LKML Archive on lore.kernel.org
 help / color / Atom feed
From: "Paul E. McKenney" <paulmck@linux.ibm.com>
To: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>,
	Frederic Weisbecker <fweisbec@gmail.com>,
	Boqun Feng <boqun.feng@gmail.com>,
	Fengguang Wu <fengguang.wu@intel.com>, LKP <lkp@01.org>,
	LKML <linux-kernel@vger.kernel.org>,
	Netdev <netdev@vger.kernel.org>,
	"David S. Miller" <davem@davemloft.net>
Subject: Re: rcu_read_lock lost its compiler barrier
Date: Mon, 3 Jun 2019 12:53:04 -0700
Message-ID: <20190603195304.GK28207@linux.ibm.com> (raw)
In-Reply-To: <CAHk-=wgZcrb_vQi5rwpv+=wwG+68SRDY16HcqcMtgPFL_kdfyQ@mail.gmail.com>

On Mon, Jun 03, 2019 at 09:07:29AM -0700, Linus Torvalds wrote:
> On Mon, Jun 3, 2019 at 8:55 AM Linus Torvalds
> <torvalds@linux-foundation.org> wrote:
> >
> > I don't believe that it would necessarily help to turn a
> > rcu_read_lock() into a compiler barrier, because for the non-preempt
> > case rcu_read_lock() doesn't need to actually _do_ anything, and
> > anything that matters for the RCU read lock will already be a compiler
> > barrier for other reasons (ie a function call that can schedule).
> 
> Actually, thinking a bit more about this, and trying to come up with
> special cases, I'm not at all convinced.
> 
> Even if we don't have preemption enabled, it turns out that we *do*
> have things that can cause scheduling without being compiler barriers.
> 
> In particular, user accesses are not necessarily full compiler
> barriers. One common pattern (x86) is
> 
>         asm volatile("call __get_user_%P4"
> 
> which explicitly has a "asm volaile" so that it doesn't re-order wrt
> other asms (and thus other user accesses), but it does *not* have a
> "memory" clobber, because the user access doesn't actually change
> kernel memory. Not even if it's a "put_user()".
> 
> So we've made those fairly relaxed on purpose. And they might be
> relaxed enough that they'd allow re-ordering wrt something that does a
> rcu read lock, unless the rcu read lock has some compiler barrier in
> it.
> 
> IOW, imagine completely made up code like
> 
>      get_user(val, ptr)
>      rcu_read_lock();
>      WRITE_ONCE(state, 1);
> 
> and unless the rcu lock has a barrier in it, I actually think that
> write to 'state' could migrate to *before* the get_user().
> 
> I'm not convinced we have anything that remotely looks like the above,
> but I'm actually starting to think that yes, all RCU barriers had
> better be compiler barriers.
> 
> Because this is very much an example of something where you don't
> necessarily need a memory barrier, but there's a code generation
> barrier needed because of local ordering requirements. The possible
> faulting behavior of "get_user()" must not migrate into the RCU
> critical region.
> 
> Paul?

I agree that !PREEMPT rcu_read_lock() would not affect compiler code
generation, but given that get_user() is a volatile asm, isn't the
compiler already forbidden from reordering it with the volatile-casted
WRITE_ONCE() access, even if there was nothing at all between them?
Or are asms an exception to the rule that volatile executions cannot
be reordered?

> So I think the rule really should be: every single form of locking
> that has any semantic meaning at all, absolutely needs to be at least
> a compiler barrier.
> 
> (That "any semantic meaning" weaselwording is because I suspect that
> we have locking that truly and intentionally becomes no-ops because
> it's based on things that aren't relevant in some configurations. But
> generally compiler barriers are really pretty damn cheap, even from a
> code generation standpoint, and can help make the resulting code more
> legible, so I think we should not try to aggressively remove them
> without _very_ good reasons)

We can of course put them back in, but this won't help in the typical
rcu_assign_pointer(), rcu_dereference(), and synchronize_rcu() situation
(nor do I see how it helps in Hubert's example).  And in other RCU
use cases, the accesses analogous to the rcu_assign_pointer() and
rcu_dereference() (in Hubert's example, the accesses to variable "a")
really need to be READ_ONCE()/WRITE_ONCE() or stronger, correct?

							Thanx, Paul

  reply index

Thread overview: 62+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2015-09-10  0:57 [rcu] kernel BUG at include/linux/pagemap.h:149! Fengguang Wu
2015-09-10 10:25 ` Boqun Feng
2015-09-10 17:16   ` Paul E. McKenney
2015-09-11  2:19     ` Boqun Feng
     [not found]       ` <CAJzB8QG=1iZW3dQEie6ZSTLv8GZ3YSut0aL1VU7LLmiHQ1B1DQ@mail.gmail.com>
2015-09-11 21:59         ` Paul E. McKenney
2015-09-12  5:46           ` Boqun Feng
2015-09-21 19:30       ` Frederic Weisbecker
2015-09-21 20:43         ` Paul E. McKenney
2019-06-02  5:56           ` rcu_read_lock lost its compiler barrier Herbert Xu
2019-06-02 20:54             ` Linus Torvalds
2019-06-03  2:46               ` Herbert Xu
2019-06-03  3:47                 ` Paul E. McKenney
2019-06-03  4:01                   ` Herbert Xu
2019-06-03  4:17                     ` Herbert Xu
2019-06-03  7:23                     ` Paul E. McKenney
2019-06-03  8:42                       ` Paul E. McKenney
2019-06-03 15:26                         ` David Laight
2019-06-03 15:40                           ` Linus Torvalds
2019-06-03  5:26                   ` Herbert Xu
2019-06-03  6:42                     ` Boqun Feng
2019-06-03 20:03                       ` Paul E. McKenney
2019-06-04 14:44                         ` Alan Stern
2019-06-04 16:04                           ` Linus Torvalds
2019-06-04 17:00                             ` Alan Stern
2019-06-04 17:29                               ` Linus Torvalds
2019-06-07 14:09                             ` inet: frags: Turn fqdir->dead into an int for old Alphas Herbert Xu
2019-06-07 15:26                               ` Eric Dumazet
2019-06-07 15:32                                 ` Herbert Xu
2019-06-07 16:13                                   ` Eric Dumazet
2019-06-07 16:19                                 ` Linus Torvalds
2019-06-08 15:27                                   ` Paul E. McKenney
2019-06-08 17:42                                     ` Linus Torvalds
2019-06-08 17:50                                       ` Linus Torvalds
2019-06-08 18:50                                         ` Paul E. McKenney
2019-06-08 18:14                                       ` Paul E. McKenney
2019-06-06  4:51                           ` rcu_read_lock lost its compiler barrier Herbert Xu
2019-06-06  6:05                             ` Paul E. McKenney
2019-06-06  6:14                               ` Herbert Xu
2019-06-06  9:06                                 ` Paul E. McKenney
2019-06-06  9:28                                   ` Herbert Xu
2019-06-06 10:58                                     ` Paul E. McKenney
2019-06-06 13:38                                       ` Herbert Xu
2019-06-06 13:48                                         ` Paul E. McKenney
2019-06-06  8:16                           ` Andrea Parri
2019-06-06 14:19                             ` Alan Stern
2019-06-08 15:19                               ` Paul E. McKenney
2019-06-08 15:56                                 ` Alan Stern
2019-06-08 16:31                                   ` Paul E. McKenney
2019-06-03  9:35                     ` Paul E. McKenney
2019-06-06  8:38                 ` Andrea Parri
2019-06-06  9:32                   ` Herbert Xu
2019-06-03  0:06             ` Paul E. McKenney
2019-06-03  3:03               ` Herbert Xu
2019-06-03  9:27                 ` Paul E. McKenney
2019-06-03 15:55                 ` Linus Torvalds
2019-06-03 16:07                   ` Linus Torvalds
2019-06-03 19:53                     ` Paul E. McKenney [this message]
2019-06-03 20:24                       ` Linus Torvalds
2019-06-04 21:14                         ` Paul E. McKenney
2019-06-05  2:21                           ` Herbert Xu
2019-06-05  3:30                             ` Paul E. McKenney
2019-06-06  4:37                               ` Herbert Xu

Reply instructions:

You may reply publically to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20190603195304.GK28207@linux.ibm.com \
    --to=paulmck@linux.ibm.com \
    --cc=boqun.feng@gmail.com \
    --cc=davem@davemloft.net \
    --cc=fengguang.wu@intel.com \
    --cc=fweisbec@gmail.com \
    --cc=herbert@gondor.apana.org.au \
    --cc=linux-kernel@vger.kernel.org \
    --cc=lkp@01.org \
    --cc=netdev@vger.kernel.org \
    --cc=torvalds@linux-foundation.org \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link

LKML Archive on lore.kernel.org

Archives are clonable:
	git clone --mirror https://lore.kernel.org/lkml/0 lkml/git/0.git
	git clone --mirror https://lore.kernel.org/lkml/1 lkml/git/1.git
	git clone --mirror https://lore.kernel.org/lkml/2 lkml/git/2.git
	git clone --mirror https://lore.kernel.org/lkml/3 lkml/git/3.git
	git clone --mirror https://lore.kernel.org/lkml/4 lkml/git/4.git
	git clone --mirror https://lore.kernel.org/lkml/5 lkml/git/5.git
	git clone --mirror https://lore.kernel.org/lkml/6 lkml/git/6.git
	git clone --mirror https://lore.kernel.org/lkml/7 lkml/git/7.git
	git clone --mirror https://lore.kernel.org/lkml/8 lkml/git/8.git

	# If you have public-inbox 1.1+ installed, you may
	# initialize and index your mirror using the following commands:
	public-inbox-init -V2 lkml lkml/ https://lore.kernel.org/lkml \
		linux-kernel@vger.kernel.org
	public-inbox-index lkml

Example config snippet for mirrors

Newsgroup available over NNTP:
	nntp://nntp.lore.kernel.org/org.kernel.vger.linux-kernel


AGPL code for this site: git clone https://public-inbox.org/public-inbox.git