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rr = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +    TCGv t0 = tcg_temp_new_i32();
>>> +    TCGv t1 = tcg_temp_new_i32();
>>> +
>>> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>>> +    tcg_gen_or_tl(t1, t0, Rr);
>>> +
>>> +    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
>>> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>>> +
>>> +    tcg_temp_free_i32(t1);
>>> +    tcg_temp_free_i32(t0);
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Load one byte indirect from data space to register and stores and
>>> clear
>>> + *  the bits in data space specified by the register. The instruction
>>> can
>>> + *  only be used towards internal SRAM.  The data location is pointed
>>> to by
>>> + *  the Z (16 bits) Pointer Register in the Register File. Memory
>>> access is
>>> + *  limited to the current data segment of 64KB. To access another data
>>> + *  segment in devices with more than 64KB data space, the RAMPZ in
>>> register
>>> + *  in the I/O area has to be changed.  The Z-pointer Register is left
>>> + *  unchanged by the operation. This instruction is especially suited
>>> for
>>> + *  clearing status bits stored in SRAM.
>>> + */
>>> +static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rr = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +    TCGv t0 = tcg_temp_new_i32();
>>> +    TCGv t1 = tcg_temp_new_i32();
>>> +
>>> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>>> +        /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */
>>> +    tcg_gen_andc_tl(t1, t0, Rr);
>>> +
>>> +    tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
>>> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>>> +
>>> +    tcg_temp_free_i32(t1);
>>> +    tcg_temp_free_i32(t0);
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Load one byte indirect from data space to register and toggles bits
>>> in
>>> + *  the data space specified by the register.  The instruction can only
>>> be used
>>> + *  towards SRAM.  The data location is pointed to by the Z (16 bits)
>>> Pointer
>>> + *  Register in the Register File. Memory access is limited to the
>>> current data
>>> + *  segment of 64KB. To access another data segment in devices with
>>> more than
>>> + *  64KB data space, the RAMPZ in register in the I/O area has to be
>>> changed.
>>> + *  The Z-pointer Register is left unchanged by the operation. This
>>> instruction
>>> + *  is especially suited for changing status bits stored in SRAM.
>>> + */
>>> +static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
>>> +{
>>> +    if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) {
>>> +        return true;
>>> +    }
>>> +
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv addr = gen_get_zaddr();
>>> +    TCGv t0 = tcg_temp_new_i32();
>>> +    TCGv t1 = tcg_temp_new_i32();
>>> +
>>> +    gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
>>> +    tcg_gen_xor_tl(t1, t0, Rd);
>>> +
>>> +    tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
>>> +    gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
>>> +
>>> +    tcg_temp_free_i32(t1);
>>> +    tcg_temp_free_i32(t0);
>>> +    tcg_temp_free_i32(addr);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit
>>> 0 is
>>> + *  loaded into the C Flag of the SREG. This operation effectively
>>> divides an
>>> + *  unsigned value by two. The C Flag can be used to round the result.
>>> + */
>>> +static bool trans_LSR(DisasContext *ctx, arg_LSR *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +
>>> +    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
>>> +
>>> +    tcg_gen_shri_tl(Rd, Rd, 1);
>>> +
>>> +    tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */
>>> +    tcg_gen_movi_tl(cpu_Nf, 0);
>>> +    tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
>>> +    tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Shifts all bits in Rd one place to the right. The C Flag is shifted
>>> into
>>> + *  bit 7 of Rd. Bit 0 is shifted into the C Flag.  This operation,
>>> combined
>>> + *  with ASR, effectively divides multi-byte signed values by two.
>>> Combined with
>>> + *  LSR it effectively divides multi-byte unsigned values by two. The
>>> Carry Flag
>>> + *  can be used to round the result.
>>> + */
>>> +static bool trans_ROR(DisasContext *ctx, arg_ROR *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv t0 = tcg_temp_new_i32();
>>> +
>>> +    tcg_gen_shli_tl(t0, cpu_Cf, 7);
>>> +    tcg_gen_andi_tl(cpu_Cf, Rd, 1);
>>> +    tcg_gen_shri_tl(Rd, Rd, 1);
>>> +    tcg_gen_or_tl(Rd, Rd, t0);
>>> +
>>> +    gen_rshift_ZNVSf(Rd);
>>> +
>>> +    tcg_temp_free_i32(t0);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Shifts all bits in Rd one place to the right. Bit 7 is held
>>> constant. Bit 0
>>> + *  is loaded into the C Flag of the SREG. This operation effectively
>>> divides a
>>> + *  signed value by two without changing its sign. The Carry Flag can
>>> be used to
>>> + *  round the result.
>>> + */
>>> +static bool trans_ASR(DisasContext *ctx, arg_ASR *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv t0 = tcg_temp_new_i32();
>>> +
>>> +    /* Cf */
>>> +    tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
>>> +
>>> +    /* op */
>>> +    tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
>>> +    tcg_gen_shri_tl(Rd, Rd, 1);
>>> +    tcg_gen_or_tl(Rd, Rd, t0);
>>> +
>>> +    gen_rshift_ZNVSf(Rd);
>>> +
>>> +    tcg_temp_free_i32(t0);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Swaps high and low nibbles in a register.
>>> + */
>>> +static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv t0 = tcg_temp_new_i32();
>>> +    TCGv t1 = tcg_temp_new_i32();
>>> +
>>> +    tcg_gen_andi_tl(t0, Rd, 0x0f);
>>> +    tcg_gen_shli_tl(t0, t0, 4);
>>> +    tcg_gen_andi_tl(t1, Rd, 0xf0);
>>> +    tcg_gen_shri_tl(t1, t1, 4);
>>> +    tcg_gen_or_tl(Rd, t0, t1);
>>> +
>>> +    tcg_temp_free_i32(t1);
>>> +    tcg_temp_free_i32(t0);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Sets a specified bit in an I/O Register. This instruction operates
>>> on
>>> + *  the lower 32 I/O Registers -- addresses 0-31.
>>> + */
>>> +static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
>>> +{
>>> +    TCGv data = tcg_temp_new_i32();
>>> +    TCGv port = tcg_const_i32(a->reg);
>>> +
>>> +    gen_helper_inb(data, cpu_env, port);
>>> +    tcg_gen_ori_tl(data, data, 1 << a->bit);
>>> +    gen_helper_outb(cpu_env, port, data);
>>> +
>>> +    tcg_temp_free_i32(port);
>>> +    tcg_temp_free_i32(data);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Clears a specified bit in an I/O Register. This instruction
>>> operates on
>>> + *  the lower 32 I/O Registers -- addresses 0-31.
>>> + */
>>> +static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
>>> +{
>>> +    TCGv data = tcg_temp_new_i32();
>>> +    TCGv port = tcg_const_i32(a->reg);
>>> +
>>> +    gen_helper_inb(data, cpu_env, port);
>>> +    tcg_gen_andi_tl(data, data, ~(1 << a->bit));
>>> +    gen_helper_outb(cpu_env, port, data);
>>> +
>>> +    tcg_temp_free_i32(data);
>>> +    tcg_temp_free_i32(port);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Stores bit b from Rd to the T Flag in SREG (Status Register).
>>> + */
>>> +static bool trans_BST(DisasContext *ctx, arg_BST *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +
>>> +    tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit);
>>> +    tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Copies the T Flag in the SREG (Status Register) to bit b in
>>> register Rd.
>>> + */
>>> +static bool trans_BLD(DisasContext *ctx, arg_BLD *a)
>>> +{
>>> +    TCGv Rd = cpu_r[a->rd];
>>> +    TCGv t1 = tcg_temp_new_i32();
>>> +
>>> +    tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */
>>> +    tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */
>>> +    tcg_gen_or_tl(Rd, Rd, t1);
>>> +
>>> +    tcg_temp_free_i32(t1);
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Sets a single Flag or bit in SREG.
>>> + */
>>> +static bool trans_BSET(DisasContext *ctx, arg_BSET *a)
>>> +{
>>> +    switch (a->bit) {
>>> +    case 0x00:
>>> +        tcg_gen_movi_tl(cpu_Cf, 0x01);
>>> +        break;
>>> +    case 0x01:
>>> +        tcg_gen_movi_tl(cpu_Zf, 0x01);
>>> +        break;
>>> +    case 0x02:
>>> +        tcg_gen_movi_tl(cpu_Nf, 0x01);
>>> +        break;
>>> +    case 0x03:
>>> +        tcg_gen_movi_tl(cpu_Vf, 0x01);
>>> +        break;
>>> +    case 0x04:
>>> +        tcg_gen_movi_tl(cpu_Sf, 0x01);
>>> +        break;
>>> +    case 0x05:
>>> +        tcg_gen_movi_tl(cpu_Hf, 0x01);
>>> +        break;
>>> +    case 0x06:
>>> +        tcg_gen_movi_tl(cpu_Tf, 0x01);
>>> +        break;
>>> +    case 0x07:
>>> +        tcg_gen_movi_tl(cpu_If, 0x01);
>>> +        break;
>>> +    }
>>> +
>>> +    return true;
>>> +}
>>> +
>>> +
>>> +/*
>>> + *  Clears a single Flag in SREG.
>>> + */
>>> +static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a)
>>> +{
>>> +    switch (a->bit) {
>>> +    case 0x00:
>>> +        tcg_gen_movi_tl(cpu_Cf, 0x00);
>>> +        break;
>>> +    case 0x01:
>>> +        tcg_gen_movi_tl(cpu_Zf, 0x00);
>>> +        break;
>>> +    case 0x02:
>>> +        tcg_gen_movi_tl(cpu_Nf, 0x00);
>>> +        break;
>>> +    case 0x03:
>>> +        tcg_gen_movi_tl(cpu_Vf, 0x00);
>>> +        break;
>>> +    case 0x04:
>>> +        tcg_gen_movi_tl(cpu_Sf, 0x00);
>>> +        break;
>>> +    case 0x05:
>>> +        tcg_gen_movi_tl(cpu_Hf, 0x00);
>>> +        break;
>>> +    case 0x06:
>>> +        tcg_gen_movi_tl(cpu_Tf, 0x00);
>>> +        break;
>>> +    case 0x07:
>>> +        tcg_gen_movi_tl(cpu_If, 0x00);
>>> +        break;
>>> +    }
>>> +
>>> +    return true;
>>> +}
>>> --
>>> 2.17.2 (Apple Git-113)
>>>
>>>
>
> --
> Best Regards,
> Michael Rolnik
>


-- 
Best Regards,
Michael Rolnik

[-- Attachment #2: Type: text/html, Size: 43256 bytes --]

  reply	other threads:[~2019-12-05 13:49 UTC|newest]

Thread overview: 75+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2019-11-27 17:52 [PATCH v37 00/17] QEMU AVR 8 bit cores Michael Rolnik
2019-11-27 17:52 ` [PATCH v37 01/17] target/avr: Add outward facing interfaces and core CPU logic Michael Rolnik
2019-11-27 22:25   ` Philippe Mathieu-Daudé
2019-11-28 12:04     ` Michael Rolnik
2019-11-27 17:52 ` [PATCH v37 02/17] target/avr: Add instruction helpers Michael Rolnik
2019-11-27 22:26   ` Philippe Mathieu-Daudé
2019-11-27 17:52 ` [PATCH v37 03/17] target/avr: Add instruction decoding Michael Rolnik
2019-11-27 17:52 ` [PATCH v37 04/17] target/avr: Add instruction translation - Registers definition Michael Rolnik
2019-11-27 17:52 ` [PATCH v37 05/17] target/avr: Add instruction translation - Arithmetic and Logic Instructions Michael Rolnik
2019-11-30 10:33   ` Aleksandar Markovic
2019-11-30 16:29     ` Aleksandar Markovic
2019-11-30 17:05       ` Michael Rolnik
2019-11-30 17:14         ` Aleksandar Markovic
2019-11-30 23:11         ` Aleksandar Markovic
2019-12-02  7:41           ` Michael Rolnik
2019-12-02  8:55             ` Aleksandar Markovic
2019-12-02  9:01               ` Aleksandar Markovic
2019-11-27 17:52 ` [PATCH v37 06/17] target/avr: Add instruction translation - Branch Instructions Michael Rolnik
2019-11-27 17:52 ` [PATCH v37 07/17] target/avr: Add instruction translation - Bit and Bit-test Instructions Michael Rolnik
2019-12-05 12:28   ` Aleksandar Markovic
2019-12-05 13:17     ` Michael Rolnik
2019-12-05 13:28       ` Michael Rolnik [this message]
2019-11-27 17:52 ` [PATCH v37 08/17] target/avr: Add instruction translation - MCU Control Instructions Michael Rolnik
2019-11-27 17:52 ` [PATCH v37 09/17] target/avr: Add instruction translation - CPU main translation function Michael Rolnik
2019-11-27 17:52 ` [PATCH v37 10/17] target/avr: Add instruction disassembly function Michael Rolnik
2019-12-02  0:28   ` Aleksandar Markovic
2019-12-02  7:04     ` Michael Rolnik
2019-12-02 10:12       ` Aleksandar Markovic
2019-12-02 12:01       ` Aleksandar Markovic
2019-12-03 11:18       ` Philippe Mathieu-Daudé
2019-12-03 14:24         ` Michael Rolnik
2019-11-27 17:52 ` [PATCH v37 11/17] target/avr: Add limited support for USART and 16 bit timer peripherals Michael Rolnik
2019-11-27 17:52 ` [PATCH v37 12/17] target/avr: Add example board configuration Michael Rolnik
2019-11-30 10:49   ` Aleksandar Markovic
2019-11-30 16:57     ` Michael Rolnik
2019-12-03 11:29       ` Philippe Mathieu-Daudé
2019-11-27 17:52 ` [PATCH v37 13/17] target/avr: Register AVR support with the rest of QEMU Michael Rolnik
2019-12-05 12:55   ` Aleksandar Markovic
2019-11-27 17:52 ` [PATCH v37 14/17] target/avr: Update build system Michael Rolnik
2019-11-27 17:52 ` [PATCH v37 15/17] target/avr: Add boot serial test Michael Rolnik
2019-11-27 17:52 ` [PATCH v37 16/17] target/avr: Add Avocado test Michael Rolnik
2019-11-27 17:52 ` [PATCH v37 17/17] target/avr: Update MAINTAINERS file Michael Rolnik
2019-11-28 20:19   ` Philippe Mathieu-Daudé
2019-11-30 13:43   ` Aleksandar Markovic
2019-11-27 21:06 ` [PATCH v37 00/17] QEMU AVR 8 bit cores Aleksandar Markovic
2019-11-28 12:28   ` Michael Rolnik
2019-11-28 13:22     ` Aleksandar Markovic
2019-11-28 13:25       ` Michael Rolnik
2019-11-28 13:31         ` Aleksandar Markovic
2019-11-28 16:20           ` Alex Bennée
2019-11-28 19:32             ` Aleksandar Markovic
2019-11-29 22:49             ` Aleksandar Markovic
2019-11-29 23:52               ` Aleksandar Markovic
2019-11-28 13:34         ` Philippe Mathieu-Daudé
2019-11-28 13:41           ` Aleksandar Markovic
2019-11-28 13:46             ` Michael Rolnik
2019-11-28 14:16               ` Philippe Mathieu-Daudé
2019-11-28 14:50                 ` Aleksandar Markovic
2019-11-28 18:09                 ` Aleksandar Markovic
2019-12-01 13:09               ` Aleksandar Markovic
2019-12-01 13:11                 ` Aleksandar Markovic
2019-11-29  9:24     ` Sarah Harris
2019-11-28 15:00 ` Aleksandar Markovic
2019-11-30 11:28 ` Aleksandar Markovic
2019-11-30 17:00   ` Michael Rolnik
2019-12-02  9:35     ` Aleksandar Markovic
2019-12-02  9:59       ` Aleksandar Markovic
2019-12-02 13:24         ` Michael Rolnik
2019-12-02 14:01           ` Aleksandar Markovic
2019-12-02 16:09             ` Michael Rolnik
2019-12-02 21:15               ` Aleksandar Markovic
2019-12-02 23:37                 ` Aleksandar Markovic
2019-12-03  1:17                   ` Aleksandar Markovic
2019-12-03  1:48                     ` Aleksandar Markovic
2019-12-03  9:56                       ` Michael Rolnik

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=CAK4993iTLV2f-8CjOA62qkPLbNyVSjMu+JF3qcRD6tMPKw8b0g@mail.gmail.com \
    --to=mrolnik@gmail.com \
    --cc=aleksandar.m.mail@gmail.com \
    --cc=dovgaluk@ispras.ru \
    --cc=imammedo@redhat.com \
    --cc=me@xcancerberox.com.ar \
    --cc=philmd@redhat.com \
    --cc=qemu-devel@nongnu.org \
    --cc=richard.henderson@linaro.org \
    --cc=thuth@redhat.com \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).