All of lore.kernel.org
 help / color / mirror / Atom feed
From: Colin Cross <ccross@google.com>
To: linux-arm-kernel@lists.infradead.org
Subject: Re: [PATCH 0/4] Add a generic struct clk
Date: Tue, 24 May 2011 19:41:20 +0000	[thread overview]
Message-ID: <BANLkTinVnFasvOmu0MWRDzv21P3vM8eM6g@mail.gmail.com> (raw)
In-Reply-To: <20110524080936.GI20715@pengutronix.de>

On Tue, May 24, 2011 at 1:09 AM, Sascha Hauer <s.hauer@pengutronix.de> wrote:
> On Tue, May 24, 2011 at 12:31:13AM -0700, Colin Cross wrote:
>> On Mon, May 23, 2011 at 11:26 PM, Sascha Hauer <s.hauer@pengutronix.de> wrote:
>> > On Mon, May 23, 2011 at 04:12:24PM -0700, Colin Cross wrote:
>> >> >
>> >> >   tglx's plan is to create a separate struct clk_hwdata, which contains a
>> >> >   union of base data structures for common clocks: div, mux, gate, etc. The
>> >> >   ops callbacks are passed a clk_hw, plus a clk_hwdata, and most of the base
>> >> >   hwdata fields are handled within the core clock code. This means less
>> >> >   encapsulation of clock implementation logic, but more coverage of
>> >> >   clock basics through the core code.
>> >>
>> >> I don't think they should be a union, I think there should be 3
>> >> separate private datas, and three sets of clock ops, for the three
>> >> different types of clock blocks: rate changers (dividers and plls),
>> >> muxes, and gates.  These blocks are very often combined - a device
>> >> clock often has a mux and a divider, and clk_set_parent and
>> >> clk_set_rate on the same struct clk both need to work.
>> >
>> > The idea is to being able to propagate functions to the parent. It's
>> > very convenient for the implementation of clocks when they only
>> > implement either a divider, a mux or a gate. Combining all of these
>> > into a single clock leads to complicated clock trees and many different
>> > clocks where you can't factor out the common stuff.
>>
>> That seems complicated.  You end up with lots of extra clocks (meaning
>> more boilerplate in the platform files) that have no meaning in the
>> system (what is the clock between the mux and the divider in Tegra's
>> i2c1 clock, it can never feed any devices), and you have to figure out
>> at the framework level when to propagate and when to error out.  I'm
>> not even sure you can always find the right place to stop propagating
>> - do you just keep going up until the set_parent callback succeeds, or
>> exists, or what?
>
> For the set_parent there would be no propagating at all. For set_rate I
> can imagine a flag in the generic clock which tells whether to propagate
> set_rate or not.
>
>>
>> I think you can still factor out all the common code if you treat each
>> clock as a possible mux, divider, and gate combination.  Each part of
>> the clock is still just as abstractable as before - you can set the
>> rate_ops to be the generic single register divider implementation, and
>> the gate ops to be the generic single bit enable implementation.  The
>> idea of what a clock node is matches the HW design,
>
> The hardware design consists of only discrete rate changers (plls,
> dividers), muxes and gates. These are the only building blocks
> *every* hardware design has. I believe that many of the problems
> the current implementations have are due to the multiple building
> blocks stuffed into one clock. If you haven't already take a look
> at my i.MX5 clock patches:
>
> http://thread.gmane.org/gmane.linux.ports.arm.kernel/113631
>
> They need changes to fit onto the current patches and the rate
> propagation problem is not solved there, but the resulting clock
> data files are really short and nice to read. Furthermore it's easy
> to implement. Just look at the diagrams in the datasheet and go through
> them.

Propagation is what I'm trying simplify, because it's impossible at
the framework level to determine the right time to propagate, and the
right time to return an error, and I don't like pushing it down to
each clock implementation either, because then you need a "propagating
clk gate" and a "non-propagating clk gate".

Your building blocks implement every op - clk_gate_ops implements
set_rate as clk_parent_set_rate (won't that cause a deadlock on
prepare_lock when it calls clk_set_rate?).  I'm suggesting breaking
out the clock gate ops into a struct that only contains:
enable
disable
prepare
unprepare
And a rate ops struct that contains:
round_rate
set_rate
And a mux ops struct that contains
set_parent

For a single HW clock that has a mux, a gate, and a divider, the
existing implementation requires:
INIT_CLK(..., clk_mux_ops)
INIT_CLK(..., clk_div_ops)
INIT_CLK(..., clk_gate_ops)
which creates 3 clocks, and requires lots of propagation logic to
figure out how to call clk_set_rate on the single clock that is
exposed to the device, but not propagate it past the device clock if
the device clock doesn't have a divider (propagating it up to an
active pll feeding other devices results in disaster, at least on
Tegra).  This combination doesn't seem to be common in your MX code,
but _every_ Tegra device clock has these three parts.

With multiple smaller building blocks that can fit inside a clock, all
you need is:
INIT_CLK(..., clk_mux_ops, clk_div_ops, clk_gate_ops)
You have one struct clk, which is exposed to the device and matches
the datasheet.  If the clock has rate ops, clk_set_rate works with no
propagation.  If it doesn't have a rate, clk_rate_ops is NULL, and the
framework deal with propagation only in the case where it is really
propagation - a child clock that requires changing a parent clock.
The block abstraction is still in place, there are just 3 slots for
blocks within each clock.

Using a flag to mark clocks as "non-propagatable" is also not correct
- propagatability is a feature of the parent, not the child.

WARNING: multiple messages have this Message-ID
From: Colin Cross <ccross@google.com>
To: Sascha Hauer <s.hauer@pengutronix.de>
Cc: Jeremy Kerr <jeremy.kerr@canonical.com>,
	Thomas Gleixner <tglx@linutronix.de>,
	lkml <linux-kernel@vger.kernel.org>,
	"linux-arm-kernel@lists.infradead.org" 
	<linux-arm-kernel@lists.infradead.org>,
	linux-sh@vger.kernel.org
Subject: Re: [PATCH 0/4] Add a generic struct clk
Date: Tue, 24 May 2011 12:41:20 -0700	[thread overview]
Message-ID: <BANLkTinVnFasvOmu0MWRDzv21P3vM8eM6g@mail.gmail.com> (raw)
In-Reply-To: <20110524080936.GI20715@pengutronix.de>

On Tue, May 24, 2011 at 1:09 AM, Sascha Hauer <s.hauer@pengutronix.de> wrote:
> On Tue, May 24, 2011 at 12:31:13AM -0700, Colin Cross wrote:
>> On Mon, May 23, 2011 at 11:26 PM, Sascha Hauer <s.hauer@pengutronix.de> wrote:
>> > On Mon, May 23, 2011 at 04:12:24PM -0700, Colin Cross wrote:
>> >> >
>> >> >   tglx's plan is to create a separate struct clk_hwdata, which contains a
>> >> >   union of base data structures for common clocks: div, mux, gate, etc. The
>> >> >   ops callbacks are passed a clk_hw, plus a clk_hwdata, and most of the base
>> >> >   hwdata fields are handled within the core clock code. This means less
>> >> >   encapsulation of clock implementation logic, but more coverage of
>> >> >   clock basics through the core code.
>> >>
>> >> I don't think they should be a union, I think there should be 3
>> >> separate private datas, and three sets of clock ops, for the three
>> >> different types of clock blocks: rate changers (dividers and plls),
>> >> muxes, and gates.  These blocks are very often combined - a device
>> >> clock often has a mux and a divider, and clk_set_parent and
>> >> clk_set_rate on the same struct clk both need to work.
>> >
>> > The idea is to being able to propagate functions to the parent. It's
>> > very convenient for the implementation of clocks when they only
>> > implement either a divider, a mux or a gate. Combining all of these
>> > into a single clock leads to complicated clock trees and many different
>> > clocks where you can't factor out the common stuff.
>>
>> That seems complicated.  You end up with lots of extra clocks (meaning
>> more boilerplate in the platform files) that have no meaning in the
>> system (what is the clock between the mux and the divider in Tegra's
>> i2c1 clock, it can never feed any devices), and you have to figure out
>> at the framework level when to propagate and when to error out.  I'm
>> not even sure you can always find the right place to stop propagating
>> - do you just keep going up until the set_parent callback succeeds, or
>> exists, or what?
>
> For the set_parent there would be no propagating at all. For set_rate I
> can imagine a flag in the generic clock which tells whether to propagate
> set_rate or not.
>
>>
>> I think you can still factor out all the common code if you treat each
>> clock as a possible mux, divider, and gate combination.  Each part of
>> the clock is still just as abstractable as before - you can set the
>> rate_ops to be the generic single register divider implementation, and
>> the gate ops to be the generic single bit enable implementation.  The
>> idea of what a clock node is matches the HW design,
>
> The hardware design consists of only discrete rate changers (plls,
> dividers), muxes and gates. These are the only building blocks
> *every* hardware design has. I believe that many of the problems
> the current implementations have are due to the multiple building
> blocks stuffed into one clock. If you haven't already take a look
> at my i.MX5 clock patches:
>
> http://thread.gmane.org/gmane.linux.ports.arm.kernel/113631
>
> They need changes to fit onto the current patches and the rate
> propagation problem is not solved there, but the resulting clock
> data files are really short and nice to read. Furthermore it's easy
> to implement. Just look at the diagrams in the datasheet and go through
> them.

Propagation is what I'm trying simplify, because it's impossible at
the framework level to determine the right time to propagate, and the
right time to return an error, and I don't like pushing it down to
each clock implementation either, because then you need a "propagating
clk gate" and a "non-propagating clk gate".

Your building blocks implement every op - clk_gate_ops implements
set_rate as clk_parent_set_rate (won't that cause a deadlock on
prepare_lock when it calls clk_set_rate?).  I'm suggesting breaking
out the clock gate ops into a struct that only contains:
enable
disable
prepare
unprepare
And a rate ops struct that contains:
round_rate
set_rate
And a mux ops struct that contains
set_parent

For a single HW clock that has a mux, a gate, and a divider, the
existing implementation requires:
INIT_CLK(..., clk_mux_ops)
INIT_CLK(..., clk_div_ops)
INIT_CLK(..., clk_gate_ops)
which creates 3 clocks, and requires lots of propagation logic to
figure out how to call clk_set_rate on the single clock that is
exposed to the device, but not propagate it past the device clock if
the device clock doesn't have a divider (propagating it up to an
active pll feeding other devices results in disaster, at least on
Tegra).  This combination doesn't seem to be common in your MX code,
but _every_ Tegra device clock has these three parts.

With multiple smaller building blocks that can fit inside a clock, all
you need is:
INIT_CLK(..., clk_mux_ops, clk_div_ops, clk_gate_ops)
You have one struct clk, which is exposed to the device and matches
the datasheet.  If the clock has rate ops, clk_set_rate works with no
propagation.  If it doesn't have a rate, clk_rate_ops is NULL, and the
framework deal with propagation only in the case where it is really
propagation - a child clock that requires changing a parent clock.
The block abstraction is still in place, there are just 3 slots for
blocks within each clock.

Using a flag to mark clocks as "non-propagatable" is also not correct
- propagatability is a feature of the parent, not the child.

WARNING: multiple messages have this Message-ID
From: ccross@google.com (Colin Cross)
To: linux-arm-kernel@lists.infradead.org
Subject: [PATCH 0/4] Add a generic struct clk
Date: Tue, 24 May 2011 12:41:20 -0700	[thread overview]
Message-ID: <BANLkTinVnFasvOmu0MWRDzv21P3vM8eM6g@mail.gmail.com> (raw)
In-Reply-To: <20110524080936.GI20715@pengutronix.de>

On Tue, May 24, 2011 at 1:09 AM, Sascha Hauer <s.hauer@pengutronix.de> wrote:
> On Tue, May 24, 2011 at 12:31:13AM -0700, Colin Cross wrote:
>> On Mon, May 23, 2011 at 11:26 PM, Sascha Hauer <s.hauer@pengutronix.de> wrote:
>> > On Mon, May 23, 2011 at 04:12:24PM -0700, Colin Cross wrote:
>> >> >
>> >> > ? tglx's plan is to create a separate struct clk_hwdata, which contains a
>> >> > ? union of base data structures for common clocks: div, mux, gate, etc. The
>> >> > ? ops callbacks are passed a clk_hw, plus a clk_hwdata, and most of the base
>> >> > ? hwdata fields are handled within the core clock code. This means less
>> >> > ? encapsulation of clock implementation logic, but more coverage of
>> >> > ? clock basics through the core code.
>> >>
>> >> I don't think they should be a union, I think there should be 3
>> >> separate private datas, and three sets of clock ops, for the three
>> >> different types of clock blocks: rate changers (dividers and plls),
>> >> muxes, and gates. ?These blocks are very often combined - a device
>> >> clock often has a mux and a divider, and clk_set_parent and
>> >> clk_set_rate on the same struct clk both need to work.
>> >
>> > The idea is to being able to propagate functions to the parent. It's
>> > very convenient for the implementation of clocks when they only
>> > implement either a divider, a mux or a gate. Combining all of these
>> > into a single clock leads to complicated clock trees and many different
>> > clocks where you can't factor out the common stuff.
>>
>> That seems complicated. ?You end up with lots of extra clocks (meaning
>> more boilerplate in the platform files) that have no meaning in the
>> system (what is the clock between the mux and the divider in Tegra's
>> i2c1 clock, it can never feed any devices), and you have to figure out
>> at the framework level when to propagate and when to error out. ?I'm
>> not even sure you can always find the right place to stop propagating
>> - do you just keep going up until the set_parent callback succeeds, or
>> exists, or what?
>
> For the set_parent there would be no propagating at all. For set_rate I
> can imagine a flag in the generic clock which tells whether to propagate
> set_rate or not.
>
>>
>> I think you can still factor out all the common code if you treat each
>> clock as a possible mux, divider, and gate combination. ?Each part of
>> the clock is still just as abstractable as before - you can set the
>> rate_ops to be the generic single register divider implementation, and
>> the gate ops to be the generic single bit enable implementation. ?The
>> idea of what a clock node is matches the HW design,
>
> The hardware design consists of only discrete rate changers (plls,
> dividers), muxes and gates. These are the only building blocks
> *every* hardware design has. I believe that many of the problems
> the current implementations have are due to the multiple building
> blocks stuffed into one clock. If you haven't already take a look
> at my i.MX5 clock patches:
>
> http://thread.gmane.org/gmane.linux.ports.arm.kernel/113631
>
> They need changes to fit onto the current patches and the rate
> propagation problem is not solved there, but the resulting clock
> data files are really short and nice to read. Furthermore it's easy
> to implement. Just look at the diagrams in the datasheet and go through
> them.

Propagation is what I'm trying simplify, because it's impossible at
the framework level to determine the right time to propagate, and the
right time to return an error, and I don't like pushing it down to
each clock implementation either, because then you need a "propagating
clk gate" and a "non-propagating clk gate".

Your building blocks implement every op - clk_gate_ops implements
set_rate as clk_parent_set_rate (won't that cause a deadlock on
prepare_lock when it calls clk_set_rate?).  I'm suggesting breaking
out the clock gate ops into a struct that only contains:
enable
disable
prepare
unprepare
And a rate ops struct that contains:
round_rate
set_rate
And a mux ops struct that contains
set_parent

For a single HW clock that has a mux, a gate, and a divider, the
existing implementation requires:
INIT_CLK(..., clk_mux_ops)
INIT_CLK(..., clk_div_ops)
INIT_CLK(..., clk_gate_ops)
which creates 3 clocks, and requires lots of propagation logic to
figure out how to call clk_set_rate on the single clock that is
exposed to the device, but not propagate it past the device clock if
the device clock doesn't have a divider (propagating it up to an
active pll feeding other devices results in disaster, at least on
Tegra).  This combination doesn't seem to be common in your MX code,
but _every_ Tegra device clock has these three parts.

With multiple smaller building blocks that can fit inside a clock, all
you need is:
INIT_CLK(..., clk_mux_ops, clk_div_ops, clk_gate_ops)
You have one struct clk, which is exposed to the device and matches
the datasheet.  If the clock has rate ops, clk_set_rate works with no
propagation.  If it doesn't have a rate, clk_rate_ops is NULL, and the
framework deal with propagation only in the case where it is really
propagation - a child clock that requires changing a parent clock.
The block abstraction is still in place, there are just 3 slots for
blocks within each clock.

Using a flag to mark clocks as "non-propagatable" is also not correct
- propagatability is a feature of the parent, not the child.

  reply	other threads:[~2011-05-24 19:41 UTC|newest]

Thread overview: 139+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2011-05-20  7:27 Jeremy Kerr
2011-05-20  7:27 ` Jeremy Kerr
2011-05-20  7:27 ` Jeremy Kerr
2011-05-20  7:27 ` [PATCH 4/4] clk: Add simple gated clock Jeremy Kerr
2011-05-20  7:27   ` Jeremy Kerr
2011-05-20  7:27   ` Jeremy Kerr
2011-05-20 11:37   ` Arnd Bergmann
2011-05-20 11:37     ` Arnd Bergmann
2011-05-20 11:37     ` Arnd Bergmann
2011-05-20 22:19   ` Rob Herring
2011-05-20 22:19     ` Rob Herring
2011-05-20 22:19     ` Rob Herring
2011-05-20  7:27 ` [PATCH 2/4] clk: Implement clk_set_rate Jeremy Kerr
2011-05-20  7:27   ` Jeremy Kerr
2011-05-20  7:27   ` Jeremy Kerr
2011-05-20 12:25   ` Sascha Hauer
2011-05-20 12:25     ` Sascha Hauer
2011-05-20 12:25     ` Sascha Hauer
2011-05-24  7:59   ` Colin Cross
2011-05-24  7:59     ` Colin Cross
2011-05-24  7:59     ` Colin Cross
2011-05-25 19:03   ` Sascha Hauer
2011-05-25 19:03     ` Sascha Hauer
2011-05-25 19:03     ` Sascha Hauer
     [not found]     ` <1306373867.2875.162.camel@pororo>
2011-05-26  6:54       ` Sascha Hauer
2011-05-26  6:54         ` Sascha Hauer
2011-05-26  6:54         ` Sascha Hauer
2011-05-30  5:05   ` Mike Frysinger
2011-05-30  5:05     ` Mike Frysinger
2011-05-30  5:05     ` Mike Frysinger
2011-05-20  7:27 ` [PATCH 3/4] clk: Add fixed-rate clock Jeremy Kerr
2011-05-20  7:27   ` Jeremy Kerr
2011-05-20  7:27   ` Jeremy Kerr
2011-05-24  7:01   ` Francesco VIRLINZI
2011-05-30  5:01   ` Mike Frysinger
2011-05-30  5:01     ` Mike Frysinger
2011-05-30  5:01     ` Mike Frysinger
2011-05-30  5:02   ` Mike Frysinger
2011-05-30  5:02     ` Mike Frysinger
2011-05-30  5:02     ` Mike Frysinger
2011-05-20  7:27 ` [PATCH 1/4] clk: Add a generic clock infrastructure Jeremy Kerr
2011-05-20  7:27   ` Jeremy Kerr
2011-05-20  7:27   ` Jeremy Kerr
2011-05-20 11:59   ` Sascha Hauer
2011-05-20 11:59     ` Sascha Hauer
2011-05-20 11:59     ` Sascha Hauer
2011-05-20 13:25     ` Thomas Gleixner
2011-05-20 13:25       ` Thomas Gleixner
2011-05-20 13:25       ` Thomas Gleixner
2011-05-20 13:36       ` Sascha Hauer
2011-05-20 13:36         ` Sascha Hauer
2011-05-20 13:36         ` Sascha Hauer
2011-05-23 23:55   ` Colin Cross
2011-05-23 23:55     ` Colin Cross
2011-05-23 23:55     ` Colin Cross
2011-05-24  7:02     ` Sascha Hauer
2011-05-24  7:02       ` Sascha Hauer
2011-05-24  7:02       ` Sascha Hauer
2011-05-24  7:51       ` Colin Cross
2011-05-24  7:51         ` Colin Cross
2011-05-24  7:51         ` Colin Cross
2011-05-24  8:38         ` Sascha Hauer
2011-05-24  8:38           ` Sascha Hauer
2011-05-24  8:38           ` Sascha Hauer
2011-05-25 11:22           ` Richard Zhao
2011-05-25 11:22             ` Richard Zhao
2011-05-25 11:22             ` Richard Zhao
2011-05-25 11:43         ` Thomas Gleixner
2011-05-25 11:43           ` Thomas Gleixner
2011-05-25 11:43           ` Thomas Gleixner
2011-05-24  4:18   ` viresh kumar
2011-05-24  4:30     ` viresh kumar
2011-05-24  4:18     ` viresh kumar
2011-05-25 10:47   ` Richard Zhao
2011-05-25 10:47     ` Richard Zhao
2011-05-25 10:47     ` Richard Zhao
2011-05-30  5:00     ` Mike Frysinger
2011-05-30  5:00       ` Mike Frysinger
2011-05-30  5:00       ` Mike Frysinger
2011-05-23 23:12 ` [PATCH 0/4] Add a generic struct clk Colin Cross
2011-05-23 23:12   ` Colin Cross
2011-05-23 23:12   ` Colin Cross
2011-05-24  6:26   ` Sascha Hauer
2011-05-24  6:26     ` Sascha Hauer
2011-05-24  6:26     ` Sascha Hauer
2011-05-24  7:31     ` Colin Cross
2011-05-24  7:31       ` Colin Cross
2011-05-24  7:31       ` Colin Cross
2011-05-24  8:09       ` Sascha Hauer
2011-05-24  8:09         ` Sascha Hauer
2011-05-24  8:09         ` Sascha Hauer
2011-05-24 19:41         ` Colin Cross [this message]
2011-05-24 19:41           ` Colin Cross
2011-05-24 19:41           ` Colin Cross
2011-05-25  2:32           ` Richard Zhao
2011-05-25  2:32             ` Richard Zhao
2011-05-25  2:32             ` Richard Zhao
2011-05-25  6:23           ` Sascha Hauer
2011-05-25  6:23             ` Sascha Hauer
2011-05-25  6:23             ` Sascha Hauer
2011-05-25  7:51           ` Thomas Gleixner
2011-05-25  7:51             ` Thomas Gleixner
2011-05-25  7:51             ` Thomas Gleixner
2011-05-27 14:39           ` Mark Brown
2011-05-27 14:39             ` Mark Brown
2011-05-27 14:39             ` Mark Brown
2011-05-24 17:22   ` Richard Zhao
2011-05-24 17:22     ` Richard Zhao
2011-05-24 17:22     ` Richard Zhao
2011-05-24 17:52     ` Colin Cross
2011-05-24 17:52       ` Colin Cross
2011-05-24 17:52       ` Colin Cross
2011-05-25  2:08       ` Richard Zhao
2011-05-25  2:08         ` Richard Zhao
2011-05-25  2:08         ` Richard Zhao
2011-05-30  5:20 ` Mike Frysinger
2011-05-30  5:20   ` Mike Frysinger
2011-05-30  5:20   ` Mike Frysinger
2011-07-10  9:09 ` Mark Brown
2011-07-10  9:09   ` Mark Brown
2011-07-10  9:09   ` Mark Brown
2011-07-10  9:50   ` Russell King - ARM Linux
2011-07-10  9:50     ` Russell King - ARM Linux
2011-07-10  9:50     ` Russell King - ARM Linux
2011-07-10 10:00     ` Russell King - ARM Linux
2011-07-10 10:00       ` Russell King - ARM Linux
2011-07-10 10:00       ` Russell King - ARM Linux
2011-07-10 11:27     ` Mark Brown
2011-07-10 11:27       ` Mark Brown
2011-07-10 11:27       ` Mark Brown
2011-07-10 11:52       ` Russell King - ARM Linux
2011-07-10 11:52         ` Russell King - ARM Linux
2011-07-10 11:52         ` Russell King - ARM Linux
2011-07-11  2:49   ` Jeremy Kerr
2011-07-11  2:49     ` Jeremy Kerr
2011-07-11  2:49     ` Jeremy Kerr
2011-07-11  3:57     ` Mark Brown
2011-07-11  3:57       ` Mark Brown
2011-07-11  3:57       ` Mark Brown

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=BANLkTinVnFasvOmu0MWRDzv21P3vM8eM6g@mail.gmail.com \
    --to=ccross@google.com \
    --cc=linux-arm-kernel@lists.infradead.org \
    --subject='Re: [PATCH 0/4] Add a generic struct clk' \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link

This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.