All of lore.kernel.org
 help / color / mirror / Atom feed
* [PATCH] Use lib/swiotlb code for x86_64 SWIOTLB
@ 2007-02-15 22:59 Langsdorf, Mark
  2007-02-16  0:00 ` Keir Fraser
  0 siblings, 1 reply; 5+ messages in thread
From: Langsdorf, Mark @ 2007-02-15 22:59 UTC (permalink / raw)
  To: xen-devel

[-- Attachment #1: Type: text/plain, Size: 317 bytes --]

As part of my efforts to enable GART/IOMMU on x86_64,
I switch from using arch/i386/swiotlb-xen.c for the
SWIOTLB implementation to lib/swiotlb-xen.c for x86_64
processors.

After this patch is accepted, I'll submit the patch to
enable the GART/IOMMU.

Signed-off-by: Mark Langsdorf <mark.langsdorf@amd.com>

[-- Attachment #2: lib-swiotlb-for-x86_64.patch --]
[-- Type: application/octet-stream, Size: 37324 bytes --]

# HG changeset patch
# User root@iwillnow.amd.com
# Node ID d48089211e44b92bf7e0ae106dc5a167855aa9b6
# Parent  df25547d76382e14411ea36b72c37b8131596f8d
Move SWIOTLB support for x86_64 from i386 to lib/swiotlb-xen.c

diff -r df25547d7638 -r d48089211e44 linux-2.6-xen-sparse/arch/x86_64/kernel/Makefile
--- a/linux-2.6-xen-sparse/arch/x86_64/kernel/Makefile	Tue Feb 13 15:32:25 2007 +0000
+++ b/linux-2.6-xen-sparse/arch/x86_64/kernel/Makefile	Fri Feb 16 07:43:40 2007 -0600
@@ -59,7 +59,7 @@ alternative-y			+= ../../i386/kernel/alt
 
 ifdef CONFIG_XEN
 time-y				+= ../../i386/kernel/time-xen.o
-pci-dma-y			+= ../../i386/kernel/pci-dma-xen.o
+pci-dma-y			+= pci-dma-xen.o
 microcode-$(subst m,y,$(CONFIG_MICROCODE))  := ../../i386/kernel/microcode-xen.o
 intel_cacheinfo-y		:= ../../i386/kernel/cpu/intel_cacheinfo-xen.o
 quirks-y			:= ../../i386/kernel/quirks-xen.o
diff -r df25547d7638 -r d48089211e44 linux-2.6-xen-sparse/arch/x86_64/kernel/pci-swiotlb-xen.c
--- a/linux-2.6-xen-sparse/arch/x86_64/kernel/pci-swiotlb-xen.c	Tue Feb 13 15:32:25 2007 +0000
+++ b/linux-2.6-xen-sparse/arch/x86_64/kernel/pci-swiotlb-xen.c	Fri Feb 16 07:43:40 2007 -0600
@@ -8,13 +8,10 @@
 #include <asm/swiotlb.h>
 #include <asm/dma.h>
 
-#if 0
 int swiotlb __read_mostly;
 EXPORT_SYMBOL(swiotlb);
-#endif
 
 struct dma_mapping_ops swiotlb_dma_ops = {
-#if 0
 	.mapping_error = swiotlb_dma_mapping_error,
 	.alloc_coherent = swiotlb_alloc_coherent,
 	.free_coherent = swiotlb_free_coherent,
@@ -29,14 +26,12 @@ struct dma_mapping_ops swiotlb_dma_ops =
 	.map_sg = swiotlb_map_sg,
 	.unmap_sg = swiotlb_unmap_sg,
 	.dma_supported = NULL,
-#endif
 };
 
 void pci_swiotlb_init(void)
 {
-#if 0
 	/* don't initialize swiotlb if iommu=off (no_iommu=1) */
-	if (!iommu_detected && !no_iommu && end_pfn > MAX_DMA32_PFN)
+	if (!iommu_detected && !no_iommu)
 	       swiotlb = 1;
 	if (swiotlb_force)
 		swiotlb = 1;
@@ -45,11 +40,4 @@ void pci_swiotlb_init(void)
 		swiotlb_init();
 		dma_ops = &swiotlb_dma_ops;
 	}
-#else
-	swiotlb_init();
-	if (swiotlb) {
-		printk(KERN_INFO "PCI-DMA: Using software bounce buffering for IO (SWIOTLB)\n");
-		dma_ops = &swiotlb_dma_ops;
-	}
-#endif
 }
diff -r df25547d7638 -r d48089211e44 linux-2.6-xen-sparse/include/asm-x86_64/mach-xen/asm/dma-mapping.h
--- a/linux-2.6-xen-sparse/include/asm-x86_64/mach-xen/asm/dma-mapping.h	Tue Feb 13 15:32:25 2007 +0000
+++ b/linux-2.6-xen-sparse/include/asm-x86_64/mach-xen/asm/dma-mapping.h	Fri Feb 16 07:43:40 2007 -0600
@@ -62,7 +62,13 @@ static inline int valid_dma_direction(in
 		(dma_direction == DMA_FROM_DEVICE));
 }
 
-#if 0
+#ifndef CONFIG_XEN
+#define global_need_iommu() (end_pfn > MAX_DMA32_PFN)
+#else
+#include <xen/interface/memory.h>
+#define global_need_iommu() (HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL)>MAX_DMA32_PFN)
+#endif
+
 static inline int dma_mapping_error(dma_addr_t dma_addr)
 {
 	if (dma_ops->mapping_error)
@@ -200,8 +206,5 @@ dma_cache_sync(void *vaddr, size_t size,
 
 extern struct device fallback_dev;
 extern int panic_on_overflow;
-#endif
 
 #endif /* _X8664_DMA_MAPPING_H */
-
-#include <asm-i386/mach-xen/asm/dma-mapping.h>
diff -r df25547d7638 -r d48089211e44 linux-2.6-xen-sparse/lib/Makefile
--- a/linux-2.6-xen-sparse/lib/Makefile	Tue Feb 13 15:32:25 2007 +0000
+++ b/linux-2.6-xen-sparse/lib/Makefile	Fri Feb 16 07:43:40 2007 -0600
@@ -52,7 +52,6 @@ obj-$(CONFIG_AUDIT_GENERIC) += audit.o
 obj-$(CONFIG_AUDIT_GENERIC) += audit.o
 
 obj-$(CONFIG_SWIOTLB) += swiotlb.o
-swiotlb-$(CONFIG_XEN) := ../arch/i386/kernel/swiotlb.o
 
 hostprogs-y	:= gen_crc32table
 clean-files	:= crc32table.h
@@ -64,3 +63,12 @@ quiet_cmd_crc32 = GEN     $@
 
 $(obj)/crc32table.h: $(obj)/gen_crc32table
 	$(call cmd,crc32)
+
+ifdef CONFIG_XEN
+include $(srctree)/scripts/Makefile.xen
+
+obj-y := $(call filterxen, $(obj-y), $(n-obj-xen))
+obj-y := $(call cherrypickxen, $(obj-y))
+extra-y := $(call cherrypickxen, $(extra-y))
+endif
+
diff -r df25547d7638 -r d48089211e44 linux-2.6-xen-sparse/arch/x86_64/kernel/pci-dma-xen.c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/linux-2.6-xen-sparse/arch/x86_64/kernel/pci-dma-xen.c	Fri Feb 16 07:43:40 2007 -0600
@@ -0,0 +1,328 @@
+/*
+ * Dynamic DMA mapping support.
+ */
+
+#include <linux/types.h>
+#include <linux/mm.h>
+#include <linux/string.h>
+#include <linux/pci.h>
+#include <linux/module.h>
+#include <asm/io.h>
+#include <asm/proto.h>
+#include <asm/calgary.h>
+#include <xen/balloon.h>
+#include <asm/tlbflush.h>
+
+int iommu_merge __read_mostly = 0;
+EXPORT_SYMBOL(iommu_merge);
+
+dma_addr_t bad_dma_address __read_mostly;
+EXPORT_SYMBOL(bad_dma_address);
+
+/* This tells the BIO block layer to assume merging. Default to off
+   because we cannot guarantee merging later. */
+int iommu_bio_merge __read_mostly = 0;
+EXPORT_SYMBOL(iommu_bio_merge);
+
+int iommu_sac_force __read_mostly = 0;
+EXPORT_SYMBOL(iommu_sac_force);
+
+int no_iommu __read_mostly;
+#ifdef CONFIG_IOMMU_DEBUG
+int panic_on_overflow __read_mostly = 1;
+int force_iommu __read_mostly = 1;
+#else
+int panic_on_overflow __read_mostly = 0;
+int force_iommu __read_mostly= 0;
+#endif
+
+/* Set this to 1 if there is a HW IOMMU in the system */
+int iommu_detected __read_mostly = 0;
+
+/* Dummy device used for NULL arguments (normally ISA). Better would
+   be probably a smaller DMA mask, but this is bug-to-bug compatible
+   to i386. */
+struct device fallback_dev = {
+	.bus_id = "fallback device",
+	.coherent_dma_mask = DMA_32BIT_MASK,
+	.dma_mask = &fallback_dev.coherent_dma_mask,
+};
+
+/* Allocate DMA memory on node near device */
+noinline static void *
+dma_alloc_pages(struct device *dev, gfp_t gfp, unsigned order)
+{
+	struct page *page;
+	int node;
+#ifdef CONFIG_PCI
+	if (dev->bus == &pci_bus_type)
+		node = pcibus_to_node(to_pci_dev(dev)->bus);
+	else
+#endif
+		node = numa_node_id();
+
+	if (node < first_node(node_online_map))
+		node = first_node(node_online_map);
+
+	page = alloc_pages_node(node, gfp, order);
+	return page ? page_address(page) : NULL;
+}
+
+/*
+ * Allocate memory for a coherent mapping.
+ */
+void *
+dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
+		   gfp_t gfp)
+{
+	void *memory;
+	unsigned long dma_mask = 0;
+	u64 bus;
+
+	if (!dev)
+		dev = &fallback_dev;
+	dma_mask = dev->coherent_dma_mask;
+	if (dma_mask == 0)
+		dma_mask = DMA_32BIT_MASK;
+
+	/* Don't invoke OOM killer */
+	gfp |= __GFP_NORETRY;
+
+	/* Kludge to make it bug-to-bug compatible with i386. i386
+	   uses the normal dma_mask for alloc_coherent. */
+	dma_mask &= *dev->dma_mask;
+
+	/* Why <=? Even when the mask is smaller than 4GB it is often
+	   larger than 16MB and in this case we have a chance of
+	   finding fitting memory in the next higher zone first. If
+	   not retry with true GFP_DMA. -AK */
+	if (dma_mask <= DMA_32BIT_MASK)
+		gfp |= GFP_DMA32;
+
+ again:
+	memory = dma_alloc_pages(dev, gfp, get_order(size));
+	if (memory == NULL)
+		return NULL;
+
+	{
+		int high, mmu;
+		bus = virt_to_bus(memory);
+	        high = (bus + size) >= dma_mask;
+		mmu = high;
+		if (force_iommu && !(gfp & GFP_DMA))
+			mmu = 1;
+		else if (high) {
+			free_pages((unsigned long)memory,
+				   get_order(size));
+
+			/* Don't use the 16MB ZONE_DMA unless absolutely
+			   needed. It's better to use remapping first. */
+			if (dma_mask < DMA_32BIT_MASK && !(gfp & GFP_DMA)) {
+				gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
+				goto again;
+			}
+
+			/* Let low level make its own zone decisions */
+			gfp &= ~(GFP_DMA32|GFP_DMA);
+
+			if (dma_ops->alloc_coherent)
+				return dma_ops->alloc_coherent(dev, size,
+							   dma_handle, gfp);
+			return NULL;
+		}
+
+		/* Hardcode 31 address bits for now: aacraid limitation. */
+		if (xen_create_contiguous_region((unsigned long)memory, get_order(size), 31) != 0) {
+			free_pages((unsigned long)memory, get_order(size));
+			return NULL;
+		}
+
+		memset(memory, 0, size);
+		if (!mmu) {
+			*dma_handle = virt_to_bus(memory);
+			return memory;
+		}
+	}
+
+	if (dma_ops->alloc_coherent) {
+		free_pages((unsigned long)memory, get_order(size));
+		gfp &= ~(GFP_DMA|GFP_DMA32);
+		return dma_ops->alloc_coherent(dev, size, dma_handle, gfp);
+	}
+
+	if (dma_ops->map_simple) {
+		*dma_handle = dma_ops->map_simple(dev, memory,
+					      size,
+					      PCI_DMA_BIDIRECTIONAL);
+		if (*dma_handle != bad_dma_address)
+			return memory;
+	}
+
+	if (panic_on_overflow)
+		panic("dma_alloc_coherent: IOMMU overflow by %lu bytes\n",size);
+	free_pages((unsigned long)memory, get_order(size));
+	return NULL;
+}
+EXPORT_SYMBOL(dma_alloc_coherent);
+
+/*
+ * Unmap coherent memory.
+ * The caller must ensure that the device has finished accessing the mapping.
+ */
+void dma_free_coherent(struct device *dev, size_t size,
+			 void *vaddr, dma_addr_t bus)
+{
+	if (dma_ops->unmap_single)
+		dma_ops->unmap_single(dev, bus, size, 0);
+	xen_destroy_contiguous_region((unsigned long) vaddr, get_order(size));
+	free_pages((unsigned long)vaddr, get_order(size));
+}
+EXPORT_SYMBOL(dma_free_coherent);
+
+int dma_supported(struct device *dev, u64 mask)
+{
+	if (dma_ops->dma_supported)
+		return dma_ops->dma_supported(dev, mask);
+
+	/* Copied from i386. Doesn't make much sense, because it will
+	   only work for pci_alloc_coherent.
+	   The caller just has to use GFP_DMA in this case. */
+        if (mask < DMA_24BIT_MASK)
+                return 0;
+
+	/* Tell the device to use SAC when IOMMU force is on.  This
+	   allows the driver to use cheaper accesses in some cases.
+
+	   Problem with this is that if we overflow the IOMMU area and
+	   return DAC as fallback address the device may not handle it
+	   correctly.
+
+	   As a special case some controllers have a 39bit address
+	   mode that is as efficient as 32bit (aic79xx). Don't force
+	   SAC for these.  Assume all masks <= 40 bits are of this
+	   type. Normally this doesn't make any difference, but gives
+	   more gentle handling of IOMMU overflow. */
+	if (iommu_sac_force && (mask >= DMA_40BIT_MASK)) {
+		printk(KERN_INFO "%s: Force SAC with mask %Lx\n", dev->bus_id,mask);
+		return 0;
+	}
+
+	return 1;
+}
+EXPORT_SYMBOL(dma_supported);
+
+int dma_set_mask(struct device *dev, u64 mask)
+{
+	if (!dev->dma_mask || !dma_supported(dev, mask))
+		return -EIO;
+	*dev->dma_mask = mask;
+	return 0;
+}
+EXPORT_SYMBOL(dma_set_mask);
+
+/* iommu=[size][,noagp][,off][,force][,noforce][,leak][,memaper[=order]][,merge]
+         [,forcesac][,fullflush][,nomerge][,biomerge]
+   size  set size of iommu (in bytes)
+   noagp don't initialize the AGP driver and use full aperture.
+   off   don't use the IOMMU
+   leak  turn on simple iommu leak tracing (only when CONFIG_IOMMU_LEAK is on)
+   memaper[=order] allocate an own aperture over RAM with size 32MB^order.
+   noforce don't force IOMMU usage. Default.
+   force  Force IOMMU.
+   merge  Do lazy merging. This may improve performance on some block devices.
+          Implies force (experimental)
+   biomerge Do merging at the BIO layer. This is more efficient than merge,
+            but should be only done with very big IOMMUs. Implies merge,force.
+   nomerge Don't do SG merging.
+   forcesac For SAC mode for masks <40bits  (experimental)
+   fullflush Flush IOMMU on each allocation (default)
+   nofullflush Don't use IOMMU fullflush
+   allowed  overwrite iommu off workarounds for specific chipsets.
+   soft	 Use software bounce buffering (default for Intel machines)
+   noaperture Don't touch the aperture for AGP.
+*/
+__init int iommu_setup(char *p)
+{
+    iommu_merge = 1;
+
+    while (*p) {
+	    if (!strncmp(p,"off",3))
+		    no_iommu = 1;
+	    /* gart_parse_options has more force support */
+	    if (!strncmp(p,"force",5))
+		    force_iommu = 1;
+	    if (!strncmp(p,"noforce",7)) {
+		    iommu_merge = 0;
+		    force_iommu = 0;
+	    }
+
+	    if (!strncmp(p, "biomerge",8)) {
+		    iommu_bio_merge = 4096;
+		    iommu_merge = 1;
+		    force_iommu = 1;
+	    }
+	    if (!strncmp(p, "panic",5))
+		    panic_on_overflow = 1;
+	    if (!strncmp(p, "nopanic",7))
+		    panic_on_overflow = 0;
+	    if (!strncmp(p, "merge",5)) {
+		    iommu_merge = 1;
+		    force_iommu = 1;
+	    }
+	    if (!strncmp(p, "nomerge",7))
+		    iommu_merge = 0;
+	    if (!strncmp(p, "forcesac",8))
+		    iommu_sac_force = 1;
+
+#ifdef CONFIG_SWIOTLB
+	    if (!strncmp(p, "soft",4))
+		    swiotlb = 1;
+#endif
+
+#ifdef CONFIG_IOMMU
+	    gart_parse_options(p);
+#endif
+
+	    p += strcspn(p, ",");
+	    if (*p == ',')
+		    ++p;
+    }
+    return 1;
+}
+__setup("iommu=", iommu_setup);
+
+void __init pci_iommu_alloc(void)
+{
+	/*
+	 * The order of these functions is important for
+	 * fall-back/fail-over reasons
+	 */
+#ifdef CONFIG_IOMMU
+	iommu_hole_init();
+#endif
+
+#ifdef CONFIG_CALGARY_IOMMU
+	detect_calgary();
+#endif
+
+#ifdef CONFIG_SWIOTLB
+	pci_swiotlb_init();
+#endif
+}
+
+static int __init pci_iommu_init(void)
+{
+#ifdef CONFIG_CALGARY_IOMMU
+	calgary_iommu_init();
+#endif
+
+#ifdef CONFIG_IOMMU
+	gart_iommu_init();
+#endif
+
+	no_iommu_init();
+	return 0;
+}
+
+/* Must execute after PCI subsystem */
+fs_initcall(pci_iommu_init);
diff -r df25547d7638 -r d48089211e44 linux-2.6-xen-sparse/lib/swiotlb-xen.c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/linux-2.6-xen-sparse/lib/swiotlb-xen.c	Fri Feb 16 07:43:40 2007 -0600
@@ -0,0 +1,803 @@
+/*
+ * Dynamic DMA mapping support.
+ *
+ * This implementation is for IA-64 and EM64T platforms that do not support
+ * I/O TLBs (aka DMA address translation hardware).
+ * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
+ * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
+ * Copyright (C) 2000, 2003 Hewlett-Packard Co
+ *	David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
+ * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
+ *			unnecessary i-cache flushing.
+ * 04/07/.. ak		Better overflow handling. Assorted fixes.
+ * 05/09/10 linville	Add support for syncing ranges, support syncing for
+ *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
+ */
+
+#include <linux/cache.h>
+#include <linux/dma-mapping.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/spinlock.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/ctype.h>
+
+#include <asm/io.h>
+#include <asm/dma.h>
+#include <asm/scatterlist.h>
+
+#include <linux/init.h>
+#include <linux/bootmem.h>
+
+#define OFFSET(val,align) ((unsigned long)	\
+	                   ( (val) & ( (align) - 1)))
+
+#define SG_ENT_VIRT_ADDRESS(sg)	(page_address((sg)->page) + (sg)->offset)
+#define SG_ENT_PHYS_ADDRESS(SG)	virt_to_bus(SG_ENT_VIRT_ADDRESS(SG))
+
+/*
+ * Maximum allowable number of contiguous slabs to map,
+ * must be a power of 2.  What is the appropriate value ?
+ * The complexity of {map,unmap}_single is linearly dependent on this value.
+ */
+#define IO_TLB_SEGSIZE	128
+
+/*
+ * log of the size of each IO TLB slab.  The number of slabs is command line
+ * controllable.
+ */
+#define IO_TLB_SHIFT 11
+
+#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
+
+/*
+ * Minimum IO TLB size to bother booting with.  Systems with mainly
+ * 64bit capable cards will only lightly use the swiotlb.  If we can't
+ * allocate a contiguous 1MB, we're probably in trouble anyway.
+ */
+#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
+
+/*
+ * Enumeration for sync targets
+ */
+enum dma_sync_target {
+	SYNC_FOR_CPU = 0,
+	SYNC_FOR_DEVICE = 1,
+};
+
+int swiotlb_force;
+
+/*
+ * Used to do a quick range check in swiotlb_unmap_single and
+ * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
+ * API.
+ */
+static char *io_tlb_start, *io_tlb_end;
+
+/*
+ * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
+ * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
+ */
+static unsigned long io_tlb_nslabs;
+
+/*
+ * When the IOMMU overflows we return a fallback buffer. This sets the size.
+ */
+static unsigned long io_tlb_overflow = 32*1024;
+
+void *io_tlb_overflow_buffer;
+
+/*
+ * This is a free list describing the number of free entries available from
+ * each index
+ */
+static unsigned int *io_tlb_list;
+static unsigned int io_tlb_index;
+
+/*
+ * We need to save away the original address corresponding to a mapped entry
+ * for the sync operations.
+ */
+static unsigned char **io_tlb_orig_addr;
+
+/*
+ * Protect the above data structures in the map and unmap calls
+ */
+static DEFINE_SPINLOCK(io_tlb_lock);
+
+static int __init
+setup_io_tlb_npages(char *str)
+{
+	if (isdigit(*str)) {
+		io_tlb_nslabs = simple_strtoul(str, &str, 0);
+		/* avoid tail segment of size < IO_TLB_SEGSIZE */
+		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
+	}
+	if (*str == ',')
+		++str;
+	if (!strcmp(str, "force"))
+		swiotlb_force = 1;
+	return 1;
+}
+__setup("swiotlb=", setup_io_tlb_npages);
+/* make io_tlb_overflow tunable too? */
+
+/*
+ * Statically reserve bounce buffer space and initialize bounce buffer data
+ * structures for the software IO TLB used to implement the DMA API.
+ */
+void
+swiotlb_init_with_default_size (size_t default_size)
+{
+	unsigned long i;
+
+	if (!io_tlb_nslabs) {
+		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
+		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
+	}
+
+	/*
+	 * Get IO TLB memory from the low pages
+	 */
+	io_tlb_start = alloc_bootmem_low_pages(io_tlb_nslabs * (1 << IO_TLB_SHIFT));
+	if (!io_tlb_start)
+		panic("Cannot allocate SWIOTLB buffer");
+	io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
+
+	/*
+	 * Allocate and initialize the free list array.  This array is used
+	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
+	 * between io_tlb_start and io_tlb_end.
+	 */
+	io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
+	for (i = 0; i < io_tlb_nslabs; i++)
+ 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
+	io_tlb_index = 0;
+	io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *));
+
+	/*
+	 * Get the overflow emergency buffer
+	 */
+	io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
+	printk(KERN_INFO "Placing software IO TLB between 0x%lx - 0x%lx\n",
+	       virt_to_bus(io_tlb_start), virt_to_bus(io_tlb_end));
+}
+
+void
+swiotlb_init (void)
+{
+	swiotlb_init_with_default_size(64 * (1<<20));	/* default to 64MB */
+}
+
+/*
+ * Systems with larger DMA zones (those that don't support ISA) can
+ * initialize the swiotlb later using the slab allocator if needed.
+ * This should be just like above, but with some error catching.
+ */
+int
+swiotlb_late_init_with_default_size (size_t default_size)
+{
+	unsigned long i, req_nslabs = io_tlb_nslabs;
+	unsigned int order;
+
+	if (!io_tlb_nslabs) {
+		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
+		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
+	}
+
+	/*
+	 * Get IO TLB memory from the low pages
+	 */
+	order = get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT));
+	io_tlb_nslabs = SLABS_PER_PAGE << order;
+
+	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
+		io_tlb_start = (char *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
+		                                        order);
+		if (io_tlb_start)
+			break;
+		order--;
+	}
+
+	if (!io_tlb_start)
+		goto cleanup1;
+
+	if (order != get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT))) {
+		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
+		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
+		io_tlb_nslabs = SLABS_PER_PAGE << order;
+	}
+	io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT);
+	memset(io_tlb_start, 0, io_tlb_nslabs * (1 << IO_TLB_SHIFT));
+
+	/*
+	 * Allocate and initialize the free list array.  This array is used
+	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
+	 * between io_tlb_start and io_tlb_end.
+	 */
+	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
+	                              get_order(io_tlb_nslabs * sizeof(int)));
+	if (!io_tlb_list)
+		goto cleanup2;
+
+	for (i = 0; i < io_tlb_nslabs; i++)
+ 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
+	io_tlb_index = 0;
+
+	io_tlb_orig_addr = (unsigned char **)__get_free_pages(GFP_KERNEL,
+	                           get_order(io_tlb_nslabs * sizeof(char *)));
+	if (!io_tlb_orig_addr)
+		goto cleanup3;
+
+	memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(char *));
+
+	/*
+	 * Get the overflow emergency buffer
+	 */
+	io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
+	                                          get_order(io_tlb_overflow));
+	if (!io_tlb_overflow_buffer)
+		goto cleanup4;
+
+	printk(KERN_INFO "Placing %ldMB software IO TLB between 0x%lx - "
+	       "0x%lx\n", (io_tlb_nslabs * (1 << IO_TLB_SHIFT)) >> 20,
+	       virt_to_bus(io_tlb_start), virt_to_bus(io_tlb_end));
+
+	return 0;
+
+cleanup4:
+	free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs *
+	                                                      sizeof(char *)));
+	io_tlb_orig_addr = NULL;
+cleanup3:
+	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
+	                                                 sizeof(int)));
+	io_tlb_list = NULL;
+	io_tlb_end = NULL;
+cleanup2:
+	free_pages((unsigned long)io_tlb_start, order);
+	io_tlb_start = NULL;
+cleanup1:
+	io_tlb_nslabs = req_nslabs;
+	return -ENOMEM;
+}
+
+static inline int
+address_needs_mapping(struct device *hwdev, dma_addr_t addr)
+{
+	dma_addr_t mask = 0xffffffff;
+	/* If the device has a mask, use it, otherwise default to 32 bits */
+	if (hwdev && hwdev->dma_mask)
+		mask = *hwdev->dma_mask;
+	return (addr & ~mask) != 0;
+}
+
+/*
+ * Allocates bounce buffer and returns its kernel virtual address.
+ */
+static void *
+map_single(struct device *hwdev, char *buffer, size_t size, int dir)
+{
+	unsigned long flags;
+	char *dma_addr;
+	unsigned int nslots, stride, index, wrap;
+	int i;
+
+	/*
+	 * For mappings greater than a page, we limit the stride (and
+	 * hence alignment) to a page size.
+	 */
+	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
+	if (size > PAGE_SIZE)
+		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
+	else
+		stride = 1;
+
+	BUG_ON(!nslots);
+
+	/*
+	 * Find suitable number of IO TLB entries size that will fit this
+	 * request and allocate a buffer from that IO TLB pool.
+	 */
+	spin_lock_irqsave(&io_tlb_lock, flags);
+	{
+		wrap = index = ALIGN(io_tlb_index, stride);
+
+		if (index >= io_tlb_nslabs)
+			wrap = index = 0;
+
+		do {
+			/*
+			 * If we find a slot that indicates we have 'nslots'
+			 * number of contiguous buffers, we allocate the
+			 * buffers from that slot and mark the entries as '0'
+			 * indicating unavailable.
+			 */
+			if (io_tlb_list[index] >= nslots) {
+				int count = 0;
+
+				for (i = index; i < (int) (index + nslots); i++)
+					io_tlb_list[i] = 0;
+				for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
+					io_tlb_list[i] = ++count;
+				dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
+
+				/*
+				 * Update the indices to avoid searching in
+				 * the next round.
+				 */
+				io_tlb_index = ((index + nslots) < io_tlb_nslabs
+						? (index + nslots) : 0);
+
+				goto found;
+			}
+			index += stride;
+			if (index >= io_tlb_nslabs)
+				index = 0;
+		} while (index != wrap);
+
+		spin_unlock_irqrestore(&io_tlb_lock, flags);
+		return NULL;
+	}
+  found:
+	spin_unlock_irqrestore(&io_tlb_lock, flags);
+
+	/*
+	 * Save away the mapping from the original address to the DMA address.
+	 * This is needed when we sync the memory.  Then we sync the buffer if
+	 * needed.
+	 */
+	io_tlb_orig_addr[index] = buffer;
+	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
+		memcpy(dma_addr, buffer, size);
+
+	return dma_addr;
+}
+
+/*
+ * dma_addr is the kernel virtual address of the bounce buffer to unmap.
+ */
+static void
+unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
+{
+	unsigned long flags;
+	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
+	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
+	char *buffer = io_tlb_orig_addr[index];
+
+	/*
+	 * First, sync the memory before unmapping the entry
+	 */
+	if (buffer && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
+		/*
+		 * bounce... copy the data back into the original buffer * and
+		 * delete the bounce buffer.
+		 */
+		memcpy(buffer, dma_addr, size);
+
+	/*
+	 * Return the buffer to the free list by setting the corresponding
+	 * entries to indicate the number of contigous entries available.
+	 * While returning the entries to the free list, we merge the entries
+	 * with slots below and above the pool being returned.
+	 */
+	spin_lock_irqsave(&io_tlb_lock, flags);
+	{
+		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
+			 io_tlb_list[index + nslots] : 0);
+		/*
+		 * Step 1: return the slots to the free list, merging the
+		 * slots with superceeding slots
+		 */
+		for (i = index + nslots - 1; i >= index; i--)
+			io_tlb_list[i] = ++count;
+		/*
+		 * Step 2: merge the returned slots with the preceding slots,
+		 * if available (non zero)
+		 */
+		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
+			io_tlb_list[i] = ++count;
+	}
+	spin_unlock_irqrestore(&io_tlb_lock, flags);
+}
+
+static void
+sync_single(struct device *hwdev, char *dma_addr, size_t size,
+	    int dir, int target)
+{
+	int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
+	char *buffer = io_tlb_orig_addr[index];
+
+	switch (target) {
+	case SYNC_FOR_CPU:
+		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
+			memcpy(buffer, dma_addr, size);
+		else
+			BUG_ON(dir != DMA_TO_DEVICE);
+		break;
+	case SYNC_FOR_DEVICE:
+		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
+			memcpy(dma_addr, buffer, size);
+		else
+			BUG_ON(dir != DMA_FROM_DEVICE);
+		break;
+	default:
+		BUG();
+	}
+}
+
+void *
+swiotlb_alloc_coherent(struct device *hwdev, size_t size,
+		       dma_addr_t *dma_handle, gfp_t flags)
+{
+	unsigned long dev_addr;
+	void *ret;
+	int order = get_order(size);
+
+	/*
+	 * XXX fix me: the DMA API should pass us an explicit DMA mask
+	 * instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32
+	 * bit range instead of a 16MB one).
+	 */
+	flags |= GFP_DMA;
+
+	ret = (void *)__get_free_pages(flags, order);
+	if (ret && address_needs_mapping(hwdev, virt_to_bus(ret))) {
+		/*
+		 * The allocated memory isn't reachable by the device.
+		 * Fall back on swiotlb_map_single().
+		 */
+		free_pages((unsigned long) ret, order);
+		ret = NULL;
+	}
+	if (!ret) {
+		/*
+		 * We are either out of memory or the device can't DMA
+		 * to GFP_DMA memory; fall back on
+		 * swiotlb_map_single(), which will grab memory from
+		 * the lowest available address range.
+		 */
+		dma_addr_t handle;
+		handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE);
+		if (swiotlb_dma_mapping_error(handle))
+			return NULL;
+
+		ret = bus_to_virt(handle);
+	}
+
+	memset(ret, 0, size);
+	dev_addr = virt_to_bus(ret);
+
+	/* Confirm address can be DMA'd by device */
+	if (address_needs_mapping(hwdev, dev_addr)) {
+		printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016lx\n",
+		       (unsigned long long)*hwdev->dma_mask, dev_addr);
+		panic("swiotlb_alloc_coherent: allocated memory is out of "
+		      "range for device");
+	}
+	*dma_handle = dev_addr;
+	return ret;
+}
+
+void
+swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
+		      dma_addr_t dma_handle)
+{
+	if (!(vaddr >= (void *)io_tlb_start
+                    && vaddr < (void *)io_tlb_end))
+		free_pages((unsigned long) vaddr, get_order(size));
+	else
+		/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
+		swiotlb_unmap_single (hwdev, dma_handle, size, DMA_TO_DEVICE);
+}
+
+static void
+swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
+{
+	/*
+	 * Ran out of IOMMU space for this operation. This is very bad.
+	 * Unfortunately the drivers cannot handle this operation properly.
+	 * unless they check for dma_mapping_error (most don't)
+	 * When the mapping is small enough return a static buffer to limit
+	 * the damage, or panic when the transfer is too big.
+	 */
+	printk(KERN_ERR "DMA: Out of SW-IOMMU space for %lu bytes at "
+	       "device %s\n", size, dev ? dev->bus_id : "?");
+
+	if (size > io_tlb_overflow && do_panic) {
+		if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
+			panic("DMA: Memory would be corrupted\n");
+		if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
+			panic("DMA: Random memory would be DMAed\n");
+	}
+}
+
+/*
+ * Map a single buffer of the indicated size for DMA in streaming mode.  The
+ * physical address to use is returned.
+ *
+ * Once the device is given the dma address, the device owns this memory until
+ * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
+ */
+dma_addr_t
+swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
+{
+	unsigned long dev_addr = virt_to_bus(ptr);
+	void *map;
+
+	BUG_ON(dir == DMA_NONE);
+	/*
+	 * If the pointer passed in happens to be in the device's DMA window,
+	 * we can safely return the device addr and not worry about bounce
+	 * buffering it.
+	 */
+	if (!address_needs_mapping(hwdev, dev_addr) && !swiotlb_force)
+		return dev_addr;
+
+	/*
+	 * Oh well, have to allocate and map a bounce buffer.
+	 */
+	map = map_single(hwdev, ptr, size, dir);
+	if (!map) {
+		swiotlb_full(hwdev, size, dir, 1);
+		map = io_tlb_overflow_buffer;
+	}
+
+	dev_addr = virt_to_bus(map);
+
+	/*
+	 * Ensure that the address returned is DMA'ble
+	 */
+	if (address_needs_mapping(hwdev, dev_addr))
+		panic("map_single: bounce buffer is not DMA'ble");
+
+	return dev_addr;
+}
+
+/*
+ * Since DMA is i-cache coherent, any (complete) pages that were written via
+ * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
+ * flush them when they get mapped into an executable vm-area.
+ */
+static void
+mark_clean(void *addr, size_t size)
+{
+	unsigned long pg_addr, end;
+
+	pg_addr = PAGE_ALIGN((unsigned long) addr);
+	end = (unsigned long) addr + size;
+	while (pg_addr + PAGE_SIZE <= end) {
+		struct page *page = virt_to_page(pg_addr);
+		set_bit(PG_arch_1, &page->flags);
+		pg_addr += PAGE_SIZE;
+	}
+}
+
+/*
+ * Unmap a single streaming mode DMA translation.  The dma_addr and size must
+ * match what was provided for in a previous swiotlb_map_single call.  All
+ * other usages are undefined.
+ *
+ * After this call, reads by the cpu to the buffer are guaranteed to see
+ * whatever the device wrote there.
+ */
+void
+swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
+		     int dir)
+{
+	char *dma_addr = bus_to_virt(dev_addr);
+
+	BUG_ON(dir == DMA_NONE);
+	if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
+		unmap_single(hwdev, dma_addr, size, dir);
+	else if (dir == DMA_FROM_DEVICE)
+		mark_clean(dma_addr, size);
+}
+
+/*
+ * Make physical memory consistent for a single streaming mode DMA translation
+ * after a transfer.
+ *
+ * If you perform a swiotlb_map_single() but wish to interrogate the buffer
+ * using the cpu, yet do not wish to teardown the dma mapping, you must
+ * call this function before doing so.  At the next point you give the dma
+ * address back to the card, you must first perform a
+ * swiotlb_dma_sync_for_device, and then the device again owns the buffer
+ */
+static inline void
+swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
+		    size_t size, int dir, int target)
+{
+	char *dma_addr = bus_to_virt(dev_addr);
+
+	BUG_ON(dir == DMA_NONE);
+	if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
+		sync_single(hwdev, dma_addr, size, dir, target);
+	else if (dir == DMA_FROM_DEVICE)
+		mark_clean(dma_addr, size);
+}
+
+void
+swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
+			    size_t size, int dir)
+{
+	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
+}
+
+void
+swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
+			       size_t size, int dir)
+{
+	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
+}
+
+/*
+ * Same as above, but for a sub-range of the mapping.
+ */
+static inline void
+swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
+			  unsigned long offset, size_t size,
+			  int dir, int target)
+{
+	char *dma_addr = bus_to_virt(dev_addr) + offset;
+
+	BUG_ON(dir == DMA_NONE);
+	if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end)
+		sync_single(hwdev, dma_addr, size, dir, target);
+	else if (dir == DMA_FROM_DEVICE)
+		mark_clean(dma_addr, size);
+}
+
+void
+swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
+				  unsigned long offset, size_t size, int dir)
+{
+	swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
+				  SYNC_FOR_CPU);
+}
+
+void
+swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
+				     unsigned long offset, size_t size, int dir)
+{
+	swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
+				  SYNC_FOR_DEVICE);
+}
+
+/*
+ * Map a set of buffers described by scatterlist in streaming mode for DMA.
+ * This is the scatter-gather version of the above swiotlb_map_single
+ * interface.  Here the scatter gather list elements are each tagged with the
+ * appropriate dma address and length.  They are obtained via
+ * sg_dma_{address,length}(SG).
+ *
+ * NOTE: An implementation may be able to use a smaller number of
+ *       DMA address/length pairs than there are SG table elements.
+ *       (for example via virtual mapping capabilities)
+ *       The routine returns the number of addr/length pairs actually
+ *       used, at most nents.
+ *
+ * Device ownership issues as mentioned above for swiotlb_map_single are the
+ * same here.
+ */
+int
+swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
+	       int dir)
+{
+	void *addr;
+	unsigned long dev_addr;
+	int i;
+
+	BUG_ON(dir == DMA_NONE);
+
+	for (i = 0; i < nelems; i++, sg++) {
+		addr = SG_ENT_VIRT_ADDRESS(sg);
+		dev_addr = virt_to_bus(addr);
+		if (swiotlb_force || address_needs_mapping(hwdev, dev_addr)) {
+			void *map = map_single(hwdev, addr, sg->length, dir);
+			sg->dma_address = virt_to_bus(map);
+			if (!map) {
+				/* Don't panic here, we expect map_sg users
+				   to do proper error handling. */
+				swiotlb_full(hwdev, sg->length, dir, 0);
+				swiotlb_unmap_sg(hwdev, sg - i, i, dir);
+				sg[0].dma_length = 0;
+				return 0;
+			}
+		} else
+			sg->dma_address = dev_addr;
+		sg->dma_length = sg->length;
+	}
+	return nelems;
+}
+
+/*
+ * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
+ * concerning calls here are the same as for swiotlb_unmap_single() above.
+ */
+void
+swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nelems,
+		 int dir)
+{
+	int i;
+
+	BUG_ON(dir == DMA_NONE);
+
+	for (i = 0; i < nelems; i++, sg++)
+		if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
+			unmap_single(hwdev, (void *) bus_to_virt(sg->dma_address), sg->dma_length, dir);
+		else if (dir == DMA_FROM_DEVICE)
+			mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
+}
+
+/*
+ * Make physical memory consistent for a set of streaming mode DMA translations
+ * after a transfer.
+ *
+ * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
+ * and usage.
+ */
+static inline void
+swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sg,
+		int nelems, int dir, int target)
+{
+	int i;
+
+	BUG_ON(dir == DMA_NONE);
+
+	for (i = 0; i < nelems; i++, sg++)
+		if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
+			sync_single(hwdev, (void *) sg->dma_address,
+				    sg->dma_length, dir, target);
+}
+
+void
+swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
+			int nelems, int dir)
+{
+	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
+}
+
+void
+swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
+			   int nelems, int dir)
+{
+	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
+}
+
+int
+swiotlb_dma_mapping_error(dma_addr_t dma_addr)
+{
+	return (dma_addr == virt_to_bus(io_tlb_overflow_buffer));
+}
+
+/*
+ * Return whether the given device DMA address mask can be supported
+ * properly.  For example, if your device can only drive the low 24-bits
+ * during bus mastering, then you would pass 0x00ffffff as the mask to
+ * this function.
+ */
+int
+swiotlb_dma_supported (struct device *hwdev, u64 mask)
+{
+	return (virt_to_bus (io_tlb_end) - 1) <= mask;
+}
+
+EXPORT_SYMBOL(swiotlb_init);
+EXPORT_SYMBOL(swiotlb_map_single);
+EXPORT_SYMBOL(swiotlb_unmap_single);
+EXPORT_SYMBOL(swiotlb_map_sg);
+EXPORT_SYMBOL(swiotlb_unmap_sg);
+EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
+EXPORT_SYMBOL(swiotlb_sync_single_for_device);
+EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
+EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
+EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
+EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
+EXPORT_SYMBOL(swiotlb_dma_mapping_error);
+EXPORT_SYMBOL(swiotlb_alloc_coherent);
+EXPORT_SYMBOL(swiotlb_free_coherent);
+EXPORT_SYMBOL(swiotlb_dma_supported);

[-- Attachment #3: Type: text/plain, Size: 138 bytes --]

_______________________________________________
Xen-devel mailing list
Xen-devel@lists.xensource.com
http://lists.xensource.com/xen-devel

^ permalink raw reply	[flat|nested] 5+ messages in thread

end of thread, other threads:[~2007-02-22 10:24 UTC | newest]

Thread overview: 5+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2007-02-15 22:59 [PATCH] Use lib/swiotlb code for x86_64 SWIOTLB Langsdorf, Mark
2007-02-16  0:00 ` Keir Fraser
2007-02-16  8:39   ` Jan Beulich
2007-02-22  0:09     ` Langsdorf, Mark
2007-02-22 10:24       ` Jan Beulich

This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.