All of lore.kernel.org
 help / color / mirror / Atom feed
* [Qemu-devel] [PATCH 0/2] target-mips: Fix IEEE 754-2008-related issues
@ 2016-03-25 12:50 Aleksandar Markovic
  2016-03-25 12:50 ` [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit Aleksandar Markovic
  2016-03-25 12:50 ` [Qemu-devel] [PATCH 2/2] target-mips: Implement IEEE 754-2008 functionality for R6 and MSA instructions Aleksandar Markovic
  0 siblings, 2 replies; 22+ messages in thread
From: Aleksandar Markovic @ 2016-03-25 12:50 UTC (permalink / raw)
  To: qemu-devel
  Cc: peter.maydell, ehabkost, proljc, mark.cave-ayland, agraf,
	kbastian, petar.jovanovic, blauwirbel, jcmvbkbc, miodrag.dinic,
	qemu-arm, qemu-ppc, edgar.iglesias, pbonzini, gxt, leon.alrae,
	afaerber, aurelien, rth

From: Aleksandar Markovic <aleksandar.markovic@imgtec.com>

Mips platform represents the most complex case among QEMU-supported
platforms in reference to certain aspects of floating-point arithmetics.
This is mostly a consequence of the fact that Mips platform, for many
reasons, evolved considerably over time related to floating-point
arithmetics standards (significantly more than other platforms).
It has been difficult for emulators like QEMU to support such variety
of configurations.

This patch set provides solution to this problem, and furnishes
accurate emulation of floating-point arithmetics for all Mips cases.

Aleksandar Markovic (2):
  softfloat: Enable run-time-configurable meaning of signaling NaN bit
  target-mips: Implement IEEE 754-2008 functionality for R6 and MSA
    instructions

 fpu/softfloat-specialize.h    | 546 +++++++++++++++++++++---------------------
 fpu/softfloat.c               | 170 +++++++------
 include/fpu/softfloat.h       |  49 ++--
 target-alpha/cpu.c            |   2 +
 target-arm/cpu.c              |   2 +
 target-arm/helper-a64.c       |  14 +-
 target-arm/helper.c           |  40 ++--
 target-i386/cpu.c             |   4 +
 target-m68k/cpu.c             |   2 +
 target-m68k/helper.c          |   6 +-
 target-microblaze/cpu.c       |   2 +
 target-microblaze/op_helper.c |   6 +-
 target-mips/helper.h          |  14 +-
 target-mips/msa_helper.c      | 144 +++++++----
 target-mips/op_helper.c       | 527 +++++++++++++++++++++++++++++++++-------
 target-mips/translate.c       |  20 +-
 target-mips/translate_init.c  |  24 +-
 target-openrisc/cpu.c         |   2 +
 target-ppc/fpu_helper.c       | 120 +++++-----
 target-ppc/translate_init.c   |   2 +
 target-s390x/cpu.c            |   1 +
 target-s390x/fpu_helper.c     |  28 ++-
 target-s390x/helper.h         |   6 +-
 target-s390x/translate.c      |   6 +-
 target-sh4/cpu.c              |   1 +
 target-sparc/cpu.c            |   1 +
 target-tricore/helper.c       |   1 +
 target-unicore32/cpu.c        |   1 +
 target-xtensa/cpu.c           |   3 +
 29 files changed, 1119 insertions(+), 625 deletions(-)

-- 
1.9.1

^ permalink raw reply	[flat|nested] 22+ messages in thread

* [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit
  2016-03-25 12:50 [Qemu-devel] [PATCH 0/2] target-mips: Fix IEEE 754-2008-related issues Aleksandar Markovic
@ 2016-03-25 12:50 ` Aleksandar Markovic
  2016-03-28 21:36   ` Richard Henderson
                     ` (2 more replies)
  2016-03-25 12:50 ` [Qemu-devel] [PATCH 2/2] target-mips: Implement IEEE 754-2008 functionality for R6 and MSA instructions Aleksandar Markovic
  1 sibling, 3 replies; 22+ messages in thread
From: Aleksandar Markovic @ 2016-03-25 12:50 UTC (permalink / raw)
  To: qemu-devel
  Cc: peter.maydell, ehabkost, proljc, mark.cave-ayland, agraf,
	kbastian, petar.jovanovic, blauwirbel, jcmvbkbc, miodrag.dinic,
	qemu-arm, qemu-ppc, edgar.iglesias, pbonzini, gxt, leon.alrae,
	afaerber, aurelien, rth

From: Aleksandar Markovic <aleksandar.markovic@imgtec.com>

This patch enables SoftFloat library to be configured at run-time in
relation to the meaning of signaling NaN bit.

Background:

In floating-point calculations, there is a need for denoting undefined or
unrepresentable values. This is achieved by defining certain floating-point
numerical values to be NaNs (which stands for "not a number"). For additional
reasons, virtually all modern floating-point unit implementations use two
kinds of NaNs: quiet and signaling. The binary representations of these two
kinds of NaNs, as a rule, differ only in one bit (it is traditionally,
the first bit of mantissa).

Up to 2008, standards for floating-point did not specify all details about
binary representation of NaNs. More specifically, the meaning of the bit
that is used for distinguishing between signaling and quiet NaNs was not
strictly prescribed. (IEEE 754-2008 was the first floating-point standard
that defined that meaning clearly, see [1], p. 35) As a result, different
platforms took different approaches, and this presented certain challenge
in emulators like QEMU.

Mips architecture represent the most complex case among QEMU-supported
architectures regarding signaling NaN bit. Up to Release 6 of Mips
architecture, "1" in signaling NaN bit denoted signaling NaN, which is
opposite to IEEE 754-2008 standard. From Release 6 on, Mips architecture
adopted IEEE standard prescription, and "0" denotes signaling NaN. On top of
that, Mips architecture for SIMD (also known as MSA, or vector instructions)
also specifies signaling bit in accordance to IEEE standard. MSA unit can be
implemented with both pre-Release 6 and Release 6 main processor units.

QEMU uses SoftFloat library to implement various floating-point-related
instructions on all platforms. The current implementation allows for defining
meaning of signaling NaN bit during build time, and is implemented via
preprocessor macro called SNAN_BIT_IS_ONE.

The change in this patch enables SoftFloat library to be configured in
run-time. This configuration is meant to occur during CPU initialization,
when it is definitely known what desired behavior for particular CPU
(or any additional FPUs) is.

The change is implemented so that it is consistent with existing
implementation of similar cases. This means that structure float_status is
used for passing the information about desired signaling NaN bit during each
invocation of SoftFloat functions. The additional field in float_status is
called snan_bit_is_one, which supersedes macro SNAN_BIT_IS_ONE.

Further break down of changes:

  (for the sake of brevity, a placeholder XXX is used below and it might
  mean float16, float32, float64, floatx80, or float128)

  1) Added field snan_bit_is_one to the structure float_status,
     and the correspondent setter function set_snan_bit_is_one().

  2) SoftFloat library constants XXX_default_nan converted to functions
     XXX_default_nan(float_status*). This is necessary since they are
     dependant on signaling bit meaning.

  3) Added a float_status* argument to SoftFloat library functions
     XXX_is_quiet_nan(XXX a_), XXX_is_signaling_nan(XXX a_),
     XXX_maybe_silence_nan(XXX a_).

  4) Updated code in all architectures to reflect changes in SoftFloat
     library. This change is twofolds: it includes modification of SoftFloat
     library functions invocations, and addition of invocations of function
     set_snan_bit_is_one() during CPU initialization, with arguments that
     are appropriate for each architecture.

IMPORTANT:

This change is not meant to create any change in emulator behavior or
functionality on any platform. It just provides the means for SoftFloat
library to be used in a more flexible way - in other words, it will just
prepare SoftFloat library for usage related to Mips platform and its
specifics regarding signaling bit meaning, which is done in the next patch.

[1] "IEEE Standard for Floating-Point Arithmetic",
    IEEE Computer Society, August 29, 2008.
    (http://www.csee.umbc.edu/~tsimo1/CMSC455/IEEE-754-2008.pdf)

Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
---
 fpu/softfloat-specialize.h    | 546 +++++++++++++++++++++---------------------
 fpu/softfloat.c               | 170 +++++++------
 include/fpu/softfloat.h       |  49 ++--
 target-alpha/cpu.c            |   2 +
 target-arm/cpu.c              |   2 +
 target-arm/helper-a64.c       |  14 +-
 target-arm/helper.c           |  40 ++--
 target-i386/cpu.c             |   4 +
 target-m68k/cpu.c             |   2 +
 target-m68k/helper.c          |   6 +-
 target-microblaze/cpu.c       |   2 +
 target-microblaze/op_helper.c |   6 +-
 target-mips/helper.h          |   4 +-
 target-mips/msa_helper.c      |  96 ++++----
 target-mips/op_helper.c       |  13 +-
 target-mips/translate.c       |   4 +-
 target-mips/translate_init.c  |   6 +-
 target-openrisc/cpu.c         |   2 +
 target-ppc/fpu_helper.c       | 120 +++++-----
 target-ppc/translate_init.c   |   2 +
 target-s390x/cpu.c            |   1 +
 target-s390x/fpu_helper.c     |  28 ++-
 target-s390x/helper.h         |   6 +-
 target-s390x/translate.c      |   6 +-
 target-sh4/cpu.c              |   1 +
 target-sparc/cpu.c            |   1 +
 target-tricore/helper.c       |   1 +
 target-unicore32/cpu.c        |   1 +
 target-xtensa/cpu.c           |   3 +
 29 files changed, 608 insertions(+), 530 deletions(-)

diff --git a/fpu/softfloat-specialize.h b/fpu/softfloat-specialize.h
index a4cbdad..8a6be03 100644
--- a/fpu/softfloat-specialize.h
+++ b/fpu/softfloat-specialize.h
@@ -79,16 +79,6 @@ this code that are retained.
  * version 2 or later. See the COPYING file in the top-level directory.
  */
 
-/* Does the target distinguish signaling NaNs from non-signaling NaNs
- * by setting the most significant bit of the mantissa for a signaling NaN?
- * (The more common choice is to have it be zero for SNaN and one for QNaN.)
- */
-#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
-#define SNAN_BIT_IS_ONE 1
-#else
-#define SNAN_BIT_IS_ONE 0
-#endif
-
 #if defined(TARGET_XTENSA)
 /* Define for architectures which deviate from IEEE in not supporting
  * signaling NaNs (so all NaNs are treated as quiet).
@@ -99,73 +89,107 @@ this code that are retained.
 /*----------------------------------------------------------------------------
 | The pattern for a default generated half-precision NaN.
 *----------------------------------------------------------------------------*/
+float16 float16_default_nan(float_status *status) {
 #if defined(TARGET_ARM)
-const float16 float16_default_nan = const_float16(0x7E00);
-#elif SNAN_BIT_IS_ONE
-const float16 float16_default_nan = const_float16(0x7DFF);
+    return const_float16(0x7E00);
 #else
-const float16 float16_default_nan = const_float16(0xFE00);
+    if (status->snan_bit_is_one)
+        return const_float16(0x7DFF);
+    else
+        return const_float16(0xFE00);
 #endif
+}
 
 /*----------------------------------------------------------------------------
 | The pattern for a default generated single-precision NaN.
 *----------------------------------------------------------------------------*/
+float32 float32_default_nan(float_status *status) {
 #if defined(TARGET_SPARC)
-const float32 float32_default_nan = const_float32(0x7FFFFFFF);
+    return const_float32(0x7FFFFFFF);
 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
       defined(TARGET_XTENSA) || defined(TARGET_S390X) || defined(TARGET_TRICORE)
-const float32 float32_default_nan = const_float32(0x7FC00000);
-#elif SNAN_BIT_IS_ONE
-const float32 float32_default_nan = const_float32(0x7FBFFFFF);
+    return const_float32(0x7FC00000);
 #else
-const float32 float32_default_nan = const_float32(0xFFC00000);
+    if (status->snan_bit_is_one)
+        return const_float32(0x7FBFFFFF);
+    else
+        return const_float32(0xFFC00000);
 #endif
+}
 
 /*----------------------------------------------------------------------------
 | The pattern for a default generated double-precision NaN.
 *----------------------------------------------------------------------------*/
+float64 float64_default_nan(float_status *status) {
 #if defined(TARGET_SPARC)
-const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF ));
+    return const_float64(LIT64( 0x7FFFFFFFFFFFFFFF ));
 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
       defined(TARGET_S390X)
-const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 ));
-#elif SNAN_BIT_IS_ONE
-const float64 float64_default_nan = const_float64(LIT64(0x7FF7FFFFFFFFFFFF));
+    return const_float64(LIT64( 0x7FF8000000000000 ));
 #else
-const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 ));
+    if (status->snan_bit_is_one)
+        return const_float64(LIT64( 0x7FF7FFFFFFFFFFFF ));
+    else
+        return const_float64(LIT64( 0xFFF8000000000000 ));
 #endif
+}
 
 /*----------------------------------------------------------------------------
 | The pattern for a default generated extended double-precision NaN.
 *----------------------------------------------------------------------------*/
-#if SNAN_BIT_IS_ONE
-#define floatx80_default_nan_high 0x7FFF
-#define floatx80_default_nan_low  LIT64(0xBFFFFFFFFFFFFFFF)
-#else
-#define floatx80_default_nan_high 0xFFFF
-#define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
-#endif
+uint16_t floatx80_default_nan_high(float_status *status) {
+    if (status->snan_bit_is_one)
+        return 0x7FFF;
+    else
+        return 0xFFFF;
+}
+
+uint64_t floatx80_default_nan_low(float_status *status) {
+    if (status->snan_bit_is_one)
+        return LIT64( 0xBFFFFFFFFFFFFFFF );
+    else
+        return LIT64( 0xC000000000000000 );
+}
 
-const floatx80 floatx80_default_nan
-    = make_floatx80_init(floatx80_default_nan_high, floatx80_default_nan_low);
+floatx80 floatx80_default_nan(float_status *status) {
+    floatx80 r;
+
+    r.high = floatx80_default_nan_high(status);
+    r.low = floatx80_default_nan_low(status);
+
+    return r;
+}
 
 /*----------------------------------------------------------------------------
 | The pattern for a default generated quadruple-precision NaN.  The `high' and
 | `low' values hold the most- and least-significant bits, respectively.
 *----------------------------------------------------------------------------*/
-#if SNAN_BIT_IS_ONE
-#define float128_default_nan_high LIT64(0x7FFF7FFFFFFFFFFF)
-#define float128_default_nan_low  LIT64(0xFFFFFFFFFFFFFFFF)
-#elif defined(TARGET_S390X)
-#define float128_default_nan_high LIT64( 0x7FFF800000000000 )
-#define float128_default_nan_low  LIT64( 0x0000000000000000 )
+uint64_t float128_default_nan_high(float_status *status) {
+    if (status->snan_bit_is_one)
+        return LIT64( 0x7FFF7FFFFFFFFFFF );
+    else
+#if defined(TARGET_S390X)
+        return LIT64( 0x7FFF800000000000 );
 #else
-#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
-#define float128_default_nan_low  LIT64( 0x0000000000000000 )
+        return LIT64( 0xFFFF800000000000 );
 #endif
+}
 
-const float128 float128_default_nan
-    = make_float128_init(float128_default_nan_high, float128_default_nan_low);
+uint64_t float128_default_nan_low(float_status *status) {
+    if (status->snan_bit_is_one)
+        return LIT64( 0xFFFFFFFFFFFFFFFF );
+    else
+        return LIT64( 0x0000000000000000 );
+}
+
+float128 float128_default_nan(float_status *status) {
+    float128 r;
+
+    r.high = float128_default_nan_high(status);
+    r.low = float128_default_nan_low(status);
+
+    return r;
+}
 
 /*----------------------------------------------------------------------------
 | Raises the exceptions specified by `flags'.  Floating-point traps can be
@@ -188,12 +212,12 @@ typedef struct {
 } commonNaNT;
 
 #ifdef NO_SIGNALING_NANS
-int float16_is_quiet_nan(float16 a_)
+int float16_is_quiet_nan(float16 a_, float_status *status)
 {
     return float16_is_any_nan(a_);
 }
 
-int float16_is_signaling_nan(float16 a_)
+int float16_is_signaling_nan(float16 a_, float_status *status)
 {
     return 0;
 }
@@ -203,14 +227,13 @@ int float16_is_signaling_nan(float16 a_)
 | NaN; otherwise returns 0.
 *----------------------------------------------------------------------------*/
 
-int float16_is_quiet_nan(float16 a_)
+int float16_is_quiet_nan(float16 a_, float_status *status)
 {
     uint16_t a = float16_val(a_);
-#if SNAN_BIT_IS_ONE
-    return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
-#else
-    return ((a & ~0x8000) >= 0x7c80);
-#endif
+    if (status->snan_bit_is_one)
+        return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
+    else
+        return ((a & ~0x8000) >= 0x7c80);
 }
 
 /*----------------------------------------------------------------------------
@@ -218,14 +241,13 @@ int float16_is_quiet_nan(float16 a_)
 | NaN; otherwise returns 0.
 *----------------------------------------------------------------------------*/
 
-int float16_is_signaling_nan(float16 a_)
+int float16_is_signaling_nan(float16 a_, float_status *status)
 {
     uint16_t a = float16_val(a_);
-#if SNAN_BIT_IS_ONE
-    return ((a & ~0x8000) >= 0x7c80);
-#else
-    return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
-#endif
+    if (status->snan_bit_is_one)
+        return ((a & ~0x8000) >= 0x7c80);
+    else
+        return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
 }
 #endif
 
@@ -233,20 +255,16 @@ int float16_is_signaling_nan(float16 a_)
 | Returns a quiet NaN if the half-precision floating point value `a' is a
 | signaling NaN; otherwise returns `a'.
 *----------------------------------------------------------------------------*/
-float16 float16_maybe_silence_nan(float16 a_)
+float16 float16_maybe_silence_nan(float16 a_, float_status *status)
 {
-    if (float16_is_signaling_nan(a_)) {
-#if SNAN_BIT_IS_ONE
-#  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
-        return float16_default_nan;
-#  else
-#    error Rules for silencing a signaling NaN are target-specific
-#  endif
-#else
-        uint16_t a = float16_val(a_);
-        a |= (1 << 9);
-        return make_float16(a);
-#endif
+    if (float16_is_signaling_nan(a_, status)) {
+        if (status->snan_bit_is_one)
+            return float16_default_nan(status);
+        else {
+            uint16_t a = float16_val(a_);
+            a |= (1 << 9);
+            return make_float16(a);
+        }
     }
     return a_;
 }
@@ -261,7 +279,7 @@ static commonNaNT float16ToCommonNaN(float16 a, float_status *status)
 {
     commonNaNT z;
 
-    if (float16_is_signaling_nan(a)) {
+    if (float16_is_signaling_nan(a, status)) {
         float_raise(float_flag_invalid, status);
     }
     z.sign = float16_val(a) >> 15;
@@ -280,24 +298,24 @@ static float16 commonNaNToFloat16(commonNaNT a, float_status *status)
     uint16_t mantissa = a.high>>54;
 
     if (status->default_nan_mode) {
-        return float16_default_nan;
+        return float16_default_nan(status);
     }
 
     if (mantissa) {
         return make_float16(((((uint16_t) a.sign) << 15)
                              | (0x1F << 10) | mantissa));
     } else {
-        return float16_default_nan;
+        return float16_default_nan(status);
     }
 }
 
 #ifdef NO_SIGNALING_NANS
-int float32_is_quiet_nan(float32 a_)
+int float32_is_quiet_nan(float32 a_, float_status *status)
 {
     return float32_is_any_nan(a_);
 }
 
-int float32_is_signaling_nan(float32 a_)
+int float32_is_signaling_nan(float32 a_, float_status *status)
 {
     return 0;
 }
@@ -307,14 +325,13 @@ int float32_is_signaling_nan(float32 a_)
 | NaN; otherwise returns 0.
 *----------------------------------------------------------------------------*/
 
-int float32_is_quiet_nan( float32 a_ )
+int float32_is_quiet_nan( float32 a_, float_status *status )
 {
     uint32_t a = float32_val(a_);
-#if SNAN_BIT_IS_ONE
-    return (((a >> 22) & 0x1ff) == 0x1fe) && (a & 0x003fffff);
-#else
-    return ((uint32_t)(a << 1) >= 0xff800000);
-#endif
+    if (status->snan_bit_is_one)
+        return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
+    else
+        return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
 }
 
 /*----------------------------------------------------------------------------
@@ -322,14 +339,13 @@ int float32_is_quiet_nan( float32 a_ )
 | NaN; otherwise returns 0.
 *----------------------------------------------------------------------------*/
 
-int float32_is_signaling_nan( float32 a_ )
+int float32_is_signaling_nan( float32 a_, float_status *status )
 {
     uint32_t a = float32_val(a_);
-#if SNAN_BIT_IS_ONE
-    return ((uint32_t)(a << 1) >= 0xff800000);
-#else
-    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
-#endif
+    if (status->snan_bit_is_one)
+        return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
+    else
+        return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
 }
 #endif
 
@@ -338,20 +354,16 @@ int float32_is_signaling_nan( float32 a_ )
 | signaling NaN; otherwise returns `a'.
 *----------------------------------------------------------------------------*/
 
-float32 float32_maybe_silence_nan( float32 a_ )
+float32 float32_maybe_silence_nan( float32 a_, float_status *status )
 {
-    if (float32_is_signaling_nan(a_)) {
-#if SNAN_BIT_IS_ONE
-#  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
-        return float32_default_nan;
-#  else
-#    error Rules for silencing a signaling NaN are target-specific
-#  endif
-#else
-        uint32_t a = float32_val(a_);
-        a |= (1 << 22);
-        return make_float32(a);
-#endif
+    if (float32_is_signaling_nan(a_, status)) {
+        if (status->snan_bit_is_one)
+            return float32_default_nan(status);
+        else {
+            uint32_t a = float32_val(a_);
+            a |= (1 << 22);
+            return make_float32(a);
+        }
     }
     return a_;
 }
@@ -366,7 +378,7 @@ static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
 {
     commonNaNT z;
 
-    if (float32_is_signaling_nan(a)) {
+    if (float32_is_signaling_nan(a, status)) {
         float_raise(float_flag_invalid, status);
     }
     z.sign = float32_val(a)>>31;
@@ -385,14 +397,14 @@ static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
     uint32_t mantissa = a.high>>41;
 
     if (status->default_nan_mode) {
-        return float32_default_nan;
+        return float32_default_nan(status);
     }
 
     if ( mantissa )
         return make_float32(
             ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
     else
-        return float32_default_nan;
+        return float32_default_nan(status);
 }
 
 /*----------------------------------------------------------------------------
@@ -626,10 +638,10 @@ static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
     flag aIsLargerSignificand;
     uint32_t av, bv;
 
-    aIsQuietNaN = float32_is_quiet_nan( a );
-    aIsSignalingNaN = float32_is_signaling_nan( a );
-    bIsQuietNaN = float32_is_quiet_nan( b );
-    bIsSignalingNaN = float32_is_signaling_nan( b );
+    aIsQuietNaN = float32_is_quiet_nan( a, status );
+    aIsSignalingNaN = float32_is_signaling_nan( a, status );
+    bIsQuietNaN = float32_is_quiet_nan( b, status );
+    bIsSignalingNaN = float32_is_signaling_nan( b, status );
     av = float32_val(a);
     bv = float32_val(b);
 
@@ -638,7 +650,7 @@ static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
     }
 
     if (status->default_nan_mode)
-        return float32_default_nan;
+        return float32_default_nan(status);
 
     if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) {
         aIsLargerSignificand = 0;
@@ -650,9 +662,9 @@ static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
 
     if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
                 aIsLargerSignificand)) {
-        return float32_maybe_silence_nan(b);
+        return float32_maybe_silence_nan(b, status);
     } else {
-        return float32_maybe_silence_nan(a);
+        return float32_maybe_silence_nan(a, status);
     }
 }
 
@@ -673,12 +685,12 @@ static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
         cIsQuietNaN, cIsSignalingNaN;
     int which;
 
-    aIsQuietNaN = float32_is_quiet_nan(a);
-    aIsSignalingNaN = float32_is_signaling_nan(a);
-    bIsQuietNaN = float32_is_quiet_nan(b);
-    bIsSignalingNaN = float32_is_signaling_nan(b);
-    cIsQuietNaN = float32_is_quiet_nan(c);
-    cIsSignalingNaN = float32_is_signaling_nan(c);
+    aIsQuietNaN = float32_is_quiet_nan(a, status);
+    aIsSignalingNaN = float32_is_signaling_nan(a, status);
+    bIsQuietNaN = float32_is_quiet_nan(b, status);
+    bIsSignalingNaN = float32_is_signaling_nan(b, status);
+    cIsQuietNaN = float32_is_quiet_nan(c, status);
+    cIsSignalingNaN = float32_is_signaling_nan(c, status);
 
     if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
         float_raise(float_flag_invalid, status);
@@ -692,29 +704,29 @@ static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
         /* Note that this check is after pickNaNMulAdd so that function
          * has an opportunity to set the Invalid flag.
          */
-        return float32_default_nan;
+        return float32_default_nan(status);
     }
 
     switch (which) {
     case 0:
-        return float32_maybe_silence_nan(a);
+        return float32_maybe_silence_nan(a, status);
     case 1:
-        return float32_maybe_silence_nan(b);
+        return float32_maybe_silence_nan(b, status);
     case 2:
-        return float32_maybe_silence_nan(c);
+        return float32_maybe_silence_nan(c, status);
     case 3:
     default:
-        return float32_default_nan;
+        return float32_default_nan(status);
     }
 }
 
 #ifdef NO_SIGNALING_NANS
-int float64_is_quiet_nan(float64 a_)
+int float64_is_quiet_nan(float64 a_, float_status *status)
 {
     return float64_is_any_nan(a_);
 }
 
-int float64_is_signaling_nan(float64 a_)
+int float64_is_signaling_nan(float64 a_, float_status *status)
 {
     return 0;
 }
@@ -724,15 +736,15 @@ int float64_is_signaling_nan(float64 a_)
 | NaN; otherwise returns 0.
 *----------------------------------------------------------------------------*/
 
-int float64_is_quiet_nan( float64 a_ )
+int float64_is_quiet_nan( float64 a_, float_status *status)
 {
     uint64_t a = float64_val(a_);
-#if SNAN_BIT_IS_ONE
-    return (((a >> 51) & 0xfff) == 0xffe)
-           && (a & 0x0007ffffffffffffULL);
-#else
-    return ((a << 1) >= 0xfff0000000000000ULL);
-#endif
+    if (status->snan_bit_is_one)
+        return
+               ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
+            && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
+    else
+        return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
 }
 
 /*----------------------------------------------------------------------------
@@ -740,16 +752,15 @@ int float64_is_quiet_nan( float64 a_ )
 | NaN; otherwise returns 0.
 *----------------------------------------------------------------------------*/
 
-int float64_is_signaling_nan( float64 a_ )
+int float64_is_signaling_nan( float64 a_, float_status *status )
 {
     uint64_t a = float64_val(a_);
-#if SNAN_BIT_IS_ONE
-    return ((a << 1) >= 0xfff0000000000000ULL);
-#else
-    return
-           ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
-        && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
-#endif
+    if (status->snan_bit_is_one)
+        return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
+    else
+        return
+               ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
+            && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
 }
 #endif
 
@@ -758,20 +769,16 @@ int float64_is_signaling_nan( float64 a_ )
 | signaling NaN; otherwise returns `a'.
 *----------------------------------------------------------------------------*/
 
-float64 float64_maybe_silence_nan( float64 a_ )
+float64 float64_maybe_silence_nan( float64 a_, float_status *status )
 {
-    if (float64_is_signaling_nan(a_)) {
-#if SNAN_BIT_IS_ONE
-#  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
-        return float64_default_nan;
-#  else
-#    error Rules for silencing a signaling NaN are target-specific
-#  endif
-#else
-        uint64_t a = float64_val(a_);
-        a |= LIT64( 0x0008000000000000 );
-        return make_float64(a);
-#endif
+    if (float64_is_signaling_nan(a_, status)) {
+        if (status->snan_bit_is_one)
+            return float64_default_nan(status);
+        else {
+            uint64_t a = float64_val(a_);
+            a |= LIT64( 0x0008000000000000 );
+            return make_float64(a);
+        }
     }
     return a_;
 }
@@ -786,7 +793,7 @@ static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
 {
     commonNaNT z;
 
-    if (float64_is_signaling_nan(a)) {
+    if (float64_is_signaling_nan(a, status)) {
         float_raise(float_flag_invalid, status);
     }
     z.sign = float64_val(a)>>63;
@@ -805,7 +812,7 @@ static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
     uint64_t mantissa = a.high>>12;
 
     if (status->default_nan_mode) {
-        return float64_default_nan;
+        return float64_default_nan(status);
     }
 
     if ( mantissa )
@@ -814,7 +821,7 @@ static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
             | LIT64( 0x7FF0000000000000 )
             | ( a.high>>12 ));
     else
-        return float64_default_nan;
+        return float64_default_nan(status);
 }
 
 /*----------------------------------------------------------------------------
@@ -829,10 +836,10 @@ static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
     flag aIsLargerSignificand;
     uint64_t av, bv;
 
-    aIsQuietNaN = float64_is_quiet_nan( a );
-    aIsSignalingNaN = float64_is_signaling_nan( a );
-    bIsQuietNaN = float64_is_quiet_nan( b );
-    bIsSignalingNaN = float64_is_signaling_nan( b );
+    aIsQuietNaN = float64_is_quiet_nan( a, status );
+    aIsSignalingNaN = float64_is_signaling_nan( a, status );
+    bIsQuietNaN = float64_is_quiet_nan( b, status );
+    bIsSignalingNaN = float64_is_signaling_nan( b, status );
     av = float64_val(a);
     bv = float64_val(b);
 
@@ -841,7 +848,7 @@ static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
     }
 
     if (status->default_nan_mode)
-        return float64_default_nan;
+        return float64_default_nan(status);
 
     if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) {
         aIsLargerSignificand = 0;
@@ -853,9 +860,9 @@ static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
 
     if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
                 aIsLargerSignificand)) {
-        return float64_maybe_silence_nan(b);
+        return float64_maybe_silence_nan(b, status);
     } else {
-        return float64_maybe_silence_nan(a);
+        return float64_maybe_silence_nan(a, status);
     }
 }
 
@@ -876,12 +883,12 @@ static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
         cIsQuietNaN, cIsSignalingNaN;
     int which;
 
-    aIsQuietNaN = float64_is_quiet_nan(a);
-    aIsSignalingNaN = float64_is_signaling_nan(a);
-    bIsQuietNaN = float64_is_quiet_nan(b);
-    bIsSignalingNaN = float64_is_signaling_nan(b);
-    cIsQuietNaN = float64_is_quiet_nan(c);
-    cIsSignalingNaN = float64_is_signaling_nan(c);
+    aIsQuietNaN = float64_is_quiet_nan(a, status);
+    aIsSignalingNaN = float64_is_signaling_nan(a, status);
+    bIsQuietNaN = float64_is_quiet_nan(b, status);
+    bIsSignalingNaN = float64_is_signaling_nan(b, status);
+    cIsQuietNaN = float64_is_quiet_nan(c, status);
+    cIsSignalingNaN = float64_is_signaling_nan(c, status);
 
     if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
         float_raise(float_flag_invalid, status);
@@ -895,29 +902,29 @@ static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
         /* Note that this check is after pickNaNMulAdd so that function
          * has an opportunity to set the Invalid flag.
          */
-        return float64_default_nan;
+        return float64_default_nan(status);
     }
 
     switch (which) {
     case 0:
-        return float64_maybe_silence_nan(a);
+        return float64_maybe_silence_nan(a, status);
     case 1:
-        return float64_maybe_silence_nan(b);
+        return float64_maybe_silence_nan(b, status);
     case 2:
-        return float64_maybe_silence_nan(c);
+        return float64_maybe_silence_nan(c, status);
     case 3:
     default:
-        return float64_default_nan;
+        return float64_default_nan(status);
     }
 }
 
 #ifdef NO_SIGNALING_NANS
-int floatx80_is_quiet_nan(floatx80 a_)
+int floatx80_is_quiet_nan(floatx80 a_, float_status *status)
 {
     return floatx80_is_any_nan(a_);
 }
 
-int floatx80_is_signaling_nan(floatx80 a_)
+int floatx80_is_signaling_nan(floatx80 a_, float_status *status)
 {
     return 0;
 }
@@ -928,19 +935,20 @@ int floatx80_is_signaling_nan(floatx80 a_)
 | function for other types as floatx80 has an explicit bit.
 *----------------------------------------------------------------------------*/
 
-int floatx80_is_quiet_nan( floatx80 a )
+int floatx80_is_quiet_nan( floatx80 a, float_status *status )
 {
-#if SNAN_BIT_IS_ONE
-    uint64_t aLow;
-
-    aLow = a.low & ~0x4000000000000000ULL;
-    return ((a.high & 0x7fff) == 0x7fff)
-        && (aLow << 1)
-        && (a.low == aLow);
-#else
-    return ( ( a.high & 0x7FFF ) == 0x7FFF )
-        && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
-#endif
+    if (status->snan_bit_is_one) {
+        uint64_t aLow;
+
+        aLow = a.low & ~ LIT64( 0x4000000000000000 );
+        return
+               ( ( a.high & 0x7FFF ) == 0x7FFF )
+            && (uint64_t) ( aLow<<1 )
+            && ( a.low == aLow );
+    }
+    else
+        return ( ( a.high & 0x7FFF ) == 0x7FFF )
+            && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
 }
 
 /*----------------------------------------------------------------------------
@@ -949,20 +957,20 @@ int floatx80_is_quiet_nan( floatx80 a )
 | function for other types as floatx80 has an explicit bit.
 *----------------------------------------------------------------------------*/
 
-int floatx80_is_signaling_nan( floatx80 a )
+int floatx80_is_signaling_nan( floatx80 a, float_status *status )
 {
-#if SNAN_BIT_IS_ONE
-    return ((a.high & 0x7fff) == 0x7fff)
-        && ((a.low << 1) >= 0x8000000000000000ULL);
-#else
-    uint64_t aLow;
-
-    aLow = a.low & ~ LIT64( 0x4000000000000000 );
-    return
-           ( ( a.high & 0x7FFF ) == 0x7FFF )
-        && (uint64_t) ( aLow<<1 )
-        && ( a.low == aLow );
-#endif
+    if (status->snan_bit_is_one)
+        return ( ( a.high & 0x7FFF ) == 0x7FFF )
+            && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
+    else {
+        uint64_t aLow;
+
+        aLow = a.low & ~ LIT64( 0x4000000000000000 );
+        return
+               ( ( a.high & 0x7FFF ) == 0x7FFF )
+            && (uint64_t) ( aLow<<1 )
+            && ( a.low == aLow );
+    }
 }
 #endif
 
@@ -971,20 +979,17 @@ int floatx80_is_signaling_nan( floatx80 a )
 | `a' is a signaling NaN; otherwise returns `a'.
 *----------------------------------------------------------------------------*/
 
-floatx80 floatx80_maybe_silence_nan( floatx80 a )
+floatx80 floatx80_maybe_silence_nan( floatx80 a, float_status *status )
 {
-    if (floatx80_is_signaling_nan(a)) {
-#if SNAN_BIT_IS_ONE
-#  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
-        a.low = floatx80_default_nan_low;
-        a.high = floatx80_default_nan_high;
-#  else
-#    error Rules for silencing a signaling NaN are target-specific
-#  endif
-#else
-        a.low |= LIT64( 0xC000000000000000 );
-        return a;
-#endif
+    if (floatx80_is_signaling_nan(a, status)) {
+        if (status->snan_bit_is_one) {
+            a.low = floatx80_default_nan_low(status);
+            a.high = floatx80_default_nan_high(status);
+        }
+        else {
+            a.low |= LIT64( 0xC000000000000000 );
+            return a;
+        }
     }
     return a;
 }
@@ -999,7 +1004,7 @@ static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
 {
     commonNaNT z;
 
-    if (floatx80_is_signaling_nan(a)) {
+    if (floatx80_is_signaling_nan(a, status)) {
         float_raise(float_flag_invalid, status);
     }
     if ( a.low >> 63 ) {
@@ -1007,9 +1012,9 @@ static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
         z.low = 0;
         z.high = a.low << 1;
     } else {
-        z.sign = floatx80_default_nan_high >> 15;
+        z.sign = floatx80_default_nan_high(status) >> 15;
         z.low = 0;
-        z.high = floatx80_default_nan_low << 1;
+        z.high = floatx80_default_nan_low(status) << 1;
     }
     return z;
 }
@@ -1024,8 +1029,8 @@ static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
     floatx80 z;
 
     if (status->default_nan_mode) {
-        z.low = floatx80_default_nan_low;
-        z.high = floatx80_default_nan_high;
+        z.low = floatx80_default_nan_low(status);
+        z.high = floatx80_default_nan_high(status);
         return z;
     }
 
@@ -1033,8 +1038,8 @@ static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
         z.low = LIT64( 0x8000000000000000 ) | a.high >> 1;
         z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF;
     } else {
-        z.low = floatx80_default_nan_low;
-        z.high = floatx80_default_nan_high;
+        z.low = floatx80_default_nan_low(status);
+        z.high = floatx80_default_nan_high(status);
     }
 
     return z;
@@ -1052,18 +1057,18 @@ static floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b,
     flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
     flag aIsLargerSignificand;
 
-    aIsQuietNaN = floatx80_is_quiet_nan( a );
-    aIsSignalingNaN = floatx80_is_signaling_nan( a );
-    bIsQuietNaN = floatx80_is_quiet_nan( b );
-    bIsSignalingNaN = floatx80_is_signaling_nan( b );
+    aIsQuietNaN = floatx80_is_quiet_nan( a, status );
+    aIsSignalingNaN = floatx80_is_signaling_nan( a, status );
+    bIsQuietNaN = floatx80_is_quiet_nan( b, status );
+    bIsSignalingNaN = floatx80_is_signaling_nan( b, status );
 
     if (aIsSignalingNaN | bIsSignalingNaN) {
         float_raise(float_flag_invalid, status);
     }
 
     if (status->default_nan_mode) {
-        a.low = floatx80_default_nan_low;
-        a.high = floatx80_default_nan_high;
+        a.low = floatx80_default_nan_low(status);
+        a.high = floatx80_default_nan_high(status);
         return a;
     }
 
@@ -1077,19 +1082,19 @@ static floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b,
 
     if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
                 aIsLargerSignificand)) {
-        return floatx80_maybe_silence_nan(b);
+        return floatx80_maybe_silence_nan(b, status);
     } else {
-        return floatx80_maybe_silence_nan(a);
+        return floatx80_maybe_silence_nan(a, status);
     }
 }
 
 #ifdef NO_SIGNALING_NANS
-int float128_is_quiet_nan(float128 a_)
+int float128_is_quiet_nan(float128 a_, float_status *status)
 {
     return float128_is_any_nan(a_);
 }
 
-int float128_is_signaling_nan(float128 a_)
+int float128_is_signaling_nan(float128 a_, float_status *status)
 {
     return 0;
 }
@@ -1099,16 +1104,16 @@ int float128_is_signaling_nan(float128 a_)
 | NaN; otherwise returns 0.
 *----------------------------------------------------------------------------*/
 
-int float128_is_quiet_nan( float128 a )
+int float128_is_quiet_nan( float128 a, float_status *status )
 {
-#if SNAN_BIT_IS_ONE
-    return (((a.high >> 47) & 0xffff) == 0xfffe)
-        && (a.low || (a.high & 0x00007fffffffffffULL));
-#else
-    return
-        ((a.high << 1) >= 0xffff000000000000ULL)
-        && (a.low || (a.high & 0x0000ffffffffffffULL));
-#endif
+    if (status->snan_bit_is_one)
+        return
+               ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
+            && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
+    else
+        return
+               ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
+            && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
 }
 
 /*----------------------------------------------------------------------------
@@ -1116,17 +1121,16 @@ int float128_is_quiet_nan( float128 a )
 | signaling NaN; otherwise returns 0.
 *----------------------------------------------------------------------------*/
 
-int float128_is_signaling_nan( float128 a )
+int float128_is_signaling_nan( float128 a, float_status *status )
 {
-#if SNAN_BIT_IS_ONE
-    return
-        ((a.high << 1) >= 0xffff000000000000ULL)
-        && (a.low || (a.high & 0x0000ffffffffffffULL));
-#else
-    return
-           ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
-        && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
-#endif
+    if (status->snan_bit_is_one)
+        return
+               ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
+            && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
+    else
+        return
+               ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
+            && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
 }
 #endif
 
@@ -1135,20 +1139,17 @@ int float128_is_signaling_nan( float128 a )
 | a signaling NaN; otherwise returns `a'.
 *----------------------------------------------------------------------------*/
 
-float128 float128_maybe_silence_nan( float128 a )
+float128 float128_maybe_silence_nan( float128 a, float_status *status )
 {
-    if (float128_is_signaling_nan(a)) {
-#if SNAN_BIT_IS_ONE
-#  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
-        a.low = float128_default_nan_low;
-        a.high = float128_default_nan_high;
-#  else
-#    error Rules for silencing a signaling NaN are target-specific
-#  endif
-#else
-        a.high |= LIT64( 0x0000800000000000 );
-        return a;
-#endif
+    if (float128_is_signaling_nan(a, status)) {
+        if (status->snan_bit_is_one) {
+            a.low = float128_default_nan_low(status);
+            a.high = float128_default_nan_high(status);
+        }
+        else {
+            a.high |= LIT64( 0x0000800000000000 );
+            return a;
+        }
     }
     return a;
 }
@@ -1163,7 +1164,7 @@ static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
 {
     commonNaNT z;
 
-    if (float128_is_signaling_nan(a)) {
+    if (float128_is_signaling_nan(a, status)) {
         float_raise(float_flag_invalid, status);
     }
     z.sign = a.high>>63;
@@ -1181,8 +1182,8 @@ static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
     float128 z;
 
     if (status->default_nan_mode) {
-        z.low = float128_default_nan_low;
-        z.high = float128_default_nan_high;
+        z.low = float128_default_nan_low(status);
+        z.high = float128_default_nan_high(status);
         return z;
     }
 
@@ -1203,18 +1204,18 @@ static float128 propagateFloat128NaN(float128 a, float128 b,
     flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
     flag aIsLargerSignificand;
 
-    aIsQuietNaN = float128_is_quiet_nan( a );
-    aIsSignalingNaN = float128_is_signaling_nan( a );
-    bIsQuietNaN = float128_is_quiet_nan( b );
-    bIsSignalingNaN = float128_is_signaling_nan( b );
+    aIsQuietNaN = float128_is_quiet_nan( a, status );
+    aIsSignalingNaN = float128_is_signaling_nan( a, status );
+    bIsQuietNaN = float128_is_quiet_nan( b, status );
+    bIsSignalingNaN = float128_is_signaling_nan( b, status );
 
     if (aIsSignalingNaN | bIsSignalingNaN) {
         float_raise(float_flag_invalid, status);
     }
 
     if (status->default_nan_mode) {
-        a.low = float128_default_nan_low;
-        a.high = float128_default_nan_high;
+        a.low = float128_default_nan_low(status);
+        a.high = float128_default_nan_high(status);
         return a;
     }
 
@@ -1228,9 +1229,8 @@ static float128 propagateFloat128NaN(float128 a, float128 b,
 
     if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
                 aIsLargerSignificand)) {
-        return float128_maybe_silence_nan(b);
+        return float128_maybe_silence_nan(b, status);
     } else {
-        return float128_maybe_silence_nan(a);
+        return float128_maybe_silence_nan(a, status);
     }
 }
-
diff --git a/fpu/softfloat.c b/fpu/softfloat.c
index 166c48e..3fdc207 100644
--- a/fpu/softfloat.c
+++ b/fpu/softfloat.c
@@ -2105,7 +2105,7 @@ static float32 subFloat32Sigs(float32 a, float32 b, flag zSign,
             return propagateFloat32NaN(a, b, status);
         }
         float_raise(float_flag_invalid, status);
-        return float32_default_nan;
+        return float32_default_nan(status);
     }
     if ( aExp == 0 ) {
         aExp = 1;
@@ -2234,7 +2234,7 @@ float32 float32_mul(float32 a, float32 b, float_status *status)
         }
         if ( ( bExp | bSig ) == 0 ) {
             float_raise(float_flag_invalid, status);
-            return float32_default_nan;
+            return float32_default_nan(status);
         }
         return packFloat32( zSign, 0xFF, 0 );
     }
@@ -2244,7 +2244,7 @@ float32 float32_mul(float32 a, float32 b, float_status *status)
         }
         if ( ( aExp | aSig ) == 0 ) {
             float_raise(float_flag_invalid, status);
-            return float32_default_nan;
+            return float32_default_nan(status);
         }
         return packFloat32( zSign, 0xFF, 0 );
     }
@@ -2299,7 +2299,7 @@ float32 float32_div(float32 a, float32 b, float_status *status)
                 return propagateFloat32NaN(a, b, status);
             }
             float_raise(float_flag_invalid, status);
-            return float32_default_nan;
+            return float32_default_nan(status);
         }
         return packFloat32( zSign, 0xFF, 0 );
     }
@@ -2313,7 +2313,7 @@ float32 float32_div(float32 a, float32 b, float_status *status)
         if ( bSig == 0 ) {
             if ( ( aExp | aSig ) == 0 ) {
                 float_raise(float_flag_invalid, status);
-                return float32_default_nan;
+                return float32_default_nan(status);
             }
             float_raise(float_flag_divbyzero, status);
             return packFloat32( zSign, 0xFF, 0 );
@@ -2367,7 +2367,7 @@ float32 float32_rem(float32 a, float32 b, float_status *status)
             return propagateFloat32NaN(a, b, status);
         }
         float_raise(float_flag_invalid, status);
-        return float32_default_nan;
+        return float32_default_nan(status);
     }
     if ( bExp == 0xFF ) {
         if (bSig) {
@@ -2378,7 +2378,7 @@ float32 float32_rem(float32 a, float32 b, float_status *status)
     if ( bExp == 0 ) {
         if ( bSig == 0 ) {
             float_raise(float_flag_invalid, status);
-            return float32_default_nan;
+            return float32_default_nan(status);
         }
         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
     }
@@ -2493,7 +2493,7 @@ float32 float32_muladd(float32 a, float32 b, float32 c, int flags,
 
     if (infzero) {
         float_raise(float_flag_invalid, status);
-        return float32_default_nan;
+        return float32_default_nan(status);
     }
 
     if (flags & float_muladd_negate_c) {
@@ -2514,7 +2514,7 @@ float32 float32_muladd(float32 a, float32 b, float32 c, int flags,
         if (pInf && (pSign ^ cSign)) {
             /* addition of opposite-signed infinities => InvalidOperation */
             float_raise(float_flag_invalid, status);
-            return float32_default_nan;
+            return float32_default_nan(status);
         }
         /* Otherwise generate an infinity of the same sign */
         return packFloat32(cSign ^ signflip, 0xff, 0);
@@ -2690,12 +2690,12 @@ float32 float32_sqrt(float32 a, float_status *status)
         }
         if ( ! aSign ) return a;
         float_raise(float_flag_invalid, status);
-        return float32_default_nan;
+        return float32_default_nan(status);
     }
     if ( aSign ) {
         if ( ( aExp | aSig ) == 0 ) return a;
         float_raise(float_flag_invalid, status);
-        return float32_default_nan;
+        return float32_default_nan(status);
     }
     if ( aExp == 0 ) {
         if ( aSig == 0 ) return float32_zero;
@@ -2828,7 +2828,7 @@ float32 float32_log2(float32 a, float_status *status)
     }
     if ( aSign ) {
         float_raise(float_flag_invalid, status);
-        return float32_default_nan;
+        return float32_default_nan(status);
     }
     if ( aExp == 0xFF ) {
         if (aSig) {
@@ -2974,7 +2974,9 @@ int float32_eq_quiet(float32 a, float32 b, float_status *status)
     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
        ) {
-        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+        if ( float32_is_signaling_nan( a, status ) ||
+             float32_is_signaling_nan( b, status ) ) {
+
             float_raise(float_flag_invalid, status);
         }
         return 0;
@@ -3000,7 +3002,9 @@ int float32_le_quiet(float32 a, float32 b, float_status *status)
     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
        ) {
-        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+        if ( float32_is_signaling_nan( a, status ) ||
+             float32_is_signaling_nan( b, status ) ) {
+
             float_raise(float_flag_invalid, status);
         }
         return 0;
@@ -3031,7 +3035,9 @@ int float32_lt_quiet(float32 a, float32 b, float_status *status)
     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
        ) {
-        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+        if ( float32_is_signaling_nan( a, status ) ||
+             float32_is_signaling_nan( b, status ) ) {
+
             float_raise(float_flag_invalid, status);
         }
         return 0;
@@ -3060,7 +3066,9 @@ int float32_unordered_quiet(float32 a, float32 b, float_status *status)
     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
        ) {
-        if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+        if ( float32_is_signaling_nan( a, status ) ||
+             float32_is_signaling_nan( b, status ) ) {
+
             float_raise(float_flag_invalid, status);
         }
         return 1;
@@ -3896,7 +3904,7 @@ static float64 subFloat64Sigs(float64 a, float64 b, flag zSign,
             return propagateFloat64NaN(a, b, status);
         }
         float_raise(float_flag_invalid, status);
-        return float64_default_nan;
+        return float64_default_nan(status);
     }
     if ( aExp == 0 ) {
         aExp = 1;
@@ -4023,7 +4031,7 @@ float64 float64_mul(float64 a, float64 b, float_status *status)
         }
         if ( ( bExp | bSig ) == 0 ) {
             float_raise(float_flag_invalid, status);
-            return float64_default_nan;
+            return float64_default_nan(status);
         }
         return packFloat64( zSign, 0x7FF, 0 );
     }
@@ -4033,7 +4041,7 @@ float64 float64_mul(float64 a, float64 b, float_status *status)
         }
         if ( ( aExp | aSig ) == 0 ) {
             float_raise(float_flag_invalid, status);
-            return float64_default_nan;
+            return float64_default_nan(status);
         }
         return packFloat64( zSign, 0x7FF, 0 );
     }
@@ -4090,7 +4098,7 @@ float64 float64_div(float64 a, float64 b, float_status *status)
                 return propagateFloat64NaN(a, b, status);
             }
             float_raise(float_flag_invalid, status);
-            return float64_default_nan;
+            return float64_default_nan(status);
         }
         return packFloat64( zSign, 0x7FF, 0 );
     }
@@ -4104,7 +4112,7 @@ float64 float64_div(float64 a, float64 b, float_status *status)
         if ( bSig == 0 ) {
             if ( ( aExp | aSig ) == 0 ) {
                 float_raise(float_flag_invalid, status);
-                return float64_default_nan;
+                return float64_default_nan(status);
             }
             float_raise(float_flag_divbyzero, status);
             return packFloat64( zSign, 0x7FF, 0 );
@@ -4162,7 +4170,7 @@ float64 float64_rem(float64 a, float64 b, float_status *status)
             return propagateFloat64NaN(a, b, status);
         }
         float_raise(float_flag_invalid, status);
-        return float64_default_nan;
+        return float64_default_nan(status);
     }
     if ( bExp == 0x7FF ) {
         if (bSig) {
@@ -4173,7 +4181,7 @@ float64 float64_rem(float64 a, float64 b, float_status *status)
     if ( bExp == 0 ) {
         if ( bSig == 0 ) {
             float_raise(float_flag_invalid, status);
-            return float64_default_nan;
+            return float64_default_nan(status);
         }
         normalizeFloat64Subnormal( bSig, &bExp, &bSig );
     }
@@ -4275,7 +4283,7 @@ float64 float64_muladd(float64 a, float64 b, float64 c, int flags,
 
     if (infzero) {
         float_raise(float_flag_invalid, status);
-        return float64_default_nan;
+        return float64_default_nan(status);
     }
 
     if (flags & float_muladd_negate_c) {
@@ -4296,7 +4304,7 @@ float64 float64_muladd(float64 a, float64 b, float64 c, int flags,
         if (pInf && (pSign ^ cSign)) {
             /* addition of opposite-signed infinities => InvalidOperation */
             float_raise(float_flag_invalid, status);
-            return float64_default_nan;
+            return float64_default_nan(status);
         }
         /* Otherwise generate an infinity of the same sign */
         return packFloat64(cSign ^ signflip, 0x7ff, 0);
@@ -4494,12 +4502,12 @@ float64 float64_sqrt(float64 a, float_status *status)
         }
         if ( ! aSign ) return a;
         float_raise(float_flag_invalid, status);
-        return float64_default_nan;
+        return float64_default_nan(status);
     }
     if ( aSign ) {
         if ( ( aExp | aSig ) == 0 ) return a;
         float_raise(float_flag_invalid, status);
-        return float64_default_nan;
+        return float64_default_nan(status);
     }
     if ( aExp == 0 ) {
         if ( aSig == 0 ) return float64_zero;
@@ -4547,7 +4555,7 @@ float64 float64_log2(float64 a, float_status *status)
     }
     if ( aSign ) {
         float_raise(float_flag_invalid, status);
-        return float64_default_nan;
+        return float64_default_nan(status);
     }
     if ( aExp == 0x7FF ) {
         if (aSig) {
@@ -4694,7 +4702,9 @@ int float64_eq_quiet(float64 a, float64 b, float_status *status)
     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
        ) {
-        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+        if ( float64_is_signaling_nan( a, status ) ||
+             float64_is_signaling_nan( b, status ) ) {
+
             float_raise(float_flag_invalid, status);
         }
         return 0;
@@ -4722,7 +4732,9 @@ int float64_le_quiet(float64 a, float64 b, float_status *status)
     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
        ) {
-        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+        if ( float64_is_signaling_nan( a, status ) ||
+             float64_is_signaling_nan( b, status ) ) {
+
             float_raise(float_flag_invalid, status);
         }
         return 0;
@@ -4753,7 +4765,9 @@ int float64_lt_quiet(float64 a, float64 b, float_status *status)
     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
        ) {
-        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+        if ( float64_is_signaling_nan( a, status ) ||
+             float64_is_signaling_nan( b, status ) ) {
+
             float_raise(float_flag_invalid, status);
         }
         return 0;
@@ -4782,7 +4796,9 @@ int float64_unordered_quiet(float64 a, float64 b, float_status *status)
     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
        ) {
-        if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+        if ( float64_is_signaling_nan( a, status ) ||
+             float64_is_signaling_nan( b, status ) ) {
+
             float_raise(float_flag_invalid, status);
         }
         return 1;
@@ -5221,8 +5237,8 @@ static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
             return propagateFloatx80NaN(a, b, status);
         }
         float_raise(float_flag_invalid, status);
-        z.low = floatx80_default_nan_low;
-        z.high = floatx80_default_nan_high;
+        z.low = floatx80_default_nan_low(status);
+        z.high = floatx80_default_nan_high(status);
         return z;
     }
     if ( aExp == 0 ) {
@@ -5341,8 +5357,8 @@ floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
         if ( ( aExp | aSig ) == 0 ) {
  invalid:
             float_raise(float_flag_invalid, status);
-            z.low = floatx80_default_nan_low;
-            z.high = floatx80_default_nan_high;
+            z.low = floatx80_default_nan_low(status);
+            z.high = floatx80_default_nan_high(status);
             return z;
         }
         return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
@@ -5409,8 +5425,8 @@ floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
             if ( ( aExp | aSig ) == 0 ) {
  invalid:
                 float_raise(float_flag_invalid, status);
-                z.low = floatx80_default_nan_low;
-                z.high = floatx80_default_nan_high;
+                z.low = floatx80_default_nan_low(status);
+                z.high = floatx80_default_nan_high(status);
                 return z;
             }
             float_raise(float_flag_divbyzero, status);
@@ -5485,8 +5501,8 @@ floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
         if ( bSig == 0 ) {
  invalid:
             float_raise(float_flag_invalid, status);
-            z.low = floatx80_default_nan_low;
-            z.high = floatx80_default_nan_high;
+            z.low = floatx80_default_nan_low(status);
+            z.high = floatx80_default_nan_high(status);
             return z;
         }
         normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
@@ -5575,8 +5591,8 @@ floatx80 floatx80_sqrt(floatx80 a, float_status *status)
         if ( ( aExp | aSig0 ) == 0 ) return a;
  invalid:
         float_raise(float_flag_invalid, status);
-        z.low = floatx80_default_nan_low;
-        z.high = floatx80_default_nan_high;
+        z.low = floatx80_default_nan_low(status);
+        z.high = floatx80_default_nan_high(status);
         return z;
     }
     if ( aExp == 0 ) {
@@ -5745,8 +5761,8 @@ int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
        ) {
-        if (    floatx80_is_signaling_nan( a )
-             || floatx80_is_signaling_nan( b ) ) {
+        if (    floatx80_is_signaling_nan( a, status )
+             || floatx80_is_signaling_nan( b, status ) ) {
             float_raise(float_flag_invalid, status);
         }
         return 0;
@@ -5776,8 +5792,8 @@ int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
        ) {
-        if (    floatx80_is_signaling_nan( a )
-             || floatx80_is_signaling_nan( b ) ) {
+        if (    floatx80_is_signaling_nan( a, status )
+             || floatx80_is_signaling_nan( b, status ) ) {
             float_raise(float_flag_invalid, status);
         }
         return 0;
@@ -5812,8 +5828,8 @@ int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
        ) {
-        if (    floatx80_is_signaling_nan( a )
-             || floatx80_is_signaling_nan( b ) ) {
+        if (    floatx80_is_signaling_nan( a, status )
+             || floatx80_is_signaling_nan( b, status ) ) {
             float_raise(float_flag_invalid, status);
         }
         return 0;
@@ -5845,8 +5861,8 @@ int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
        ) {
-        if (    floatx80_is_signaling_nan( a )
-             || floatx80_is_signaling_nan( b ) ) {
+        if (    floatx80_is_signaling_nan( a, status )
+             || floatx80_is_signaling_nan( b, status ) ) {
             float_raise(float_flag_invalid, status);
         }
         return 1;
@@ -6403,8 +6419,8 @@ static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
             return propagateFloat128NaN(a, b, status);
         }
         float_raise(float_flag_invalid, status);
-        z.low = float128_default_nan_low;
-        z.high = float128_default_nan_high;
+        z.low = float128_default_nan_low(status);
+        z.high = float128_default_nan_high(status);
         return z;
     }
     if ( aExp == 0 ) {
@@ -6541,8 +6557,8 @@ float128 float128_mul(float128 a, float128 b, float_status *status)
         if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
  invalid:
             float_raise(float_flag_invalid, status);
-            z.low = float128_default_nan_low;
-            z.high = float128_default_nan_high;
+            z.low = float128_default_nan_low(status);
+            z.high = float128_default_nan_high(status);
             return z;
         }
         return packFloat128( zSign, 0x7FFF, 0, 0 );
@@ -6616,8 +6632,8 @@ float128 float128_div(float128 a, float128 b, float_status *status)
             if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
  invalid:
                 float_raise(float_flag_invalid, status);
-                z.low = float128_default_nan_low;
-                z.high = float128_default_nan_high;
+                z.low = float128_default_nan_low(status);
+                z.high = float128_default_nan_high(status);
                 return z;
             }
             float_raise(float_flag_divbyzero, status);
@@ -6699,8 +6715,8 @@ float128 float128_rem(float128 a, float128 b, float_status *status)
         if ( ( bSig0 | bSig1 ) == 0 ) {
  invalid:
             float_raise(float_flag_invalid, status);
-            z.low = float128_default_nan_low;
-            z.high = float128_default_nan_high;
+            z.low = float128_default_nan_low(status);
+            z.high = float128_default_nan_high(status);
             return z;
         }
         normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
@@ -6799,8 +6815,8 @@ float128 float128_sqrt(float128 a, float_status *status)
         if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
  invalid:
         float_raise(float_flag_invalid, status);
-        z.low = float128_default_nan_low;
-        z.high = float128_default_nan_high;
+        z.low = float128_default_nan_low(status);
+        z.high = float128_default_nan_high(status);
         return z;
     }
     if ( aExp == 0 ) {
@@ -6969,8 +6985,8 @@ int float128_eq_quiet(float128 a, float128 b, float_status *status)
          || (    ( extractFloat128Exp( b ) == 0x7FFF )
               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
        ) {
-        if (    float128_is_signaling_nan( a )
-             || float128_is_signaling_nan( b ) ) {
+        if (    float128_is_signaling_nan( a, status )
+             || float128_is_signaling_nan( b, status ) ) {
             float_raise(float_flag_invalid, status);
         }
         return 0;
@@ -7000,8 +7016,8 @@ int float128_le_quiet(float128 a, float128 b, float_status *status)
          || (    ( extractFloat128Exp( b ) == 0x7FFF )
               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
        ) {
-        if (    float128_is_signaling_nan( a )
-             || float128_is_signaling_nan( b ) ) {
+        if (    float128_is_signaling_nan( a, status )
+             || float128_is_signaling_nan( b, status ) ) {
             float_raise(float_flag_invalid, status);
         }
         return 0;
@@ -7036,8 +7052,8 @@ int float128_lt_quiet(float128 a, float128 b, float_status *status)
          || (    ( extractFloat128Exp( b ) == 0x7FFF )
               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
        ) {
-        if (    float128_is_signaling_nan( a )
-             || float128_is_signaling_nan( b ) ) {
+        if (    float128_is_signaling_nan( a, status )
+             || float128_is_signaling_nan( b, status ) ) {
             float_raise(float_flag_invalid, status);
         }
         return 0;
@@ -7070,8 +7086,8 @@ int float128_unordered_quiet(float128 a, float128 b, float_status *status)
          || (    ( extractFloat128Exp( b ) == 0x7FFF )
               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
        ) {
-        if (    float128_is_signaling_nan( a )
-             || float128_is_signaling_nan( b ) ) {
+        if (    float128_is_signaling_nan( a, status )
+             || float128_is_signaling_nan( b, status ) ) {
             float_raise(float_flag_invalid, status);
         }
         return 1;
@@ -7351,8 +7367,8 @@ static inline int float ## s ## _compare_internal(float ## s a, float ## s b,\
         ( ( extractFloat ## s ## Exp( b ) == nan_exp ) &&                    \
           extractFloat ## s ## Frac( b ) )) {                                \
         if (!is_quiet ||                                                     \
-            float ## s ## _is_signaling_nan( a ) ||                          \
-            float ## s ## _is_signaling_nan( b ) ) {                         \
+            float ## s ## _is_signaling_nan( a, status ) ||                          \
+            float ## s ## _is_signaling_nan( b, status ) ) {                         \
             float_raise(float_flag_invalid, status);                         \
         }                                                                    \
         return float_relation_unordered;                                     \
@@ -7401,8 +7417,8 @@ static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
         ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
           ( extractFloatx80Frac( b )<<1 ) )) {
         if (!is_quiet ||
-            floatx80_is_signaling_nan( a ) ||
-            floatx80_is_signaling_nan( b ) ) {
+            floatx80_is_signaling_nan( a, status ) ||
+            floatx80_is_signaling_nan( b, status ) ) {
             float_raise(float_flag_invalid, status);
         }
         return float_relation_unordered;
@@ -7447,8 +7463,8 @@ static inline int float128_compare_internal(float128 a, float128 b,
         ( ( extractFloat128Exp( b ) == 0x7fff ) &&
           ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
         if (!is_quiet ||
-            float128_is_signaling_nan( a ) ||
-            float128_is_signaling_nan( b ) ) {
+            float128_is_signaling_nan( a, status ) ||
+            float128_is_signaling_nan( b, status ) ) {
             float_raise(float_flag_invalid, status);
         }
         return float_relation_unordered;
@@ -7508,11 +7524,11 @@ static inline float ## s float ## s ## _minmax(float ## s a, float ## s b,     \
     if (float ## s ## _is_any_nan(a) ||                                 \
         float ## s ## _is_any_nan(b)) {                                 \
         if (isieee) {                                                   \
-            if (float ## s ## _is_quiet_nan(a) &&                       \
+            if (float ## s ## _is_quiet_nan(a, status) &&            \
                 !float ## s ##_is_any_nan(b)) {                         \
                 return b;                                               \
-            } else if (float ## s ## _is_quiet_nan(b) &&                \
-                       !float ## s ## _is_any_nan(a)) {                 \
+            } else if (float ## s ## _is_quiet_nan(b, status) &&     \
+                       !float ## s ## _is_any_nan(a )) {                \
                 return a;                                               \
             }                                                           \
         }                                                               \
diff --git a/include/fpu/softfloat.h b/include/fpu/softfloat.h
index c937062..60524bb 100644
--- a/include/fpu/softfloat.h
+++ b/include/fpu/softfloat.h
@@ -205,6 +205,7 @@ typedef struct float_status {
     /* should denormalised inputs go to zero and set the input_denormal flag? */
     flag flush_inputs_to_zero;
     flag default_nan_mode;
+    flag snan_bit_is_one;
 } float_status;
 
 static inline void set_float_detect_tininess(int val, float_status *status)
@@ -236,6 +237,10 @@ static inline void set_default_nan_mode(flag val, float_status *status)
 {
     status->default_nan_mode = val;
 }
+static inline void set_snan_bit_is_one(flag val, float_status *status)
+{
+    status->snan_bit_is_one = val;
+}
 static inline int get_float_detect_tininess(float_status *status)
 {
     return status->float_detect_tininess;
@@ -342,9 +347,9 @@ float64 float16_to_float64(float16 a, flag ieee, float_status *status);
 /*----------------------------------------------------------------------------
 | Software half-precision operations.
 *----------------------------------------------------------------------------*/
-int float16_is_quiet_nan( float16 );
-int float16_is_signaling_nan( float16 );
-float16 float16_maybe_silence_nan( float16 );
+int float16_is_quiet_nan( float16, float_status *status );
+int float16_is_signaling_nan( float16, float_status *status );
+float16 float16_maybe_silence_nan( float16, float_status *status );
 
 static inline int float16_is_any_nan(float16 a)
 {
@@ -354,7 +359,7 @@ static inline int float16_is_any_nan(float16 a)
 /*----------------------------------------------------------------------------
 | The pattern for a default generated half-precision NaN.
 *----------------------------------------------------------------------------*/
-extern const float16 float16_default_nan;
+float16 float16_default_nan(float_status *status);
 
 /*----------------------------------------------------------------------------
 | Software IEC/IEEE single-precision conversion routines.
@@ -404,9 +409,9 @@ float32 float32_minnum(float32, float32, float_status *status);
 float32 float32_maxnum(float32, float32, float_status *status);
 float32 float32_minnummag(float32, float32, float_status *status);
 float32 float32_maxnummag(float32, float32, float_status *status);
-int float32_is_quiet_nan( float32 );
-int float32_is_signaling_nan( float32 );
-float32 float32_maybe_silence_nan( float32 );
+int float32_is_quiet_nan( float32, float_status *status );
+int float32_is_signaling_nan( float32, float_status *status );
+float32 float32_maybe_silence_nan( float32, float_status *status );
 float32 float32_scalbn(float32, int, float_status *status);
 
 static inline float32 float32_abs(float32 a)
@@ -466,7 +471,7 @@ static inline float32 float32_set_sign(float32 a, int sign)
 /*----------------------------------------------------------------------------
 | The pattern for a default generated single-precision NaN.
 *----------------------------------------------------------------------------*/
-extern const float32 float32_default_nan;
+float32 float32_default_nan(float_status *status);
 
 /*----------------------------------------------------------------------------
 | Software IEC/IEEE double-precision conversion routines.
@@ -516,9 +521,9 @@ float64 float64_minnum(float64, float64, float_status *status);
 float64 float64_maxnum(float64, float64, float_status *status);
 float64 float64_minnummag(float64, float64, float_status *status);
 float64 float64_maxnummag(float64, float64, float_status *status);
-int float64_is_quiet_nan( float64 a );
-int float64_is_signaling_nan( float64 );
-float64 float64_maybe_silence_nan( float64 );
+int float64_is_quiet_nan( float64 a, float_status *status );
+int float64_is_signaling_nan( float64, float_status *status );
+float64 float64_maybe_silence_nan( float64, float_status *status );
 float64 float64_scalbn(float64, int, float_status *status);
 
 static inline float64 float64_abs(float64 a)
@@ -578,7 +583,7 @@ static inline float64 float64_set_sign(float64 a, int sign)
 /*----------------------------------------------------------------------------
 | The pattern for a default generated double-precision NaN.
 *----------------------------------------------------------------------------*/
-extern const float64 float64_default_nan;
+float64 float64_default_nan(float_status *status);
 
 /*----------------------------------------------------------------------------
 | Software IEC/IEEE extended double-precision conversion routines.
@@ -611,9 +616,9 @@ int floatx80_lt_quiet(floatx80, floatx80, float_status *status);
 int floatx80_unordered_quiet(floatx80, floatx80, float_status *status);
 int floatx80_compare(floatx80, floatx80, float_status *status);
 int floatx80_compare_quiet(floatx80, floatx80, float_status *status);
-int floatx80_is_quiet_nan( floatx80 );
-int floatx80_is_signaling_nan( floatx80 );
-floatx80 floatx80_maybe_silence_nan( floatx80 );
+int floatx80_is_quiet_nan( floatx80, float_status *status );
+int floatx80_is_signaling_nan( floatx80, float_status *status );
+floatx80 floatx80_maybe_silence_nan( floatx80, float_status *status );
 floatx80 floatx80_scalbn(floatx80, int, float_status *status);
 
 static inline floatx80 floatx80_abs(floatx80 a)
@@ -663,7 +668,9 @@ static inline int floatx80_is_any_nan(floatx80 a)
 /*----------------------------------------------------------------------------
 | The pattern for a default generated extended double-precision NaN.
 *----------------------------------------------------------------------------*/
-extern const floatx80 floatx80_default_nan;
+uint16_t floatx80_default_nan_high(float_status *status);
+uint64_t floatx80_default_nan_low(float_status *status);
+floatx80 floatx80_default_nan(float_status *status);
 
 /*----------------------------------------------------------------------------
 | Software IEC/IEEE quadruple-precision conversion routines.
@@ -696,9 +703,9 @@ int float128_lt_quiet(float128, float128, float_status *status);
 int float128_unordered_quiet(float128, float128, float_status *status);
 int float128_compare(float128, float128, float_status *status);
 int float128_compare_quiet(float128, float128, float_status *status);
-int float128_is_quiet_nan( float128 );
-int float128_is_signaling_nan( float128 );
-float128 float128_maybe_silence_nan( float128 );
+int float128_is_quiet_nan( float128, float_status *status );
+int float128_is_signaling_nan( float128, float_status *status );
+float128 float128_maybe_silence_nan( float128, float_status *status );
 float128 float128_scalbn(float128, int, float_status *status);
 
 static inline float128 float128_abs(float128 a)
@@ -744,6 +751,8 @@ static inline int float128_is_any_nan(float128 a)
 /*----------------------------------------------------------------------------
 | The pattern for a default generated quadruple-precision NaN.
 *----------------------------------------------------------------------------*/
-extern const float128 float128_default_nan;
+uint64_t float128_default_nan_high(float_status *status);
+uint64_t float128_default_nan_low(float_status *status);
+float128 float128_default_nan(float_status *status);
 
 #endif /* !SOFTFLOAT_H */
diff --git a/target-alpha/cpu.c b/target-alpha/cpu.c
index 2eab060..1714387 100644
--- a/target-alpha/cpu.c
+++ b/target-alpha/cpu.c
@@ -277,6 +277,8 @@ static void alpha_cpu_initfn(Object *obj)
 #endif
     env->lock_addr = -1;
     env->fen = 1;
+
+    set_snan_bit_is_one(0, &env->fp_status);
 }
 
 static void alpha_cpu_class_init(ObjectClass *oc, void *data)
diff --git a/target-arm/cpu.c b/target-arm/cpu.c
index 352d9f8..d01866c 100644
--- a/target-arm/cpu.c
+++ b/target-arm/cpu.c
@@ -210,6 +210,8 @@ static void arm_cpu_reset(CPUState *s)
     set_flush_to_zero(1, &env->vfp.standard_fp_status);
     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
     set_default_nan_mode(1, &env->vfp.standard_fp_status);
+    set_snan_bit_is_one(0, &env->vfp.fp_status);
+    set_snan_bit_is_one(0, &env->vfp.standard_fp_status);
     set_float_detect_tininess(float_tininess_before_rounding,
                               &env->vfp.fp_status);
     set_float_detect_tininess(float_tininess_before_rounding,
diff --git a/target-arm/helper-a64.c b/target-arm/helper-a64.c
index c7bfb4d..50f0c8b 100644
--- a/target-arm/helper-a64.c
+++ b/target-arm/helper-a64.c
@@ -343,12 +343,12 @@ float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
 
     if (float32_is_any_nan(a)) {
         float32 nan = a;
-        if (float32_is_signaling_nan(a)) {
+        if (float32_is_signaling_nan(a, fpst)) {
             float_raise(float_flag_invalid, fpst);
-            nan = float32_maybe_silence_nan(a);
+            nan = float32_maybe_silence_nan(a, fpst);
         }
         if (fpst->default_nan_mode) {
-            nan = float32_default_nan;
+            nan = float32_default_nan(fpst);
         }
         return nan;
     }
@@ -372,12 +372,12 @@ float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
 
     if (float64_is_any_nan(a)) {
         float64 nan = a;
-        if (float64_is_signaling_nan(a)) {
+        if (float64_is_signaling_nan(a, fpst)) {
             float_raise(float_flag_invalid, fpst);
-            nan = float64_maybe_silence_nan(a);
+            nan = float64_maybe_silence_nan(a, fpst);
         }
         if (fpst->default_nan_mode) {
-            nan = float64_default_nan;
+            nan = float64_default_nan(fpst);
         }
         return nan;
     }
@@ -406,7 +406,7 @@ float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
     set_float_rounding_mode(float_round_to_zero, &tstat);
     set_float_exception_flags(0, &tstat);
     r = float64_to_float32(a, &tstat);
-    r = float32_maybe_silence_nan(r);
+    r = float32_maybe_silence_nan(r, &tstat);
     exflags = get_float_exception_flags(&tstat);
     if (exflags & float_flag_inexact) {
         r = make_float32(float32_val(r) | 1);
diff --git a/target-arm/helper.c b/target-arm/helper.c
index 19d5d52..7429183 100644
--- a/target-arm/helper.c
+++ b/target-arm/helper.c
@@ -8643,7 +8643,7 @@ float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
     /* ARM requires that S<->D conversion of any kind of NaN generates
      * a quiet NaN by forcing the most significant frac bit to 1.
      */
-    return float64_maybe_silence_nan(r);
+    return float64_maybe_silence_nan(r, &env->vfp.fp_status);
 }
 
 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
@@ -8652,7 +8652,7 @@ float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
     /* ARM requires that S<->D conversion of any kind of NaN generates
      * a quiet NaN by forcing the most significant frac bit to 1.
      */
-    return float32_maybe_silence_nan(r);
+    return float32_maybe_silence_nan(r, &env->vfp.fp_status);
 }
 
 /* VFP3 fixed point conversion.  */
@@ -8751,7 +8751,7 @@ static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
     float32 r = float16_to_float32(make_float16(a), ieee, s);
     if (ieee) {
-        return float32_maybe_silence_nan(r);
+        return float32_maybe_silence_nan(r, s);
     }
     return r;
 }
@@ -8761,7 +8761,7 @@ static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
     float16 r = float32_to_float16(a, ieee, s);
     if (ieee) {
-        r = float16_maybe_silence_nan(r);
+        r = float16_maybe_silence_nan(r, s);
     }
     return float16_val(r);
 }
@@ -8791,7 +8791,7 @@ float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
     float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
     if (ieee) {
-        return float64_maybe_silence_nan(r);
+        return float64_maybe_silence_nan(r, &env->vfp.fp_status);
     }
     return r;
 }
@@ -8801,7 +8801,7 @@ uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
     float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
     if (ieee) {
-        r = float16_maybe_silence_nan(r);
+        r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
     }
     return float16_val(r);
 }
@@ -8951,12 +8951,12 @@ float32 HELPER(recpe_f32)(float32 input, void *fpstp)
 
     if (float32_is_any_nan(f32)) {
         float32 nan = f32;
-        if (float32_is_signaling_nan(f32)) {
+        if (float32_is_signaling_nan(f32, fpst)) {
             float_raise(float_flag_invalid, fpst);
-            nan = float32_maybe_silence_nan(f32);
+            nan = float32_maybe_silence_nan(f32, fpst);
         }
         if (fpst->default_nan_mode) {
-            nan =  float32_default_nan;
+            nan =  float32_default_nan(fpst);
         }
         return nan;
     } else if (float32_is_infinity(f32)) {
@@ -9005,12 +9005,12 @@ float64 HELPER(recpe_f64)(float64 input, void *fpstp)
     /* Deal with any special cases */
     if (float64_is_any_nan(f64)) {
         float64 nan = f64;
-        if (float64_is_signaling_nan(f64)) {
+        if (float64_is_signaling_nan(f64, fpst)) {
             float_raise(float_flag_invalid, fpst);
-            nan = float64_maybe_silence_nan(f64);
+            nan = float64_maybe_silence_nan(f64, fpst);
         }
         if (fpst->default_nan_mode) {
-            nan =  float64_default_nan;
+            nan =  float64_default_nan(fpst);
         }
         return nan;
     } else if (float64_is_infinity(f64)) {
@@ -9112,12 +9112,12 @@ float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
 
     if (float32_is_any_nan(f32)) {
         float32 nan = f32;
-        if (float32_is_signaling_nan(f32)) {
+        if (float32_is_signaling_nan(f32, s)) {
             float_raise(float_flag_invalid, s);
-            nan = float32_maybe_silence_nan(f32);
+            nan = float32_maybe_silence_nan(f32, s);
         }
         if (s->default_nan_mode) {
-            nan =  float32_default_nan;
+            nan =  float32_default_nan(s);
         }
         return nan;
     } else if (float32_is_zero(f32)) {
@@ -9125,7 +9125,7 @@ float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
         return float32_set_sign(float32_infinity, float32_is_neg(f32));
     } else if (float32_is_neg(f32)) {
         float_raise(float_flag_invalid, s);
-        return float32_default_nan;
+        return float32_default_nan(s);
     } else if (float32_is_infinity(f32)) {
         return float32_zero;
     }
@@ -9176,12 +9176,12 @@ float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
 
     if (float64_is_any_nan(f64)) {
         float64 nan = f64;
-        if (float64_is_signaling_nan(f64)) {
+        if (float64_is_signaling_nan(f64, s)) {
             float_raise(float_flag_invalid, s);
-            nan = float64_maybe_silence_nan(f64);
+            nan = float64_maybe_silence_nan(f64, s);
         }
         if (s->default_nan_mode) {
-            nan =  float64_default_nan;
+            nan =  float64_default_nan(s);
         }
         return nan;
     } else if (float64_is_zero(f64)) {
@@ -9189,7 +9189,7 @@ float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
         return float64_set_sign(float64_infinity, float64_is_neg(f64));
     } else if (float64_is_neg(f64)) {
         float_raise(float_flag_invalid, s);
-        return float64_default_nan;
+        return float64_default_nan(s);
     } else if (float64_is_infinity(f64)) {
         return float64_zero;
     }
diff --git a/target-i386/cpu.c b/target-i386/cpu.c
index 3ea6b29..3aa8d00 100644
--- a/target-i386/cpu.c
+++ b/target-i386/cpu.c
@@ -2711,6 +2711,10 @@ static void x86_cpu_reset(CPUState *s)
     }
     cpu_set_fpuc(env, 0x37f);
 
+    set_snan_bit_is_one(0, &env->fp_status);
+    set_snan_bit_is_one(0, &env->mmx_status);
+    set_snan_bit_is_one(0, &env->sse_status);
+
     env->mxcsr = 0x1f80;
     /* All units are in INIT state.  */
     env->xstate_bv = 0;
diff --git a/target-m68k/cpu.c b/target-m68k/cpu.c
index 6de74bf..56ad81d 100644
--- a/target-m68k/cpu.c
+++ b/target-m68k/cpu.c
@@ -60,6 +60,8 @@ static void m68k_cpu_reset(CPUState *s)
     /* TODO: We should set PC from the interrupt vector.  */
     env->pc = 0;
     tlb_flush(s, 1);
+
+    set_snan_bit_is_one(0, &env->fp_status);
 }
 
 static void m68k_cpu_disas_set_info(CPUState *cpu, disassemble_info *info)
diff --git a/target-m68k/helper.c b/target-m68k/helper.c
index a8f6d9d..4a1c623 100644
--- a/target-m68k/helper.c
+++ b/target-m68k/helper.c
@@ -557,10 +557,10 @@ float64 HELPER(sub_cmp_f64)(CPUM68KState *env, float64 a, float64 b)
     /* ??? Should flush denormals to zero.  */
     float64 res;
     res = float64_sub(a, b, &env->fp_status);
-    if (float64_is_quiet_nan(res)) {
+    if (float64_is_quiet_nan(res, &env->fp_status)) {
         /* +/-inf compares equal against itself, but sub returns nan.  */
-        if (!float64_is_quiet_nan(a)
-            && !float64_is_quiet_nan(b)) {
+        if (!float64_is_quiet_nan(a, &env->fp_status)
+            && !float64_is_quiet_nan(b, &env->fp_status)) {
             res = float64_zero;
             if (float64_lt_quiet(a, res, &env->fp_status))
                 res = float64_chs(res);
diff --git a/target-microblaze/cpu.c b/target-microblaze/cpu.c
index 7a42897..94ea828 100644
--- a/target-microblaze/cpu.c
+++ b/target-microblaze/cpu.c
@@ -120,6 +120,8 @@ static void mb_cpu_reset(CPUState *s)
     env->mmu.c_mmu_tlb_access = 3;
     env->mmu.c_mmu_zones = 16;
 #endif
+
+    set_snan_bit_is_one(0, &env->fp_status);
 }
 
 static void mb_disas_set_info(CPUState *cpu, disassemble_info *info)
diff --git a/target-microblaze/op_helper.c b/target-microblaze/op_helper.c
index 9733388..45fc94d 100644
--- a/target-microblaze/op_helper.c
+++ b/target-microblaze/op_helper.c
@@ -287,12 +287,14 @@ uint32_t helper_fcmp_un(CPUMBState *env, uint32_t a, uint32_t b)
     fa.l = a;
     fb.l = b;
 
-    if (float32_is_signaling_nan(fa.f) || float32_is_signaling_nan(fb.f)) {
+    if (float32_is_signaling_nan(fa.f, &env->fp_status) ||
+        float32_is_signaling_nan(fb.f, &env->fp_status)) {
         update_fpu_flags(env, float_flag_invalid);
         r = 1;
     }
 
-    if (float32_is_quiet_nan(fa.f) || float32_is_quiet_nan(fb.f)) {
+    if (float32_is_quiet_nan(fa.f, &env->fp_status) ||
+        float32_is_quiet_nan(fb.f, &env->fp_status)) {
         r = 1;
     }
 
diff --git a/target-mips/helper.h b/target-mips/helper.h
index 1bc8bb2..1aaa316 100644
--- a/target-mips/helper.h
+++ b/target-mips/helper.h
@@ -215,8 +215,8 @@ DEF_HELPER_2(float_cvtw_d, i32, env, i64)
 DEF_HELPER_3(float_addr_ps, i64, env, i64, i64)
 DEF_HELPER_3(float_mulr_ps, i64, env, i64, i64)
 
-DEF_HELPER_FLAGS_1(float_class_s, TCG_CALL_NO_RWG_SE, i32, i32)
-DEF_HELPER_FLAGS_1(float_class_d, TCG_CALL_NO_RWG_SE, i64, i64)
+DEF_HELPER_FLAGS_2(float_class_s, TCG_CALL_NO_RWG_SE, i32, env, i32)
+DEF_HELPER_FLAGS_2(float_class_d, TCG_CALL_NO_RWG_SE, i64, env, i64)
 
 #define FOP_PROTO(op)                                     \
 DEF_HELPER_4(float_ ## op ## _s, i32, env, i32, i32, i32) \
diff --git a/target-mips/msa_helper.c b/target-mips/msa_helper.c
index 654a0d2..47fbba0 100644
--- a/target-mips/msa_helper.c
+++ b/target-mips/msa_helper.c
@@ -1494,11 +1494,11 @@ MSA_UNOP_DF(pcnt)
 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
 
-#define FLOAT_SNAN16 (float16_default_nan ^ 0x0220)
+#define FLOAT_SNAN16(s) (float16_default_nan(s) ^ 0x0220)
         /* 0x7c20 */
-#define FLOAT_SNAN32 (float32_default_nan ^ 0x00400020)
+#define FLOAT_SNAN32(s) (float32_default_nan(s) ^ 0x00400020)
         /* 0x7f800020 */
-#define FLOAT_SNAN64 (float64_default_nan ^ 0x0008000000000020ULL)
+#define FLOAT_SNAN64(s) (float64_default_nan(s) ^ 0x0008000000000020ULL)
         /* 0x7ff0000000000020 */
 
 static inline void clear_msacsr_cause(CPUMIPSState *env)
@@ -1611,7 +1611,7 @@ static inline float16 float16_from_float32(int32_t a, flag ieee,
       float16 f_val;
 
       f_val = float32_to_float16((float32)a, ieee, status);
-      f_val = float16_maybe_silence_nan(f_val);
+      f_val = float16_maybe_silence_nan(f_val, status);
 
       return a < 0 ? (f_val | (1 << 15)) : f_val;
 }
@@ -1621,7 +1621,7 @@ static inline float32 float32_from_float64(int64_t a, float_status *status)
       float32 f_val;
 
       f_val = float64_to_float32((float64)a, status);
-      f_val = float32_maybe_silence_nan(f_val);
+      f_val = float32_maybe_silence_nan(f_val, status);
 
       return a < 0 ? (f_val | (1 << 31)) : f_val;
 }
@@ -1632,7 +1632,7 @@ static inline float32 float32_from_float16(int16_t a, flag ieee,
       float32 f_val;
 
       f_val = float16_to_float32((float16)a, ieee, status);
-      f_val = float32_maybe_silence_nan(f_val);
+      f_val = float32_maybe_silence_nan(f_val, status);
 
       return a < 0 ? (f_val | (1 << 31)) : f_val;
 }
@@ -1642,7 +1642,7 @@ static inline float64 float64_from_float32(int32_t a, float_status *status)
       float64 f_val;
 
       f_val = float32_to_float64((float64)a, status);
-      f_val = float64_maybe_silence_nan(f_val);
+      f_val = float64_maybe_silence_nan(f_val, status);
 
       return a < 0 ? (f_val | (1ULL << 63)) : f_val;
 }
@@ -1788,7 +1788,8 @@ static inline int32_t float64_to_q32(float64 a, float_status *status)
         c = update_msacsr(env, CLEAR_IS_INEXACT, 0);                        \
                                                                             \
         if (get_enabled_exceptions(env, c)) {                               \
-            DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c;                    \
+            DEST = ((FLOAT_SNAN ## BITS(&env->active_tc.msa_fp_status)      \
+                       >> 6) << 6) | c;                                     \
         }                                                                   \
     } while (0)
 
@@ -2387,7 +2388,8 @@ void helper_msa_fsne_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
         c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS));                 \
                                                                             \
         if (get_enabled_exceptions(env, c)) {                               \
-            DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c;                    \
+            DEST = ((FLOAT_SNAN ## BITS(&env->active_tc.msa_fp_status)      \
+                       >> 6) << 6) | c;                                     \
         }                                                                   \
     } while (0)
 
@@ -2523,7 +2525,8 @@ void helper_msa_fdiv_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
         c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS));                 \
                                                                             \
         if (get_enabled_exceptions(env, c)) {                               \
-            DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c;                    \
+            DEST = ((FLOAT_SNAN ## BITS(&env->active_tc.msa_fp_status)      \
+                       >> 6) << 6) | c;                                     \
         }                                                                   \
     } while (0)
 
@@ -2642,7 +2645,8 @@ void helper_msa_fexp2_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
         c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS));                 \
                                                                             \
         if (get_enabled_exceptions(env, c)) {                               \
-            DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c;                    \
+            DEST = ((FLOAT_SNAN ## BITS(&env->active_tc.msa_fp_status)      \
+                       >> 6) << 6) | c;                                     \
         }                                                                   \
     } while (0)
 
@@ -2693,7 +2697,8 @@ void helper_msa_fexdo_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
         c = update_msacsr(env, CLEAR_FS_UNDERFLOW, 0);                      \
                                                                             \
         if (get_enabled_exceptions(env, c)) {                               \
-            DEST = ((FLOAT_SNAN ## XBITS >> 6) << 6) | c;                   \
+            DEST = ((FLOAT_SNAN ## XBITS(&env->active_tc.msa_fp_status)     \
+                       >> 6) << 6) | c;                                     \
         }                                                                   \
     } while (0)
 
@@ -2730,9 +2735,9 @@ void helper_msa_ftq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
     msa_move_v(pwd, pwx);
 }
 
-#define NUMBER_QNAN_PAIR(ARG1, ARG2, BITS)      \
-    !float ## BITS ## _is_any_nan(ARG1)         \
-    && float ## BITS ## _is_quiet_nan(ARG2)
+#define NUMBER_QNAN_PAIR(ARG1, ARG2, BITS, STATUS)      \
+    !float ## BITS ## _is_any_nan(ARG1)                 \
+    && float ## BITS ## _is_quiet_nan(ARG2, STATUS)
 
 #define MSA_FLOAT_MAXOP(DEST, OP, ARG1, ARG2, BITS)                         \
     do {                                                                    \
@@ -2744,18 +2749,19 @@ void helper_msa_ftq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
         c = update_msacsr(env, 0, 0);                                       \
                                                                             \
         if (get_enabled_exceptions(env, c)) {                               \
-            DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c;                    \
+            DEST = ((FLOAT_SNAN ## BITS(&env->active_tc.msa_fp_status)      \
+                       >> 6) << 6) | c;                                     \
         }                                                                   \
     } while (0)
 
-#define FMAXMIN_A(F, G, X, _S, _T, BITS)                            \
+#define FMAXMIN_A(F, G, X, _S, _T, BITS, STATUS)                    \
     do {                                                            \
         uint## BITS ##_t S = _S, T = _T;                            \
         uint## BITS ##_t as, at, xs, xt, xd;                        \
-        if (NUMBER_QNAN_PAIR(S, T, BITS)) {                         \
+        if (NUMBER_QNAN_PAIR(S, T, BITS, STATUS)) {                 \
             T = S;                                                  \
         }                                                           \
-        else if (NUMBER_QNAN_PAIR(T, S, BITS)) {                    \
+        else if (NUMBER_QNAN_PAIR(T, S, BITS, STATUS)) {            \
             S = T;                                                  \
         }                                                           \
         as = float## BITS ##_abs(S);                                \
@@ -2769,6 +2775,7 @@ void helper_msa_ftq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
 void helper_msa_fmin_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
         uint32_t ws, uint32_t wt)
 {
+    float_status *status = &env->active_tc.msa_fp_status;
     wr_t wx, *pwx = &wx;
     wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
     wr_t *pws = &(env->active_fpu.fpr[ws].wr);
@@ -2780,9 +2787,9 @@ void helper_msa_fmin_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
     switch (df) {
     case DF_WORD:
         for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
-            if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32)) {
+            if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32, status)) {
                 MSA_FLOAT_MAXOP(pwx->w[i], min, pws->w[i], pws->w[i], 32);
-            } else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32)) {
+            } else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32, status)) {
                 MSA_FLOAT_MAXOP(pwx->w[i], min, pwt->w[i], pwt->w[i], 32);
             } else {
                 MSA_FLOAT_MAXOP(pwx->w[i], min, pws->w[i], pwt->w[i], 32);
@@ -2791,9 +2798,9 @@ void helper_msa_fmin_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
         break;
     case DF_DOUBLE:
         for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
-            if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64)) {
+            if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64, status)) {
                 MSA_FLOAT_MAXOP(pwx->d[i], min, pws->d[i], pws->d[i], 64);
-            } else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64)) {
+            } else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64, status)) {
                 MSA_FLOAT_MAXOP(pwx->d[i], min, pwt->d[i], pwt->d[i], 64);
             } else {
                 MSA_FLOAT_MAXOP(pwx->d[i], min, pws->d[i], pwt->d[i], 64);
@@ -2812,6 +2819,7 @@ void helper_msa_fmin_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
 void helper_msa_fmin_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
         uint32_t ws, uint32_t wt)
 {
+    float_status *status = &env->active_tc.msa_fp_status;
     wr_t wx, *pwx = &wx;
     wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
     wr_t *pws = &(env->active_fpu.fpr[ws].wr);
@@ -2823,12 +2831,12 @@ void helper_msa_fmin_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
     switch (df) {
     case DF_WORD:
         for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
-            FMAXMIN_A(min, max, pwx->w[i], pws->w[i], pwt->w[i], 32);
+            FMAXMIN_A(min, max, pwx->w[i], pws->w[i], pwt->w[i], 32, status);
         }
         break;
     case DF_DOUBLE:
         for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
-            FMAXMIN_A(min, max, pwx->d[i], pws->d[i], pwt->d[i], 64);
+            FMAXMIN_A(min, max, pwx->d[i], pws->d[i], pwt->d[i], 64, status);
         }
         break;
     default:
@@ -2843,6 +2851,7 @@ void helper_msa_fmin_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
 void helper_msa_fmax_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
         uint32_t ws, uint32_t wt)
 {
+    float_status *status = &env->active_tc.msa_fp_status;
     wr_t wx, *pwx = &wx;
     wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
     wr_t *pws = &(env->active_fpu.fpr[ws].wr);
@@ -2854,9 +2863,9 @@ void helper_msa_fmax_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
     switch (df) {
     case DF_WORD:
         for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
-            if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32)) {
+            if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32, status)) {
                 MSA_FLOAT_MAXOP(pwx->w[i], max, pws->w[i], pws->w[i], 32);
-            } else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32)) {
+            } else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32, status)) {
                 MSA_FLOAT_MAXOP(pwx->w[i], max, pwt->w[i], pwt->w[i], 32);
             } else {
                 MSA_FLOAT_MAXOP(pwx->w[i], max, pws->w[i], pwt->w[i], 32);
@@ -2865,9 +2874,9 @@ void helper_msa_fmax_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
         break;
     case DF_DOUBLE:
         for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
-            if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64)) {
+            if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64, status)) {
                 MSA_FLOAT_MAXOP(pwx->d[i], max, pws->d[i], pws->d[i], 64);
-            } else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64)) {
+            } else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64, status)) {
                 MSA_FLOAT_MAXOP(pwx->d[i], max, pwt->d[i], pwt->d[i], 64);
             } else {
                 MSA_FLOAT_MAXOP(pwx->d[i], max, pws->d[i], pwt->d[i], 64);
@@ -2886,6 +2895,7 @@ void helper_msa_fmax_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
 void helper_msa_fmax_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
         uint32_t ws, uint32_t wt)
 {
+    float_status *status = &env->active_tc.msa_fp_status;
     wr_t wx, *pwx = &wx;
     wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
     wr_t *pws = &(env->active_fpu.fpr[ws].wr);
@@ -2897,12 +2907,12 @@ void helper_msa_fmax_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
     switch (df) {
     case DF_WORD:
         for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
-            FMAXMIN_A(max, min, pwx->w[i], pws->w[i], pwt->w[i], 32);
+            FMAXMIN_A(max, min, pwx->w[i], pws->w[i], pwt->w[i], 32, status);
         }
         break;
     case DF_DOUBLE:
         for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
-            FMAXMIN_A(max, min, pwx->d[i], pws->d[i], pwt->d[i], 64);
+            FMAXMIN_A(max, min, pwx->d[i], pws->d[i], pwt->d[i], 64, status);
         }
         break;
     default:
@@ -2920,13 +2930,13 @@ void helper_msa_fclass_df(CPUMIPSState *env, uint32_t df,
     wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
     wr_t *pws = &(env->active_fpu.fpr[ws].wr);
     if (df == DF_WORD) {
-        pwd->w[0] = helper_float_class_s(pws->w[0]);
-        pwd->w[1] = helper_float_class_s(pws->w[1]);
-        pwd->w[2] = helper_float_class_s(pws->w[2]);
-        pwd->w[3] = helper_float_class_s(pws->w[3]);
+        pwd->w[0] = helper_float_class_s(env, pws->w[0]);
+        pwd->w[1] = helper_float_class_s(env, pws->w[1]);
+        pwd->w[2] = helper_float_class_s(env, pws->w[2]);
+        pwd->w[3] = helper_float_class_s(env, pws->w[3]);
     } else {
-        pwd->d[0] = helper_float_class_d(pws->d[0]);
-        pwd->d[1] = helper_float_class_d(pws->d[1]);
+        pwd->d[0] = helper_float_class_d(env, pws->d[0]);
+        pwd->d[1] = helper_float_class_d(env, pws->d[1]);
     }
 }
 
@@ -2940,7 +2950,8 @@ void helper_msa_fclass_df(CPUMIPSState *env, uint32_t df,
         c = update_msacsr(env, CLEAR_FS_UNDERFLOW, 0);                      \
                                                                             \
         if (get_enabled_exceptions(env, c)) {                               \
-            DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c;                    \
+            DEST = ((FLOAT_SNAN ## BITS(&env->active_tc.msa_fp_status)      \
+                       >> 6) << 6) | c;                                     \
         } else if (float ## BITS ## _is_any_nan(ARG)) {                     \
             DEST = 0;                                                       \
         }                                                                   \
@@ -3044,12 +3055,14 @@ void helper_msa_fsqrt_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
         set_float_exception_flags(0, status);                               \
         DEST = float ## BITS ## _ ## div(FLOAT_ONE ## BITS, ARG, status);   \
         c = update_msacsr(env, float ## BITS ## _is_infinity(ARG) ||        \
-                          float ## BITS ## _is_quiet_nan(DEST) ?            \
+                          float ## BITS ## _is_quiet_nan(DEST,              \
+                              &env->active_tc.msa_fp_status) ?              \
                           0 : RECIPROCAL_INEXACT,                           \
                           IS_DENORMAL(DEST, BITS));                         \
                                                                             \
         if (get_enabled_exceptions(env, c)) {                               \
-            DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c;                    \
+            DEST = ((FLOAT_SNAN ## BITS(&env->active_tc.msa_fp_status)      \
+                       >> 6) << 6) | c;                                     \
         }                                                                   \
     } while (0)
 
@@ -3165,7 +3178,8 @@ void helper_msa_frint_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
         c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS));                 \
                                                                             \
         if (get_enabled_exceptions(env, c)) {                               \
-            DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c;                    \
+            DEST = ((FLOAT_SNAN ## BITS(&env->active_tc.msa_fp_status)      \
+                       >> 6) << 6) | c;                                     \
         }                                                                   \
     } while (0)
 
diff --git a/target-mips/op_helper.c b/target-mips/op_helper.c
index 7c5669c..0d22b25 100644
--- a/target-mips/op_helper.c
+++ b/target-mips/op_helper.c
@@ -2593,7 +2593,7 @@ uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
     uint64_t fdt2;
 
     fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
-    fdt2 = float64_maybe_silence_nan(fdt2);
+    fdt2 = float64_maybe_silence_nan(fdt2, &env->active_fpu.fp_status);
     update_fcr31(env, GETPC());
     return fdt2;
 }
@@ -2683,7 +2683,7 @@ uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
     uint32_t fst2;
 
     fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
-    fst2 = float32_maybe_silence_nan(fst2);
+    fst2 = float32_maybe_silence_nan(fst2, &env->active_fpu.fp_status);
     update_fcr31(env, GETPC());
     return fst2;
 }
@@ -3133,11 +3133,14 @@ FLOAT_RINT(rint_d, 64)
 #define FLOAT_CLASS_POSITIVE_ZERO      0x200
 
 #define FLOAT_CLASS(name, bits)                                      \
-uint ## bits ## _t helper_float_ ## name (uint ## bits ## _t arg)    \
+uint ## bits ## _t helper_float_ ## name (CPUMIPSState *env,         \
+                                          uint ## bits ## _t arg)    \
 {                                                                    \
-    if (float ## bits ## _is_signaling_nan(arg)) {                   \
+    if (float ## bits ## _is_signaling_nan(arg,                      \
+                &env->active_fpu.fp_status)) {                       \
         return FLOAT_CLASS_SIGNALING_NAN;                            \
-    } else if (float ## bits ## _is_quiet_nan(arg)) {                \
+    } else if (float ## bits ## _is_quiet_nan(arg,                   \
+                    &env->active_fpu.fp_status)) {                   \
         return FLOAT_CLASS_QUIET_NAN;                                \
     } else if (float ## bits ## _is_neg(arg)) {                      \
         if (float ## bits ## _is_infinity(arg)) {                    \
diff --git a/target-mips/translate.c b/target-mips/translate.c
index 0f43bf4..669bd0c 100644
--- a/target-mips/translate.c
+++ b/target-mips/translate.c
@@ -9023,7 +9023,7 @@ static void gen_farith (DisasContext *ctx, enum fopcode op1,
         {
             TCGv_i32 fp0 = tcg_temp_new_i32();
             gen_load_fpr32(ctx, fp0, fs);
-            gen_helper_float_class_s(fp0, fp0);
+            gen_helper_float_class_s(fp0, cpu_env, fp0);
             gen_store_fpr32(ctx, fp0, fd);
             tcg_temp_free_i32(fp0);
         }
@@ -9521,7 +9521,7 @@ static void gen_farith (DisasContext *ctx, enum fopcode op1,
         {
             TCGv_i64 fp0 = tcg_temp_new_i64();
             gen_load_fpr64(ctx, fp0, fs);
-            gen_helper_float_class_d(fp0, fp0);
+            gen_helper_float_class_d(fp0, cpu_env, fp0);
             gen_store_fpr64(ctx, fp0, fd);
             tcg_temp_free_i64(fp0);
         }
diff --git a/target-mips/translate_init.c b/target-mips/translate_init.c
index 3192db0..3e48680 100644
--- a/target-mips/translate_init.c
+++ b/target-mips/translate_init.c
@@ -832,8 +832,10 @@ static void fpu_init (CPUMIPSState *env, const mips_def_t *def)
 {
     int i;
 
-    for (i = 0; i < MIPS_FPU_MAX; i++)
+    for (i = 0; i < MIPS_FPU_MAX; i++) {
         env->fpus[i].fcr0 = def->CP1_fcr0;
+        set_snan_bit_is_one(1, &env->fpus[i].fp_status);
+    }
 
     memcpy(&env->active_fpu, &env->fpus[0], sizeof(env->active_fpu));
 }
@@ -890,4 +892,6 @@ static void msa_reset(CPUMIPSState *env)
 
     /* clear float_status nan mode */
     set_default_nan_mode(0, &env->active_tc.msa_fp_status);
+
+    set_snan_bit_is_one(1, &env->active_tc.msa_fp_status);
 }
diff --git a/target-openrisc/cpu.c b/target-openrisc/cpu.c
index cafc07f..1a0ad14 100644
--- a/target-openrisc/cpu.c
+++ b/target-openrisc/cpu.c
@@ -67,6 +67,8 @@ static void openrisc_cpu_reset(CPUState *s)
     cpu->env.ttmr = 0x00000000;
     cpu->env.ttcr = 0x00000000;
 #endif
+
+    set_snan_bit_is_one(0, &cpu->env.fp_status);
 }
 
 static inline void set_feature(OpenRISCCPU *cpu, int feature)
diff --git a/target-ppc/fpu_helper.c b/target-ppc/fpu_helper.c
index b67ebca..48e9f40 100644
--- a/target-ppc/fpu_helper.c
+++ b/target-ppc/fpu_helper.c
@@ -73,7 +73,7 @@ void helper_compute_fprf(CPUPPCState *env, uint64_t arg)
     farg.ll = arg;
     isneg = float64_is_neg(farg.d);
     if (unlikely(float64_is_any_nan(farg.d))) {
-        if (float64_is_signaling_nan(farg.d)) {
+        if (float64_is_signaling_nan(farg.d, &env->fp_status)) {
             /* Signaling NaN: flags are undefined */
             fprf = 0x00;
         } else {
@@ -534,8 +534,8 @@ uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
         /* Magnitude subtraction of infinities */
         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
     } else {
-        if (unlikely(float64_is_signaling_nan(farg1.d) ||
-                     float64_is_signaling_nan(farg2.d))) {
+        if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
+                     float64_is_signaling_nan(farg2.d, &env->fp_status))) {
             /* sNaN addition */
             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
         }
@@ -558,8 +558,8 @@ uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
         /* Magnitude subtraction of infinities */
         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
     } else {
-        if (unlikely(float64_is_signaling_nan(farg1.d) ||
-                     float64_is_signaling_nan(farg2.d))) {
+        if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
+                     float64_is_signaling_nan(farg2.d, &env->fp_status))) {
             /* sNaN subtraction */
             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
         }
@@ -582,8 +582,8 @@ uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
         /* Multiplication of zero by infinity */
         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
     } else {
-        if (unlikely(float64_is_signaling_nan(farg1.d) ||
-                     float64_is_signaling_nan(farg2.d))) {
+        if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
+                     float64_is_signaling_nan(farg2.d, &env->fp_status))) {
             /* sNaN multiplication */
             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
         }
@@ -609,8 +609,8 @@ uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
         /* Division of zero by zero */
         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
     } else {
-        if (unlikely(float64_is_signaling_nan(farg1.d) ||
-                     float64_is_signaling_nan(farg2.d))) {
+        if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
+                     float64_is_signaling_nan(farg2.d, &env->fp_status))) {
             /* sNaN division */
             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
         }
@@ -632,7 +632,7 @@ uint64_t helper_##op(CPUPPCState *env, uint64_t arg)                   \
     if (unlikely(env->fp_status.float_exception_flags)) {              \
         if (float64_is_any_nan(arg)) {                                 \
             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1);      \
-            if (float64_is_signaling_nan(arg)) {                       \
+            if (float64_is_signaling_nan(arg, &env->fp_status)) {      \
                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
             }                                                          \
             farg.ll = nanval;                                          \
@@ -681,7 +681,7 @@ static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
 
     farg.ll = arg;
 
-    if (unlikely(float64_is_signaling_nan(farg.d))) {
+    if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
         /* sNaN round */
         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
         farg.ll = arg | 0x0008000000000000ULL;
@@ -737,9 +737,9 @@ uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
         /* Multiplication of zero by infinity */
         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
     } else {
-        if (unlikely(float64_is_signaling_nan(farg1.d) ||
-                     float64_is_signaling_nan(farg2.d) ||
-                     float64_is_signaling_nan(farg3.d))) {
+        if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
+                     float64_is_signaling_nan(farg2.d, &env->fp_status) ||
+                     float64_is_signaling_nan(farg3.d, &env->fp_status))) {
             /* sNaN operation */
             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
         }
@@ -780,9 +780,9 @@ uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
         /* Multiplication of zero by infinity */
         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
     } else {
-        if (unlikely(float64_is_signaling_nan(farg1.d) ||
-                     float64_is_signaling_nan(farg2.d) ||
-                     float64_is_signaling_nan(farg3.d))) {
+        if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
+                     float64_is_signaling_nan(farg2.d, &env->fp_status) ||
+                     float64_is_signaling_nan(farg3.d, &env->fp_status))) {
             /* sNaN operation */
             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
         }
@@ -821,9 +821,9 @@ uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
         /* Multiplication of zero by infinity */
         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
     } else {
-        if (unlikely(float64_is_signaling_nan(farg1.d) ||
-                     float64_is_signaling_nan(farg2.d) ||
-                     float64_is_signaling_nan(farg3.d))) {
+        if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
+                     float64_is_signaling_nan(farg2.d, &env->fp_status) ||
+                     float64_is_signaling_nan(farg3.d, &env->fp_status))) {
             /* sNaN operation */
             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
         }
@@ -866,9 +866,9 @@ uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
         /* Multiplication of zero by infinity */
         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
     } else {
-        if (unlikely(float64_is_signaling_nan(farg1.d) ||
-                     float64_is_signaling_nan(farg2.d) ||
-                     float64_is_signaling_nan(farg3.d))) {
+        if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
+                     float64_is_signaling_nan(farg2.d, &env->fp_status) ||
+                     float64_is_signaling_nan(farg3.d, &env->fp_status))) {
             /* sNaN operation */
             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
         }
@@ -903,7 +903,7 @@ uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
 
     farg.ll = arg;
 
-    if (unlikely(float64_is_signaling_nan(farg.d))) {
+    if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
         /* sNaN square root */
         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
     }
@@ -921,7 +921,7 @@ uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
     farg.ll = arg;
 
     if (unlikely(float64_is_any_nan(farg.d))) {
-        if (unlikely(float64_is_signaling_nan(farg.d))) {
+        if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
             /* sNaN reciprocal square root */
             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
             farg.ll = float64_snan_to_qnan(farg.ll);
@@ -942,7 +942,7 @@ uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
 
     farg.ll = arg;
 
-    if (unlikely(float64_is_signaling_nan(farg.d))) {
+    if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
         /* sNaN reciprocal */
         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
     }
@@ -958,7 +958,7 @@ uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
 
     farg.ll = arg;
 
-    if (unlikely(float64_is_signaling_nan(farg.d))) {
+    if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
         /* sNaN reciprocal */
         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
     }
@@ -977,7 +977,7 @@ uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
     farg.ll = arg;
 
     if (unlikely(float64_is_any_nan(farg.d))) {
-        if (unlikely(float64_is_signaling_nan(farg.d))) {
+        if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
             /* sNaN reciprocal square root */
             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
             farg.ll = float64_snan_to_qnan(farg.ll);
@@ -1100,8 +1100,8 @@ void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
     env->fpscr |= ret << FPSCR_FPRF;
     env->crf[crfD] = ret;
     if (unlikely(ret == 0x01UL
-                 && (float64_is_signaling_nan(farg1.d) ||
-                     float64_is_signaling_nan(farg2.d)))) {
+                 && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
+                     float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
         /* sNaN comparison */
         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
     }
@@ -1131,8 +1131,8 @@ void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
     env->fpscr |= ret << FPSCR_FPRF;
     env->crf[crfD] = ret;
     if (unlikely(ret == 0x01UL)) {
-        if (float64_is_signaling_nan(farg1.d) ||
-            float64_is_signaling_nan(farg2.d)) {
+        if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
+            float64_is_signaling_nan(farg2.d, &env->fp_status)) {
             /* sNaN comparison */
             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
                                   POWERPC_EXCP_FP_VXVC, 1);
@@ -1168,7 +1168,7 @@ static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
 
     u.l = val;
     /* NaN are not treated the same way IEEE 754 does */
-    if (unlikely(float32_is_quiet_nan(u.f))) {
+    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
         return 0;
     }
 
@@ -1181,7 +1181,7 @@ static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
 
     u.l = val;
     /* NaN are not treated the same way IEEE 754 does */
-    if (unlikely(float32_is_quiet_nan(u.f))) {
+    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
         return 0;
     }
 
@@ -1194,7 +1194,7 @@ static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
 
     u.l = val;
     /* NaN are not treated the same way IEEE 754 does */
-    if (unlikely(float32_is_quiet_nan(u.f))) {
+    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
         return 0;
     }
 
@@ -1207,7 +1207,7 @@ static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
 
     u.l = val;
     /* NaN are not treated the same way IEEE 754 does */
-    if (unlikely(float32_is_quiet_nan(u.f))) {
+    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
         return 0;
     }
 
@@ -1245,7 +1245,7 @@ static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
 
     u.l = val;
     /* NaN are not treated the same way IEEE 754 does */
-    if (unlikely(float32_is_quiet_nan(u.f))) {
+    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
         return 0;
     }
     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
@@ -1261,7 +1261,7 @@ static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
 
     u.l = val;
     /* NaN are not treated the same way IEEE 754 does */
-    if (unlikely(float32_is_quiet_nan(u.f))) {
+    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
         return 0;
     }
     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
@@ -1839,8 +1839,8 @@ void helper_##name(CPUPPCState *env, uint32_t opcode)                        \
         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
             if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) {      \
                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf);    \
-            } else if (tp##_is_signaling_nan(xa.fld) ||                      \
-                       tp##_is_signaling_nan(xb.fld)) {                      \
+            } else if (tp##_is_signaling_nan(xa.fld, &tstat) ||              \
+                       tp##_is_signaling_nan(xb.fld, &tstat)) {              \
                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
             }                                                                \
         }                                                                    \
@@ -1894,8 +1894,8 @@ void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
             if ((tp##_is_infinity(xa.fld) && tp##_is_zero(xb.fld)) ||        \
                 (tp##_is_infinity(xb.fld) && tp##_is_zero(xa.fld))) {        \
                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf);    \
-            } else if (tp##_is_signaling_nan(xa.fld) ||                      \
-                       tp##_is_signaling_nan(xb.fld)) {                      \
+            } else if (tp##_is_signaling_nan(xa.fld, &tstat) ||              \
+                       tp##_is_signaling_nan(xb.fld, &tstat)) {              \
                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
             }                                                                \
         }                                                                    \
@@ -1948,8 +1948,8 @@ void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
             } else if (tp##_is_zero(xa.fld) &&                                \
                 tp##_is_zero(xb.fld)) {                                       \
                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf);     \
-            } else if (tp##_is_signaling_nan(xa.fld) ||                       \
-                tp##_is_signaling_nan(xb.fld)) {                              \
+            } else if (tp##_is_signaling_nan(xa.fld, &tstat) ||               \
+                tp##_is_signaling_nan(xb.fld, &tstat)) {                      \
                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
             }                                                                 \
         }                                                                     \
@@ -1990,7 +1990,7 @@ void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
     helper_reset_fpstatus(env);                                               \
                                                                               \
     for (i = 0; i < nels; i++) {                                              \
-        if (unlikely(tp##_is_signaling_nan(xb.fld))) {                        \
+        if (unlikely(tp##_is_signaling_nan(xb.fld, &env->fp_status))) {       \
                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
         }                                                                     \
         xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status);                 \
@@ -2039,7 +2039,7 @@ void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
             if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \
-            } else if (tp##_is_signaling_nan(xb.fld)) {                      \
+            } else if (tp##_is_signaling_nan(xb.fld, &tstat)) {              \
                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
             }                                                                \
         }                                                                    \
@@ -2089,7 +2089,7 @@ void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
             if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \
-            } else if (tp##_is_signaling_nan(xb.fld)) {                      \
+            } else if (tp##_is_signaling_nan(xb.fld, &tstat)) {              \
                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
             }                                                                \
         }                                                                    \
@@ -2274,9 +2274,9 @@ void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
                                                                               \
         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
-            if (tp##_is_signaling_nan(xa.fld) ||                              \
-                tp##_is_signaling_nan(b->fld) ||                              \
-                tp##_is_signaling_nan(c->fld)) {                              \
+            if (tp##_is_signaling_nan(xa.fld, &tstat) ||                      \
+                tp##_is_signaling_nan(b->fld, &tstat) ||                      \
+                tp##_is_signaling_nan(c->fld, &tstat)) {                      \
                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
                 tstat.float_exception_flags &= ~float_flag_invalid;           \
             }                                                                 \
@@ -2358,8 +2358,8 @@ void helper_##op(CPUPPCState *env, uint32_t opcode)                      \
                                                                          \
     if (unlikely(float64_is_any_nan(xa.VsrD(0)) ||                       \
                  float64_is_any_nan(xb.VsrD(0)))) {                      \
-        if (float64_is_signaling_nan(xa.VsrD(0)) ||                      \
-            float64_is_signaling_nan(xb.VsrD(0))) {                      \
+        if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) ||     \
+            float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) {     \
             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);       \
         }                                                                \
         if (ordered) {                                                   \
@@ -2406,8 +2406,8 @@ void helper_##name(CPUPPCState *env, uint32_t opcode)                         \
                                                                               \
     for (i = 0; i < nels; i++) {                                              \
         xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status);                  \
-        if (unlikely(tp##_is_signaling_nan(xa.fld) ||                         \
-                     tp##_is_signaling_nan(xb.fld))) {                        \
+        if (unlikely(tp##_is_signaling_nan(xa.fld, &env->fp_status) ||        \
+                     tp##_is_signaling_nan(xb.fld, &env->fp_status))) {       \
             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);            \
         }                                                                     \
     }                                                                         \
@@ -2446,8 +2446,8 @@ void helper_##op(CPUPPCState *env, uint32_t opcode)                       \
     for (i = 0; i < nels; i++) {                                          \
         if (unlikely(tp##_is_any_nan(xa.fld) ||                           \
                      tp##_is_any_nan(xb.fld))) {                          \
-            if (tp##_is_signaling_nan(xa.fld) ||                          \
-                tp##_is_signaling_nan(xb.fld)) {                          \
+            if (tp##_is_signaling_nan(xa.fld, &env->fp_status) ||         \
+                tp##_is_signaling_nan(xb.fld, &env->fp_status)) {         \
                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);    \
             }                                                             \
             if (svxvc) {                                                  \
@@ -2500,7 +2500,8 @@ void helper_##op(CPUPPCState *env, uint32_t opcode)                \
                                                                    \
     for (i = 0; i < nels; i++) {                                   \
         xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);        \
-        if (unlikely(stp##_is_signaling_nan(xb.sfld))) {           \
+        if (unlikely(stp##_is_signaling_nan(xb.sfld,               \
+                                            &env->fp_status))) {   \
             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
             xt.tfld = ttp##_snan_to_qnan(xt.tfld);                 \
         }                                                          \
@@ -2555,7 +2556,7 @@ void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
                                                                              \
     for (i = 0; i < nels; i++) {                                             \
         if (unlikely(stp##_is_any_nan(xb.sfld))) {                           \
-            if (stp##_is_signaling_nan(xb.sfld)) {                           \
+            if (stp##_is_signaling_nan(xb.sfld, &env->fp_status)) {          \
                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);       \
             }                                                                \
             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);            \
@@ -2664,7 +2665,8 @@ void helper_##op(CPUPPCState *env, uint32_t opcode)                    \
     }                                                                  \
                                                                        \
     for (i = 0; i < nels; i++) {                                       \
-        if (unlikely(tp##_is_signaling_nan(xb.fld))) {                 \
+        if (unlikely(tp##_is_signaling_nan(xb.fld,                     \
+                                           &env->fp_status))) {        \
             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);     \
             xt.fld = tp##_snan_to_qnan(xb.fld);                        \
         } else {                                                       \
diff --git a/target-ppc/translate_init.c b/target-ppc/translate_init.c
index 0a33597..6b4845d 100644
--- a/target-ppc/translate_init.c
+++ b/target-ppc/translate_init.c
@@ -573,6 +573,7 @@ static inline void vscr_init (CPUPPCState *env, uint32_t val)
     /* Altivec always uses round-to-nearest */
     set_float_rounding_mode(float_round_nearest_even, &env->vec_status);
     set_flush_to_zero(vscr_nj, &env->vec_status);
+    set_snan_bit_is_one(0, &env->vec_status);
 }
 
 #ifdef CONFIG_USER_ONLY
@@ -9930,6 +9931,7 @@ static void ppc_cpu_reset(CPUState *s)
         }
         env->spr[i] = spr->default_value;
     }
+    set_snan_bit_is_one(0, &env->fp_status);
 
     /* Flush all TLBs */
     tlb_flush(s, 1);
diff --git a/target-s390x/cpu.c b/target-s390x/cpu.c
index 1cbf703..8f6b57d 100644
--- a/target-s390x/cpu.c
+++ b/target-s390x/cpu.c
@@ -171,6 +171,7 @@ static void s390_cpu_full_reset(CPUState *s)
     /* tininess for underflow is detected before rounding */
     set_float_detect_tininess(float_tininess_before_rounding,
                               &env->fpu_status);
+    set_snan_bit_is_one(0, &env->fpu_status);
 
     /* Reset state inside the kernel that we cannot access yet from QEMU. */
     if (kvm_enabled()) {
diff --git a/target-s390x/fpu_helper.c b/target-s390x/fpu_helper.c
index 1c7f673..d527c98 100644
--- a/target-s390x/fpu_helper.c
+++ b/target-s390x/fpu_helper.c
@@ -266,7 +266,7 @@ uint64_t HELPER(ldeb)(CPUS390XState *env, uint64_t f2)
 {
     float64 ret = float32_to_float64(f2, &env->fpu_status);
     handle_exceptions(env, GETPC());
-    return float64_maybe_silence_nan(ret);
+    return float64_maybe_silence_nan(ret, &env->fpu_status);
 }
 
 /* convert 128-bit float to 64-bit float */
@@ -274,7 +274,7 @@ uint64_t HELPER(ldxb)(CPUS390XState *env, uint64_t ah, uint64_t al)
 {
     float64 ret = float128_to_float64(make_float128(ah, al), &env->fpu_status);
     handle_exceptions(env, GETPC());
-    return float64_maybe_silence_nan(ret);
+    return float64_maybe_silence_nan(ret, &env->fpu_status);
 }
 
 /* convert 64-bit float to 128-bit float */
@@ -282,7 +282,7 @@ uint64_t HELPER(lxdb)(CPUS390XState *env, uint64_t f2)
 {
     float128 ret = float64_to_float128(f2, &env->fpu_status);
     handle_exceptions(env, GETPC());
-    return RET128(float128_maybe_silence_nan(ret));
+    return RET128(float128_maybe_silence_nan(ret, &env->fpu_status));
 }
 
 /* convert 32-bit float to 128-bit float */
@@ -290,7 +290,7 @@ uint64_t HELPER(lxeb)(CPUS390XState *env, uint64_t f2)
 {
     float128 ret = float32_to_float128(f2, &env->fpu_status);
     handle_exceptions(env, GETPC());
-    return RET128(float128_maybe_silence_nan(ret));
+    return RET128(float128_maybe_silence_nan(ret, &env->fpu_status));
 }
 
 /* convert 64-bit float to 32-bit float */
@@ -298,7 +298,7 @@ uint64_t HELPER(ledb)(CPUS390XState *env, uint64_t f2)
 {
     float32 ret = float64_to_float32(f2, &env->fpu_status);
     handle_exceptions(env, GETPC());
-    return float32_maybe_silence_nan(ret);
+    return float32_maybe_silence_nan(ret, &env->fpu_status);
 }
 
 /* convert 128-bit float to 32-bit float */
@@ -306,7 +306,7 @@ uint64_t HELPER(lexb)(CPUS390XState *env, uint64_t ah, uint64_t al)
 {
     float32 ret = float128_to_float32(make_float128(ah, al), &env->fpu_status);
     handle_exceptions(env, GETPC());
-    return float32_maybe_silence_nan(ret);
+    return float32_maybe_silence_nan(ret, &env->fpu_status);
 }
 
 /* 32-bit FP compare */
@@ -623,7 +623,7 @@ uint64_t HELPER(msdb)(CPUS390XState *env, uint64_t f1,
 }
 
 /* test data class 32-bit */
-uint32_t HELPER(tceb)(uint64_t f1, uint64_t m2)
+uint32_t HELPER(tceb)(CPUS390XState *env, uint64_t f1, uint64_t m2)
 {
     float32 v1 = f1;
     int neg = float32_is_neg(v1);
@@ -632,7 +632,8 @@ uint32_t HELPER(tceb)(uint64_t f1, uint64_t m2)
     if ((float32_is_zero(v1) && (m2 & (1 << (11-neg)))) ||
         (float32_is_infinity(v1) && (m2 & (1 << (5-neg)))) ||
         (float32_is_any_nan(v1) && (m2 & (1 << (3-neg)))) ||
-        (float32_is_signaling_nan(v1) && (m2 & (1 << (1-neg))))) {
+        (float32_is_signaling_nan(v1, &env->fpu_status) &&
+         (m2 & (1 << (1-neg))))) {
         cc = 1;
     } else if (m2 & (1 << (9-neg))) {
         /* assume normalized number */
@@ -643,7 +644,7 @@ uint32_t HELPER(tceb)(uint64_t f1, uint64_t m2)
 }
 
 /* test data class 64-bit */
-uint32_t HELPER(tcdb)(uint64_t v1, uint64_t m2)
+uint32_t HELPER(tcdb)(CPUS390XState *env, uint64_t v1, uint64_t m2)
 {
     int neg = float64_is_neg(v1);
     uint32_t cc = 0;
@@ -651,7 +652,8 @@ uint32_t HELPER(tcdb)(uint64_t v1, uint64_t m2)
     if ((float64_is_zero(v1) && (m2 & (1 << (11-neg)))) ||
         (float64_is_infinity(v1) && (m2 & (1 << (5-neg)))) ||
         (float64_is_any_nan(v1) && (m2 & (1 << (3-neg)))) ||
-        (float64_is_signaling_nan(v1) && (m2 & (1 << (1-neg))))) {
+        (float64_is_signaling_nan(v1, &env->fpu_status) &&
+         (m2 & (1 << (1-neg))))) {
         cc = 1;
     } else if (m2 & (1 << (9-neg))) {
         /* assume normalized number */
@@ -662,7 +664,8 @@ uint32_t HELPER(tcdb)(uint64_t v1, uint64_t m2)
 }
 
 /* test data class 128-bit */
-uint32_t HELPER(tcxb)(uint64_t ah, uint64_t al, uint64_t m2)
+uint32_t HELPER(tcxb)(CPUS390XState *env, uint64_t ah,
+                      uint64_t al, uint64_t m2)
 {
     float128 v1 = make_float128(ah, al);
     int neg = float128_is_neg(v1);
@@ -671,7 +674,8 @@ uint32_t HELPER(tcxb)(uint64_t ah, uint64_t al, uint64_t m2)
     if ((float128_is_zero(v1) && (m2 & (1 << (11-neg)))) ||
         (float128_is_infinity(v1) && (m2 & (1 << (5-neg)))) ||
         (float128_is_any_nan(v1) && (m2 & (1 << (3-neg)))) ||
-        (float128_is_signaling_nan(v1) && (m2 & (1 << (1-neg))))) {
+        (float128_is_signaling_nan(v1, &env->fpu_status) &&
+         (m2 & (1 << (1-neg))))) {
         cc = 1;
     } else if (m2 & (1 << (9-neg))) {
         /* assume normalized number */
diff --git a/target-s390x/helper.h b/target-s390x/helper.h
index 7e06119..207a6e7 100644
--- a/target-s390x/helper.h
+++ b/target-s390x/helper.h
@@ -67,9 +67,9 @@ DEF_HELPER_FLAGS_4(maeb, TCG_CALL_NO_WG, i64, env, i64, i64, i64)
 DEF_HELPER_FLAGS_4(madb, TCG_CALL_NO_WG, i64, env, i64, i64, i64)
 DEF_HELPER_FLAGS_4(mseb, TCG_CALL_NO_WG, i64, env, i64, i64, i64)
 DEF_HELPER_FLAGS_4(msdb, TCG_CALL_NO_WG, i64, env, i64, i64, i64)
-DEF_HELPER_FLAGS_2(tceb, TCG_CALL_NO_RWG_SE, i32, i64, i64)
-DEF_HELPER_FLAGS_2(tcdb, TCG_CALL_NO_RWG_SE, i32, i64, i64)
-DEF_HELPER_FLAGS_3(tcxb, TCG_CALL_NO_RWG_SE, i32, i64, i64, i64)
+DEF_HELPER_FLAGS_3(tceb, TCG_CALL_NO_RWG_SE, i32, env, i64, i64)
+DEF_HELPER_FLAGS_3(tcdb, TCG_CALL_NO_RWG_SE, i32, env, i64, i64)
+DEF_HELPER_FLAGS_4(tcxb, TCG_CALL_NO_RWG_SE, i32, env, i64, i64, i64)
 DEF_HELPER_FLAGS_1(clz, TCG_CALL_NO_RWG_SE, i64, i64)
 DEF_HELPER_FLAGS_2(sqeb, TCG_CALL_NO_WG, i64, env, i64)
 DEF_HELPER_FLAGS_2(sqdb, TCG_CALL_NO_WG, i64, env, i64)
diff --git a/target-s390x/translate.c b/target-s390x/translate.c
index c871ef2..1dadcd7 100644
--- a/target-s390x/translate.c
+++ b/target-s390x/translate.c
@@ -3979,21 +3979,21 @@ static ExitStatus op_svc(DisasContext *s, DisasOps *o)
 
 static ExitStatus op_tceb(DisasContext *s, DisasOps *o)
 {
-    gen_helper_tceb(cc_op, o->in1, o->in2);
+    gen_helper_tceb(cc_op, cpu_env, o->in1, o->in2);
     set_cc_static(s);
     return NO_EXIT;
 }
 
 static ExitStatus op_tcdb(DisasContext *s, DisasOps *o)
 {
-    gen_helper_tcdb(cc_op, o->in1, o->in2);
+    gen_helper_tcdb(cc_op, cpu_env, o->in1, o->in2);
     set_cc_static(s);
     return NO_EXIT;
 }
 
 static ExitStatus op_tcxb(DisasContext *s, DisasOps *o)
 {
-    gen_helper_tcxb(cc_op, o->out, o->out2, o->in2);
+    gen_helper_tcxb(cc_op, cpu_env, o->out, o->out2, o->in2);
     set_cc_static(s);
     return NO_EXIT;
 }
diff --git a/target-sh4/cpu.c b/target-sh4/cpu.c
index 8621d70..2d29f74 100644
--- a/target-sh4/cpu.c
+++ b/target-sh4/cpu.c
@@ -69,6 +69,7 @@ static void superh_cpu_reset(CPUState *s)
     set_flush_to_zero(1, &env->fp_status);
 #endif
     set_default_nan_mode(1, &env->fp_status);
+    set_snan_bit_is_one(1, &env->fp_status);
 }
 
 static void superh_cpu_disas_set_info(CPUState *cpu, disassemble_info *info)
diff --git a/target-sparc/cpu.c b/target-sparc/cpu.c
index ce903f8..16b8180 100644
--- a/target-sparc/cpu.c
+++ b/target-sparc/cpu.c
@@ -69,6 +69,7 @@ static void sparc_cpu_reset(CPUState *s)
     env->npc = env->pc + 4;
 #endif
     env->cache_control = 0;
+    set_snan_bit_is_one(0, &env->fp_status);
 }
 
 static bool sparc_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
diff --git a/target-tricore/helper.c b/target-tricore/helper.c
index 71b31cd..e4eaec6 100644
--- a/target-tricore/helper.c
+++ b/target-tricore/helper.c
@@ -116,6 +116,7 @@ void fpu_set_state(CPUTriCoreState *env)
     set_flush_inputs_to_zero(1, &env->fp_status);
     set_flush_to_zero(1, &env->fp_status);
     set_default_nan_mode(1, &env->fp_status);
+    set_snan_bit_is_one(0, &env->fp_status);
 }
 
 uint32_t psw_read(CPUTriCoreState *env)
diff --git a/target-unicore32/cpu.c b/target-unicore32/cpu.c
index c92ccc4..27a0583 100644
--- a/target-unicore32/cpu.c
+++ b/target-unicore32/cpu.c
@@ -73,6 +73,7 @@ static void unicore_ii_cpu_initfn(Object *obj)
     env->cp0.c3_faultstatus = 0x0;
     env->cp0.c4_faultaddr = 0x0;
     env->ucf64.xregs[UC32_UCF64_FPSCR] = 0;
+    set_snan_bit_is_one(1, &env->ucf64.fp_status);
 
     set_feature(env, UC32_HWCAP_CMOV);
     set_feature(env, UC32_HWCAP_UCF64);
diff --git a/target-xtensa/cpu.c b/target-xtensa/cpu.c
index d572d56..1a20504 100644
--- a/target-xtensa/cpu.c
+++ b/target-xtensa/cpu.c
@@ -71,6 +71,9 @@ static void xtensa_cpu_reset(CPUState *s)
     env->sregs[CONFIGID1] = env->config->configid[1];
 
     env->pending_irq_level = 0;
+
+    set_snan_bit_is_one(0, &env->fp_status);
+
     reset_mmu(env);
 }
 
-- 
1.9.1

^ permalink raw reply related	[flat|nested] 22+ messages in thread

* [Qemu-devel] [PATCH 2/2] target-mips: Implement IEEE 754-2008 functionality for R6 and MSA instructions
  2016-03-25 12:50 [Qemu-devel] [PATCH 0/2] target-mips: Fix IEEE 754-2008-related issues Aleksandar Markovic
  2016-03-25 12:50 ` [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit Aleksandar Markovic
@ 2016-03-25 12:50 ` Aleksandar Markovic
  2016-03-28 21:49   ` Richard Henderson
  2016-04-01 19:07   ` Leon Alrae
  1 sibling, 2 replies; 22+ messages in thread
From: Aleksandar Markovic @ 2016-03-25 12:50 UTC (permalink / raw)
  To: qemu-devel
  Cc: peter.maydell, ehabkost, proljc, mark.cave-ayland, agraf,
	kbastian, petar.jovanovic, blauwirbel, jcmvbkbc, miodrag.dinic,
	qemu-arm, qemu-ppc, edgar.iglesias, pbonzini, gxt, leon.alrae,
	afaerber, aurelien, rth

From: Aleksandar Markovic <aleksandar.markovic@imgtec.com>

This patch utilizes provisions from the previous patch, and configures
Mips R6 CPUs and Mips MSA units appropriately with reference to the meaning
of the signaling NaN bit (this is mentioned in point 3 in the list below).
The majority of involved MIPS instructions will be fixed just with that
change. Certain number of other IEEE 754-2008 standard-related MIPS issues
are addreessed with this patch as well.

The changes can be summarized this way:

1) Definitions of Mips processors are updated to reflect supported
   IEEE-754-2008-related features. (file target-mips/translate_init.c)

2) Functions fpu_init() and msa_reset() are updated so that flag
   snan_bit_is_one is properly set for any Mips configuration.
   (file target-mips/translate_init.c)

3) Helpers helper_float_abs_<fmt>() and helper_float_chs_<fmt>() are
   rewritten to reflect new behavior of instructions ABS.fmt and NEG.fmt
   in MIPS Release 6. Affected MIPS instructions are:

   ABS.S
   ABS.D
   NEG.S
   NEG.D

   Note that legacy (pre-R6) ABS and NEG instructions are arithmetic
   (any NaN operand signals invalid operation), while R6 ones are
   non-arithmetic, always changing the sign bit, even for NaN-like operands.

   Details on these instructions are documented in [1] p. 35 and 359.

   Affected files are target-mips/helper.h and target-mips/op_helper.c.

4) Helpers helper_float_ceilxxx(), helper_float_cvtxxx(),
   helper_float_floorxxx(), helper_float_roundxxx(), and
   helper_float_truncxxx() are rewritten to reflect the behavior of
   relevant instructions if its operands are floating numbers out of
   the range of the integer destination.

   Affected MIPS instructions are:

   CEIL.L.fmt
   CEIL.W.fmt
   CVT.L.fmt
   CVT.W.fmt
   FLOOR.L.fmt
   FLOOR.W.fmt
   ROUND.L.fmt
   ROUND.W.fmt
   TRUNC.L.fmt
   TRUNC.W.fmt

   Details on these instructions are presented in [1] p. 129, 130, 149,
   155, 222, 223, 393, 394, 504, 505.

   Affected files are target-mips/helper.h and target-mips/translate.c.

5) Helpers helper_msa_class_s() and helper_msa_class_d() added so that
   MSA version of instruction CLASS can operate independently of the one
   from the base set of instructions. Affected MIPS instructions are:

   FCLASS.W
   FCLASS.D

   Details on these instructions can be found in [2] p. 158.

   Affected source code files are target-mips/helper.h and
   target-mips/msa_helper.c.

6) Handling og instructions CVT.S.PU and CVT.S.PL is updated to reflect
   the fact that they are removed in Mips R6 architecture and belong to
   so-called paired-single class of instructions. Details on these
   instructions can be found in [1], p. 152 and 153. Affected source
   code file is target-mips/translate.c.

[1] "MIPS® Architecture For Programmers Volume II-A:
    The MIPS64® Instruction Set Reference Manual",
    Imagination Technologies LTD, Revision 6.04, November 13, 2015
    (https://imagination-technologies-cloudfront-assets.s3.amazonaws.com/
     documentation/MD00087-2B-MIPS64BIS-AFP-06.04.pdf)

[2] "MIPS Architecture for Programmers Volume IV-j:
    The MIPS32® SIMD Architecture Module",
    Imagination Technologies LTD, Revision 1.12, February 3, 2016
    (https://imagination-technologies-cloudfront-assets.s3.amazonaws.com/
     documentation/MD00866-2B-MSA32-AFP-01.12.pdf)

Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
---
 target-mips/helper.h         |  10 +-
 target-mips/msa_helper.c     |  60 ++++-
 target-mips/op_helper.c      | 516 ++++++++++++++++++++++++++++++++++++-------
 target-mips/translate.c      |  16 +-
 target-mips/translate_init.c |  22 +-
 5 files changed, 520 insertions(+), 104 deletions(-)

diff --git a/target-mips/helper.h b/target-mips/helper.h
index 1aaa316..952af63 100644
--- a/target-mips/helper.h
+++ b/target-mips/helper.h
@@ -254,10 +254,10 @@ FOP_PROTO(recip)
 FOP_PROTO(rint)
 #undef FOP_PROTO
 
-#define FOP_PROTO(op)                       \
-DEF_HELPER_1(float_ ## op ## _s, i32, i32)  \
-DEF_HELPER_1(float_ ## op ## _d, i64, i64)  \
-DEF_HELPER_1(float_ ## op ## _ps, i64, i64)
+#define FOP_PROTO(op)                            \
+DEF_HELPER_2(float_ ## op ## _s, i32, env, i32)  \
+DEF_HELPER_2(float_ ## op ## _d, i64, env, i64)  \
+DEF_HELPER_2(float_ ## op ## _ps, i64, env, i64)
 FOP_PROTO(abs)
 FOP_PROTO(chs)
 #undef FOP_PROTO
@@ -924,6 +924,8 @@ DEF_HELPER_4(msa_pcnt_df, void, env, i32, i32, i32)
 DEF_HELPER_4(msa_nloc_df, void, env, i32, i32, i32)
 DEF_HELPER_4(msa_nlzc_df, void, env, i32, i32, i32)
 
+DEF_HELPER_2(msa_class_s, i32, env, i32)
+DEF_HELPER_2(msa_class_d, i64, env, i64)
 DEF_HELPER_4(msa_fclass_df, void, env, i32, i32, i32)
 DEF_HELPER_4(msa_ftrunc_s_df, void, env, i32, i32, i32)
 DEF_HELPER_4(msa_ftrunc_u_df, void, env, i32, i32, i32)
diff --git a/target-mips/msa_helper.c b/target-mips/msa_helper.c
index 47fbba0..fed430d 100644
--- a/target-mips/msa_helper.c
+++ b/target-mips/msa_helper.c
@@ -2924,19 +2924,67 @@ void helper_msa_fmax_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
     msa_move_v(pwd, pwx);
 }
 
+#define MSA_CLASS_SIGNALING_NAN      0x001
+#define MSA_CLASS_QUIET_NAN          0x002
+#define MSA_CLASS_NEGATIVE_INFINITY  0x004
+#define MSA_CLASS_NEGATIVE_NORMAL    0x008
+#define MSA_CLASS_NEGATIVE_SUBNORMAL 0x010
+#define MSA_CLASS_NEGATIVE_ZERO      0x020
+#define MSA_CLASS_POSITIVE_INFINITY  0x040
+#define MSA_CLASS_POSITIVE_NORMAL    0x080
+#define MSA_CLASS_POSITIVE_SUBNORMAL 0x100
+#define MSA_CLASS_POSITIVE_ZERO      0x200
+
+#define MSA_CLASS(name, bits)                                        \
+uint ## bits ## _t helper_msa_ ## name (CPUMIPSState *env,           \
+                                        uint ## bits ## _t arg)      \
+{                                                                    \
+    if (float ## bits ## _is_signaling_nan(arg,                      \
+                &env->active_tc.msa_fp_status)) {                    \
+        return MSA_CLASS_SIGNALING_NAN;                              \
+    } else if (float ## bits ## _is_quiet_nan(arg,                   \
+                    &env->active_tc.msa_fp_status)) {                \
+        return MSA_CLASS_QUIET_NAN;                                  \
+    } else if (float ## bits ## _is_neg(arg)) {                      \
+        if (float ## bits ## _is_infinity(arg)) {                    \
+            return MSA_CLASS_NEGATIVE_INFINITY;                      \
+        } else if (float ## bits ## _is_zero(arg)) {                 \
+            return MSA_CLASS_NEGATIVE_ZERO;                          \
+        } else if (float ## bits ## _is_zero_or_denormal(arg)) {     \
+            return MSA_CLASS_NEGATIVE_SUBNORMAL;                     \
+        } else {                                                     \
+            return MSA_CLASS_NEGATIVE_NORMAL;                        \
+        }                                                            \
+    } else {                                                         \
+        if (float ## bits ## _is_infinity(arg)) {                    \
+            return MSA_CLASS_POSITIVE_INFINITY;                      \
+        } else if (float ## bits ## _is_zero(arg)) {                 \
+            return MSA_CLASS_POSITIVE_ZERO;                          \
+        } else if (float ## bits ## _is_zero_or_denormal(arg)) {     \
+            return MSA_CLASS_POSITIVE_SUBNORMAL;                     \
+        } else {                                                     \
+            return MSA_CLASS_POSITIVE_NORMAL;                        \
+        }                                                            \
+    }                                                                \
+}
+
+MSA_CLASS(class_s, 32)
+MSA_CLASS(class_d, 64)
+#undef FLOAT_MSA_CLASS
+
 void helper_msa_fclass_df(CPUMIPSState *env, uint32_t df,
         uint32_t wd, uint32_t ws)
 {
     wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
     wr_t *pws = &(env->active_fpu.fpr[ws].wr);
     if (df == DF_WORD) {
-        pwd->w[0] = helper_float_class_s(env, pws->w[0]);
-        pwd->w[1] = helper_float_class_s(env, pws->w[1]);
-        pwd->w[2] = helper_float_class_s(env, pws->w[2]);
-        pwd->w[3] = helper_float_class_s(env, pws->w[3]);
+        pwd->w[0] = helper_msa_class_s(env, pws->w[0]);
+        pwd->w[1] = helper_msa_class_s(env, pws->w[1]);
+        pwd->w[2] = helper_msa_class_s(env, pws->w[2]);
+        pwd->w[3] = helper_msa_class_s(env, pws->w[3]);
     } else {
-        pwd->d[0] = helper_float_class_d(env, pws->d[0]);
-        pwd->d[1] = helper_float_class_d(env, pws->d[1]);
+        pwd->d[0] = helper_msa_class_d(env, pws->d[0]);
+        pwd->d[1] = helper_msa_class_d(env, pws->d[1]);
     }
 }
 
diff --git a/target-mips/op_helper.c b/target-mips/op_helper.c
index 0d22b25..407d5e0 100644
--- a/target-mips/op_helper.c
+++ b/target-mips/op_helper.c
@@ -2621,9 +2621,23 @@ uint64_t helper_float_cvtl_d(CPUMIPSState *env, uint64_t fdt0)
     uint64_t dt2;
 
     dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        dt2 = FP_TO_INT64_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float64_is_any_nan(fdt0)) {
+                dt2 = 0;
+            } else {
+                if (float64_is_neg(fdt0))
+                    dt2 = INT64_MIN;
+                else
+                    dt2 = INT64_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            dt2 = FP_TO_INT64_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return dt2;
@@ -2634,14 +2648,29 @@ uint64_t helper_float_cvtl_s(CPUMIPSState *env, uint32_t fst0)
     uint64_t dt2;
 
     dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        dt2 = FP_TO_INT64_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float32_is_any_nan(fst0)) {
+                dt2 = 0;
+            } else {
+                if (float32_is_neg(fst0))
+                    dt2 = INT64_MIN;
+                else
+                    dt2 = INT64_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            dt2 = FP_TO_INT64_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return dt2;
 }
 
+
 uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0)
 {
     uint32_t fst2;
@@ -2729,9 +2758,23 @@ uint32_t helper_float_cvtw_s(CPUMIPSState *env, uint32_t fst0)
     uint32_t wt2;
 
     wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        wt2 = FP_TO_INT32_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float32_is_any_nan(fst0)) {
+                wt2 = 0;
+            } else {
+                if (float32_is_neg(fst0))
+                    wt2 = INT32_MIN;
+                else
+                    wt2 = INT32_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            wt2 = FP_TO_INT32_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return wt2;
@@ -2742,9 +2785,23 @@ uint32_t helper_float_cvtw_d(CPUMIPSState *env, uint64_t fdt0)
     uint32_t wt2;
 
     wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        wt2 = FP_TO_INT32_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float64_is_any_nan(fdt0)) {
+                wt2 = 0;
+            } else {
+                if (float64_is_neg(fdt0))
+                    wt2 = INT32_MIN;
+                else
+                    wt2 = INT32_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            wt2 = FP_TO_INT32_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return wt2;
@@ -2757,9 +2814,23 @@ uint64_t helper_float_roundl_d(CPUMIPSState *env, uint64_t fdt0)
     set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
     dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
     restore_rounding_mode(env);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        dt2 = FP_TO_INT64_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float64_is_any_nan(fdt0)) {
+                dt2 = 0;
+            } else {
+                if (float64_is_neg(fdt0))
+                    dt2 = INT64_MIN;
+                else
+                    dt2 = INT64_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            dt2 = FP_TO_INT64_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return dt2;
@@ -2772,9 +2843,23 @@ uint64_t helper_float_roundl_s(CPUMIPSState *env, uint32_t fst0)
     set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
     dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
     restore_rounding_mode(env);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        dt2 = FP_TO_INT64_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float32_is_any_nan(fst0)) {
+                dt2 = 0;
+            } else {
+                if (float32_is_neg(fst0))
+                    dt2 = INT64_MIN;
+                else
+                    dt2 = INT64_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            dt2 = FP_TO_INT64_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return dt2;
@@ -2787,9 +2872,23 @@ uint32_t helper_float_roundw_d(CPUMIPSState *env, uint64_t fdt0)
     set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
     wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
     restore_rounding_mode(env);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        wt2 = FP_TO_INT32_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float64_is_any_nan(fdt0)) {
+                wt2 = 0;
+            } else {
+                if (float64_is_neg(fdt0))
+                    wt2 = INT32_MIN;
+                else
+                    wt2 = INT32_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            wt2 = FP_TO_INT32_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return wt2;
@@ -2802,9 +2901,23 @@ uint32_t helper_float_roundw_s(CPUMIPSState *env, uint32_t fst0)
     set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
     wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
     restore_rounding_mode(env);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        wt2 = FP_TO_INT32_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float32_is_any_nan(fst0)) {
+                wt2 = 0;
+            } else {
+                if (float32_is_neg(fst0))
+                    wt2 = INT32_MIN;
+                else
+                    wt2 = INT32_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            wt2 = FP_TO_INT32_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return wt2;
@@ -2815,9 +2928,23 @@ uint64_t helper_float_truncl_d(CPUMIPSState *env, uint64_t fdt0)
     uint64_t dt2;
 
     dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        dt2 = FP_TO_INT64_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float64_is_any_nan(fdt0)) {
+                dt2 = 0;
+            } else {
+                if (float64_is_neg(fdt0))
+                    dt2 = INT64_MIN;
+                else
+                    dt2 = INT64_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            dt2 = FP_TO_INT64_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return dt2;
@@ -2828,9 +2955,23 @@ uint64_t helper_float_truncl_s(CPUMIPSState *env, uint32_t fst0)
     uint64_t dt2;
 
     dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        dt2 = FP_TO_INT64_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float32_is_any_nan(fst0)) {
+                dt2 = 0;
+            } else {
+                if (float32_is_neg(fst0))
+                    dt2 = INT64_MIN;
+                else
+                    dt2 = INT64_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            dt2 = FP_TO_INT64_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return dt2;
@@ -2841,9 +2982,23 @@ uint32_t helper_float_truncw_d(CPUMIPSState *env, uint64_t fdt0)
     uint32_t wt2;
 
     wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        wt2 = FP_TO_INT32_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float64_is_any_nan(fdt0)) {
+                wt2 = 0;
+            } else {
+                if (float64_is_neg(fdt0))
+                    wt2 = INT32_MIN;
+                else
+                    wt2 = INT32_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            wt2 = FP_TO_INT32_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return wt2;
@@ -2854,9 +3009,23 @@ uint32_t helper_float_truncw_s(CPUMIPSState *env, uint32_t fst0)
     uint32_t wt2;
 
     wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        wt2 = FP_TO_INT32_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float32_is_any_nan(fst0)) {
+                wt2 = 0;
+            } else {
+                if (float32_is_neg(fst0))
+                    wt2 = INT32_MIN;
+                else
+                    wt2 = INT32_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            wt2 = FP_TO_INT32_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return wt2;
@@ -2869,9 +3038,23 @@ uint64_t helper_float_ceill_d(CPUMIPSState *env, uint64_t fdt0)
     set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
     dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
     restore_rounding_mode(env);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        dt2 = FP_TO_INT64_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float64_is_any_nan(fdt0)) {
+                dt2 = 0;
+            } else {
+                if (float64_is_neg(fdt0))
+                    dt2 = INT64_MIN;
+                else
+                    dt2 = INT64_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            dt2 = FP_TO_INT64_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return dt2;
@@ -2884,9 +3067,23 @@ uint64_t helper_float_ceill_s(CPUMIPSState *env, uint32_t fst0)
     set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
     dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
     restore_rounding_mode(env);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        dt2 = FP_TO_INT64_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float32_is_any_nan(fst0)) {
+                dt2 = 0;
+            } else {
+                if (float32_is_neg(fst0))
+                    dt2 = INT64_MIN;
+                else
+                    dt2 = INT64_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            dt2 = FP_TO_INT64_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return dt2;
@@ -2899,9 +3096,23 @@ uint32_t helper_float_ceilw_d(CPUMIPSState *env, uint64_t fdt0)
     set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
     wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
     restore_rounding_mode(env);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        wt2 = FP_TO_INT32_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float64_is_any_nan(fdt0)) {
+                wt2 = 0;
+            } else {
+                if (float64_is_neg(fdt0))
+                    wt2 = INT32_MIN;
+                else
+                    wt2 = INT32_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+               & (float_flag_invalid | float_flag_overflow)) {
+            wt2 = FP_TO_INT32_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return wt2;
@@ -2914,9 +3125,23 @@ uint32_t helper_float_ceilw_s(CPUMIPSState *env, uint32_t fst0)
     set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
     wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
     restore_rounding_mode(env);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        wt2 = FP_TO_INT32_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float32_is_any_nan(fst0)) {
+                wt2 = 0;
+            } else {
+                if (float32_is_neg(fst0))
+                    wt2 = INT32_MIN;
+                else
+                    wt2 = INT32_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            wt2 = FP_TO_INT32_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return wt2;
@@ -2929,9 +3154,23 @@ uint64_t helper_float_floorl_d(CPUMIPSState *env, uint64_t fdt0)
     set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
     dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
     restore_rounding_mode(env);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        dt2 = FP_TO_INT64_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float64_is_any_nan(fdt0)) {
+                dt2 = 0;
+            } else {
+                if (float64_is_neg(fdt0))
+                    dt2 = INT64_MIN;
+                else
+                    dt2 = INT64_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            dt2 = FP_TO_INT64_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return dt2;
@@ -2944,9 +3183,23 @@ uint64_t helper_float_floorl_s(CPUMIPSState *env, uint32_t fst0)
     set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
     dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
     restore_rounding_mode(env);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        dt2 = FP_TO_INT64_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float32_is_any_nan(fst0)) {
+                dt2 = 0;
+            } else {
+                if (float32_is_neg(fst0))
+                    dt2 = INT64_MIN;
+                else
+                    dt2 = INT64_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            dt2 = FP_TO_INT64_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return dt2;
@@ -2959,9 +3212,23 @@ uint32_t helper_float_floorw_d(CPUMIPSState *env, uint64_t fdt0)
     set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
     wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
     restore_rounding_mode(env);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        wt2 = FP_TO_INT32_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float64_is_any_nan(fdt0)) {
+                wt2 = 0;
+            } else {
+                if (float64_is_neg(fdt0))
+                    wt2 = INT32_MIN;
+                else
+                    wt2 = INT32_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            wt2 = FP_TO_INT32_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return wt2;
@@ -2974,36 +3241,121 @@ uint32_t helper_float_floorw_s(CPUMIPSState *env, uint32_t fst0)
     set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
     wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
     restore_rounding_mode(env);
-    if (get_float_exception_flags(&env->active_fpu.fp_status)
-        & (float_flag_invalid | float_flag_overflow)) {
-        wt2 = FP_TO_INT32_OVERFLOW;
+    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            if (float32_is_any_nan(fst0)) {
+                wt2 = 0;
+            } else {
+                if (float32_is_neg(fst0))
+                    wt2 = INT32_MIN;
+                else
+                    wt2 = INT32_MAX;
+            }
+        }
+    } else {
+        if (get_float_exception_flags(&env->active_fpu.fp_status)
+                & (float_flag_invalid | float_flag_overflow)) {
+            wt2 = FP_TO_INT32_OVERFLOW;
+        }
     }
     update_fcr31(env, GETPC());
     return wt2;
 }
 
-/* unary operations, not modifying fp status  */
-#define FLOAT_UNOP(name)                                       \
-uint64_t helper_float_ ## name ## _d(uint64_t fdt0)                \
-{                                                              \
-    return float64_ ## name(fdt0);                             \
-}                                                              \
-uint32_t helper_float_ ## name ## _s(uint32_t fst0)                \
-{                                                              \
-    return float32_ ## name(fst0);                             \
-}                                                              \
-uint64_t helper_float_ ## name ## _ps(uint64_t fdt0)               \
-{                                                              \
-    uint32_t wt0;                                              \
-    uint32_t wth0;                                             \
-                                                               \
-    wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF);                 \
-    wth0 = float32_ ## name(fdt0 >> 32);                       \
-    return ((uint64_t)wth0 << 32) | wt0;                       \
-}
-FLOAT_UNOP(abs)
-FLOAT_UNOP(chs)
-#undef FLOAT_UNOP
+uint64_t helper_float_abs_d(CPUMIPSState *env, uint64_t fdt0)
+{
+    uint64_t fdt1;
+
+    if (env->active_fpu.fcr31 & (1 << FCR31_ABS2008)) {
+        fdt1 = float64_abs(fdt0);
+    } else {
+        if (float64_is_neg(fdt0)) {
+            fdt1 = float64_sub(0, fdt0, &env->active_fpu.fp_status);
+        } else {
+            fdt1 = float64_add(0, fdt0, &env->active_fpu.fp_status);
+        }
+        update_fcr31(env, GETPC());
+    }
+    return fdt1;
+}
+
+uint32_t helper_float_abs_s(CPUMIPSState *env, uint32_t fst0)
+{
+    uint32_t fst1;
+
+    if (env->active_fpu.fcr31 & (1 << FCR31_ABS2008)) {
+        fst1 = float32_abs(fst0);
+    } else {
+        if (float32_is_neg(fst0)) {
+            fst1 = float32_sub(0, fst0, &env->active_fpu.fp_status);
+        } else {
+            fst1 = float32_add(0, fst0, &env->active_fpu.fp_status);
+        }
+        update_fcr31(env, GETPC());
+    }
+    return fst1;
+}
+
+uint64_t helper_float_abs_ps(CPUMIPSState *env, uint64_t fpst0)
+{
+    uint32_t fst0 = fpst0 & 0XFFFFFFFF;
+    uint32_t fsth0 = fpst0 >> 32;
+    uint32_t fst1;
+    uint32_t fsth1;
+
+    if (float32_is_neg(fst0)) {
+        fst1 = float32_sub(0, fst0, &env->active_fpu.fp_status);
+    } else {
+        fst1 = float32_add(0, fst0, &env->active_fpu.fp_status);
+    }
+    if (float32_is_neg(fsth0)) {
+        fsth1 = float32_sub(0, fsth0, &env->active_fpu.fp_status);
+    } else {
+        fsth1 = float32_add(0, fsth0, &env->active_fpu.fp_status);
+    }
+    update_fcr31(env, GETPC());
+    return ((uint64_t)fsth1 << 32) | fst1;
+}
+
+uint64_t helper_float_chs_d(CPUMIPSState *env, uint64_t fdt0)
+{
+    uint64_t fdt1;
+
+    if (env->active_fpu.fcr31 & (1 << FCR31_ABS2008)) {
+        fdt1 = float64_chs(fdt0);
+    } else {
+        fdt1 = float64_sub(0, fdt0, &env->active_fpu.fp_status);
+        update_fcr31(env, GETPC());
+    }
+    return fdt1;
+}
+
+uint32_t helper_float_chs_s(CPUMIPSState *env, uint32_t fst0)
+{
+    uint32_t fst1;
+
+    if (env->active_fpu.fcr31 & (1 << FCR31_ABS2008)) {
+        fst1 = float32_chs(fst0);
+    } else {
+        fst1 = float32_sub(0, fst0, &env->active_fpu.fp_status);
+        update_fcr31(env, GETPC());
+    }
+    return fst1;
+}
+
+uint64_t helper_float_chs_ps(CPUMIPSState *env, uint64_t fpst0)
+{
+    uint32_t fst0 = fpst0 & 0XFFFFFFFF;
+    uint32_t fsth0 = fpst0 >> 32;
+    uint32_t fst1;
+    uint32_t fsth1;
+
+    fst1 = float32_sub(0, fst0, &env->active_fpu.fp_status);
+    fsth1 = float32_sub(0, fsth0, &env->active_fpu.fp_status);
+    update_fcr31(env, GETPC());
+    return ((uint64_t)fsth1 << 32) | fst1;
+}
 
 /* MIPS specific unary operations */
 uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0)
diff --git a/target-mips/translate.c b/target-mips/translate.c
index 669bd0c..327c532 100644
--- a/target-mips/translate.c
+++ b/target-mips/translate.c
@@ -8792,7 +8792,7 @@ static void gen_farith (DisasContext *ctx, enum fopcode op1,
             TCGv_i32 fp0 = tcg_temp_new_i32();
 
             gen_load_fpr32(ctx, fp0, fs);
-            gen_helper_float_abs_s(fp0, fp0);
+            gen_helper_float_abs_s(fp0, cpu_env, fp0);
             gen_store_fpr32(ctx, fp0, fd);
             tcg_temp_free_i32(fp0);
         }
@@ -8811,7 +8811,7 @@ static void gen_farith (DisasContext *ctx, enum fopcode op1,
             TCGv_i32 fp0 = tcg_temp_new_i32();
 
             gen_load_fpr32(ctx, fp0, fs);
-            gen_helper_float_chs_s(fp0, fp0);
+            gen_helper_float_chs_s(fp0, cpu_env, fp0);
             gen_store_fpr32(ctx, fp0, fd);
             tcg_temp_free_i32(fp0);
         }
@@ -9282,7 +9282,7 @@ static void gen_farith (DisasContext *ctx, enum fopcode op1,
             TCGv_i64 fp0 = tcg_temp_new_i64();
 
             gen_load_fpr64(ctx, fp0, fs);
-            gen_helper_float_abs_d(fp0, fp0);
+            gen_helper_float_abs_d(fp0, cpu_env, fp0);
             gen_store_fpr64(ctx, fp0, fd);
             tcg_temp_free_i64(fp0);
         }
@@ -9303,7 +9303,7 @@ static void gen_farith (DisasContext *ctx, enum fopcode op1,
             TCGv_i64 fp0 = tcg_temp_new_i64();
 
             gen_load_fpr64(ctx, fp0, fs);
-            gen_helper_float_chs_d(fp0, fp0);
+            gen_helper_float_chs_d(fp0, cpu_env, fp0);
             gen_store_fpr64(ctx, fp0, fd);
             tcg_temp_free_i64(fp0);
         }
@@ -9794,7 +9794,7 @@ static void gen_farith (DisasContext *ctx, enum fopcode op1,
             TCGv_i64 fp0 = tcg_temp_new_i64();
 
             gen_load_fpr64(ctx, fp0, fs);
-            gen_helper_float_abs_ps(fp0, fp0);
+            gen_helper_float_abs_ps(fp0, cpu_env, fp0);
             gen_store_fpr64(ctx, fp0, fd);
             tcg_temp_free_i64(fp0);
         }
@@ -9815,7 +9815,7 @@ static void gen_farith (DisasContext *ctx, enum fopcode op1,
             TCGv_i64 fp0 = tcg_temp_new_i64();
 
             gen_load_fpr64(ctx, fp0, fs);
-            gen_helper_float_chs_ps(fp0, fp0);
+            gen_helper_float_chs_ps(fp0, cpu_env, fp0);
             gen_store_fpr64(ctx, fp0, fd);
             tcg_temp_free_i64(fp0);
         }
@@ -9934,7 +9934,7 @@ static void gen_farith (DisasContext *ctx, enum fopcode op1,
         }
         break;
     case OPC_CVT_S_PU:
-        check_cp1_64bitmode(ctx);
+        check_ps(ctx);
         {
             TCGv_i32 fp0 = tcg_temp_new_i32();
 
@@ -9956,7 +9956,7 @@ static void gen_farith (DisasContext *ctx, enum fopcode op1,
         }
         break;
     case OPC_CVT_S_PL:
-        check_cp1_64bitmode(ctx);
+        check_ps(ctx);
         {
             TCGv_i32 fp0 = tcg_temp_new_i32();
 
diff --git a/target-mips/translate_init.c b/target-mips/translate_init.c
index 3e48680..18bc7cb 100644
--- a/target-mips/translate_init.c
+++ b/target-mips/translate_init.c
@@ -273,6 +273,7 @@ static const mips_def_t mips_defs[] =
         .CP0_Status_rw_bitmask = 0x3678FF1F,
         .CP1_fcr0 = (1 << FCR0_F64) | (1 << FCR0_L) | (1 << FCR0_W) |
                     (1 << FCR0_D) | (1 << FCR0_S) | (0x93 << FCR0_PRID),
+        .CP1_fcr31 = 0,
         .SEGBITS = 32,
         .PABITS = 32,
         .insn_flags = CPU_MIPS32R2 | ASE_MIPS16,
@@ -303,6 +304,7 @@ static const mips_def_t mips_defs[] =
                     (0xff << CP0TCSt_TASID),
         .CP1_fcr0 = (1 << FCR0_F64) | (1 << FCR0_L) | (1 << FCR0_W) |
                     (1 << FCR0_D) | (1 << FCR0_S) | (0x95 << FCR0_PRID),
+        .CP1_fcr31 = 0,
         .CP0_SRSCtl = (0xf << CP0SRSCtl_HSS),
         .CP0_SRSConf0_rw_bitmask = 0x3fffffff,
         .CP0_SRSConf0 = (1U << CP0SRSC0_M) | (0x3fe << CP0SRSC0_SRS3) |
@@ -343,6 +345,7 @@ static const mips_def_t mips_defs[] =
         .CP0_Status_rw_bitmask = 0x3778FF1F,
         .CP1_fcr0 = (1 << FCR0_F64) | (1 << FCR0_L) | (1 << FCR0_W) |
                     (1 << FCR0_D) | (1 << FCR0_S) | (0x93 << FCR0_PRID),
+        .CP1_fcr31 = 0,
         .SEGBITS = 32,
         .PABITS = 32,
         .insn_flags = CPU_MIPS32R2 | ASE_MIPS16 | ASE_DSP | ASE_DSPR2,
@@ -433,8 +436,7 @@ static const mips_def_t mips_defs[] =
     },
     {
         /* A generic CPU supporting MIPS32 Release 6 ISA.
-           FIXME: Support IEEE 754-2008 FP.
-                  Eventually this should be replaced by a real CPU model. */
+           FIXME: Eventually this should be replaced by a real CPU model. */
         .name = "mips32r6-generic",
         .CP0_PRid = 0x00010000,
         .CP0_Config0 = MIPS_CONFIG0 | (0x2 << CP0C0_AR) |
@@ -484,6 +486,7 @@ static const mips_def_t mips_defs[] =
         .CP0_Status_rw_bitmask = 0x3678FFFF,
         /* The R4000 has a full 64bit FPU but doesn't use the fcr0 bits. */
         .CP1_fcr0 = (0x5 << FCR0_PRID) | (0x0 << FCR0_REV),
+        .CP1_fcr31 = 0,
         .SEGBITS = 40,
         .PABITS = 36,
         .insn_flags = CPU_MIPS3,
@@ -502,6 +505,7 @@ static const mips_def_t mips_defs[] =
         .CP0_Status_rw_bitmask = 0x3678FFFF,
         /* The VR5432 has a full 64bit FPU but doesn't use the fcr0 bits. */
         .CP1_fcr0 = (0x54 << FCR0_PRID) | (0x0 << FCR0_REV),
+        .CP1_fcr31 = 0,
         .SEGBITS = 40,
         .PABITS = 32,
         .insn_flags = CPU_VR54XX,
@@ -547,6 +551,7 @@ static const mips_def_t mips_defs[] =
         /* The 5Kf has F64 / L / W but doesn't use the fcr0 bits. */
         .CP1_fcr0 = (1 << FCR0_D) | (1 << FCR0_S) |
                     (0x81 << FCR0_PRID) | (0x0 << FCR0_REV),
+        .CP1_fcr31 = 0,
         .SEGBITS = 42,
         .PABITS = 36,
         .insn_flags = CPU_MIPS64,
@@ -574,6 +579,7 @@ static const mips_def_t mips_defs[] =
         .CP1_fcr0 = (1 << FCR0_3D) | (1 << FCR0_PS) |
                     (1 << FCR0_D) | (1 << FCR0_S) |
                     (0x82 << FCR0_PRID) | (0x0 << FCR0_REV),
+        .CP1_fcr31 = 0,
         .SEGBITS = 40,
         .PABITS = 36,
         .insn_flags = CPU_MIPS64 | ASE_MIPS3D,
@@ -600,6 +606,7 @@ static const mips_def_t mips_defs[] =
         .CP1_fcr0 = (1 << FCR0_F64) | (1 << FCR0_3D) | (1 << FCR0_PS) |
                     (1 << FCR0_L) | (1 << FCR0_W) | (1 << FCR0_D) |
                     (1 << FCR0_S) | (0x00 << FCR0_PRID) | (0x0 << FCR0_REV),
+        .CP1_fcr31 = 0,
         .SEGBITS = 42,
         .PABITS = 36,
         .insn_flags = CPU_MIPS64R2 | ASE_MIPS3D,
@@ -702,6 +709,7 @@ static const mips_def_t mips_defs[] =
         .CCRes = 2,
         .CP0_Status_rw_bitmask = 0x35D0FFFF,
         .CP1_fcr0 = (0x5 << FCR0_PRID) | (0x1 << FCR0_REV),
+        .CP1_fcr31 = 0,
         .SEGBITS = 40,
         .PABITS = 40,
         .insn_flags = CPU_LOONGSON2E,
@@ -720,6 +728,7 @@ static const mips_def_t mips_defs[] =
         .CCRes = 2,
         .CP0_Status_rw_bitmask = 0xF5D0FF1F,   /* Bits 7:5 not writable.  */
         .CP1_fcr0 = (0x5 << FCR0_PRID) | (0x1 << FCR0_REV),
+        .CP1_fcr31 = 0,
         .SEGBITS = 40,
         .PABITS = 40,
         .insn_flags = CPU_LOONGSON2F,
@@ -747,6 +756,7 @@ static const mips_def_t mips_defs[] =
         .CP1_fcr0 = (1 << FCR0_F64) | (1 << FCR0_3D) | (1 << FCR0_PS) |
                     (1 << FCR0_L) | (1 << FCR0_W) | (1 << FCR0_D) |
                     (1 << FCR0_S) | (0x00 << FCR0_PRID) | (0x0 << FCR0_REV),
+        .CP1_fcr31 = 0,
         .SEGBITS = 42,
         .PABITS = 36,
         .insn_flags = CPU_MIPS64R2 | ASE_DSP | ASE_DSPR2,
@@ -834,7 +844,11 @@ static void fpu_init (CPUMIPSState *env, const mips_def_t *def)
 
     for (i = 0; i < MIPS_FPU_MAX; i++) {
         env->fpus[i].fcr0 = def->CP1_fcr0;
-        set_snan_bit_is_one(1, &env->fpus[i].fp_status);
+        if (env->insn_flags & ISA_MIPS32R6) {
+            set_snan_bit_is_one(0, &env->fpus[i].fp_status);
+        } else {
+            set_snan_bit_is_one(1, &env->fpus[i].fp_status);
+        }
     }
 
     memcpy(&env->active_fpu, &env->fpus[0], sizeof(env->active_fpu));
@@ -893,5 +907,5 @@ static void msa_reset(CPUMIPSState *env)
     /* clear float_status nan mode */
     set_default_nan_mode(0, &env->active_tc.msa_fp_status);
 
-    set_snan_bit_is_one(1, &env->active_tc.msa_fp_status);
+    set_snan_bit_is_one(0, &env->active_tc.msa_fp_status);
 }
-- 
1.9.1

^ permalink raw reply related	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit
  2016-03-25 12:50 ` [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit Aleksandar Markovic
@ 2016-03-28 21:36   ` Richard Henderson
  2016-04-04 13:21     ` Aleksandar Markovic
  2016-03-29 12:50   ` Bastian Koppelmann
  2016-04-01 19:02   ` Leon Alrae
  2 siblings, 1 reply; 22+ messages in thread
From: Richard Henderson @ 2016-03-28 21:36 UTC (permalink / raw)
  To: Aleksandar Markovic, qemu-devel
  Cc: peter.maydell, ehabkost, kbastian, mark.cave-ayland, agraf,
	petar.jovanovic, blauwirbel, jcmvbkbc, miodrag.dinic, qemu-arm,
	qemu-ppc, edgar.iglesias, pbonzini, gxt, leon.alrae, afaerber,
	aurelien, proljc

On 03/25/2016 05:50 AM, Aleksandar Markovic wrote:
> +float16 float16_default_nan(float_status *status) {

{ on the next line.

> +        return const_float64(LIT64( 0xFFF8000000000000 ));

Let's please fix the horrible formatting in this file as we touch the lines, 
please.

> -#define floatx80_default_nan_high 0x7FFF
> -#define floatx80_default_nan_low  LIT64(0xBFFFFFFFFFFFFFFF)
> -#else
> -#define floatx80_default_nan_high 0xFFFF
> -#define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
> -#endif
> +uint16_t floatx80_default_nan_high(float_status *status) {
> +uint64_t floatx80_default_nan_low(float_status *status) {

Why do you need two separate functions for this?

> +floatx80 floatx80_default_nan(float_status *status) {

Seems to me this one is good enough, and indeed preferable.

> -#define float128_default_nan_high LIT64(0x7FFF7FFFFFFFFFFF)
> -#define float128_default_nan_low  LIT64(0xFFFFFFFFFFFFFFFF)
...
> +float128 float128_default_nan(float_status *status) {

Likewise.


> diff --git a/target-alpha/cpu.c b/target-alpha/cpu.c
> index 2eab060..1714387 100644
> --- a/target-alpha/cpu.c
> +++ b/target-alpha/cpu.c
> @@ -277,6 +277,8 @@ static void alpha_cpu_initfn(Object *obj)
>   #endif
>       env->lock_addr = -1;
>       env->fen = 1;
> +
> +    set_snan_bit_is_one(0, &env->fp_status);

We've just done a memset of (most of) the entire cpu struct.  We don't need to 
re-initialize this field to zero here.  Same with most of the other cpus.


r~

^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 2/2] target-mips: Implement IEEE 754-2008 functionality for R6 and MSA instructions
  2016-03-25 12:50 ` [Qemu-devel] [PATCH 2/2] target-mips: Implement IEEE 754-2008 functionality for R6 and MSA instructions Aleksandar Markovic
@ 2016-03-28 21:49   ` Richard Henderson
  2016-03-30 19:28     ` Aleksandar Markovic
  2016-03-31 11:55     ` Aleksandar Markovic
  2016-04-01 19:07   ` Leon Alrae
  1 sibling, 2 replies; 22+ messages in thread
From: Richard Henderson @ 2016-03-28 21:49 UTC (permalink / raw)
  To: Aleksandar Markovic, qemu-devel
  Cc: peter.maydell, ehabkost, kbastian, mark.cave-ayland, agraf,
	petar.jovanovic, blauwirbel, jcmvbkbc, miodrag.dinic, qemu-arm,
	qemu-ppc, edgar.iglesias, pbonzini, gxt, leon.alrae, afaerber,
	aurelien, proljc

On 03/25/2016 05:50 AM, Aleksandar Markovic wrote:
> @@ -2621,9 +2621,23 @@ uint64_t helper_float_cvtl_d(CPUMIPSState *env, uint64_t fdt0)
>       uint64_t dt2;
>
>       dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
> -    if (get_float_exception_flags(&env->active_fpu.fp_status)
> -        & (float_flag_invalid | float_flag_overflow)) {
> -        dt2 = FP_TO_INT64_OVERFLOW;
> +    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
> +        if (get_float_exception_flags(&env->active_fpu.fp_status)
> +                & (float_flag_invalid | float_flag_overflow)) {
> +            if (float64_is_any_nan(fdt0)) {
> +                dt2 = 0;
> +            } else {
> +                if (float64_is_neg(fdt0))
> +                    dt2 = INT64_MIN;
> +                else
> +                    dt2 = INT64_MAX;
> +            }
> +        }
> +    } else {
> +        if (get_float_exception_flags(&env->active_fpu.fp_status)
> +                & (float_flag_invalid | float_flag_overflow)) {
> +            dt2 = FP_TO_INT64_OVERFLOW;
> +        }

Better to swap the tests here, so that you test the exception flags first (and 
once).  That is the exceptional condition, the one that will be true least 
often.  After that, FCR31_NAN2008 will be tested only when needed.

But also, this pattern is replicated so many times you'd do well to pull this 
sequence out to helper functions (one for s, one for d).

> +uint64_t helper_float_abs_d(CPUMIPSState *env, uint64_t fdt0)
> +{
> +    uint64_t fdt1;
> +
> +    if (env->active_fpu.fcr31 & (1 << FCR31_ABS2008)) {
> +        fdt1 = float64_abs(fdt0);
> +    } else {
> +        if (float64_is_neg(fdt0)) {
> +            fdt1 = float64_sub(0, fdt0, &env->active_fpu.fp_status);
> +        } else {
> +            fdt1 = float64_add(0, fdt0, &env->active_fpu.fp_status);
> +        }
> +        update_fcr31(env, GETPC());

Here you're better off using two separate helper functions, and chose the 
correct one during translation.  Indeed, since the 2008 version is a simple 
bit-flip, you needn't actually have a helper; just expand the sequence inline.


r~

^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit
  2016-03-25 12:50 ` [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit Aleksandar Markovic
  2016-03-28 21:36   ` Richard Henderson
@ 2016-03-29 12:50   ` Bastian Koppelmann
  2016-03-30 16:58     ` Aleksandar Markovic
  2016-04-01 19:02   ` Leon Alrae
  2 siblings, 1 reply; 22+ messages in thread
From: Bastian Koppelmann @ 2016-03-29 12:50 UTC (permalink / raw)
  To: Aleksandar Markovic, qemu-devel
  Cc: peter.maydell, ehabkost, proljc, mark.cave-ayland, agraf,
	petar.jovanovic, blauwirbel, jcmvbkbc, miodrag.dinic, qemu-arm,
	qemu-ppc, edgar.iglesias, pbonzini, gxt, leon.alrae, afaerber,
	aurelien, rth

On 03/25/2016 01:50 PM, Aleksandar Markovic wrote:
> From: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
> 
> This patch enables SoftFloat library to be configured at run-time in
> relation to the meaning of signaling NaN bit.
> 
> Background:
> 
> In floating-point calculations, there is a need for denoting undefined or
> unrepresentable values. This is achieved by defining certain floating-point
> numerical values to be NaNs (which stands for "not a number"). For additional
> reasons, virtually all modern floating-point unit implementations use two
> kinds of NaNs: quiet and signaling. The binary representations of these two
> kinds of NaNs, as a rule, differ only in one bit (it is traditionally,
> the first bit of mantissa).
> 
> Up to 2008, standards for floating-point did not specify all details about
> binary representation of NaNs. More specifically, the meaning of the bit
> that is used for distinguishing between signaling and quiet NaNs was not
> strictly prescribed. (IEEE 754-2008 was the first floating-point standard
> that defined that meaning clearly, see [1], p. 35) As a result, different
> platforms took different approaches, and this presented certain challenge
> in emulators like QEMU.
> 
> Mips architecture represent the most complex case among QEMU-supported
> architectures regarding signaling NaN bit. Up to Release 6 of Mips
> architecture, "1" in signaling NaN bit denoted signaling NaN, which is
> opposite to IEEE 754-2008 standard. From Release 6 on, Mips architecture
> adopted IEEE standard prescription, and "0" denotes signaling NaN. On top of
> that, Mips architecture for SIMD (also known as MSA, or vector instructions)
> also specifies signaling bit in accordance to IEEE standard. MSA unit can be
> implemented with both pre-Release 6 and Release 6 main processor units.
> 
> QEMU uses SoftFloat library to implement various floating-point-related
> instructions on all platforms. The current implementation allows for defining
> meaning of signaling NaN bit during build time, and is implemented via
> preprocessor macro called SNAN_BIT_IS_ONE.
> 
> The change in this patch enables SoftFloat library to be configured in
> run-time. This configuration is meant to occur during CPU initialization,
> when it is definitely known what desired behavior for particular CPU
> (or any additional FPUs) is.
> 
> The change is implemented so that it is consistent with existing
> implementation of similar cases. This means that structure float_status is
> used for passing the information about desired signaling NaN bit during each
> invocation of SoftFloat functions. The additional field in float_status is
> called snan_bit_is_one, which supersedes macro SNAN_BIT_IS_ONE.
> 
> Further break down of changes:
> 
>   (for the sake of brevity, a placeholder XXX is used below and it might
>   mean float16, float32, float64, floatx80, or float128)
> 
>   1) Added field snan_bit_is_one to the structure float_status,
>      and the correspondent setter function set_snan_bit_is_one().
> 
>   2) SoftFloat library constants XXX_default_nan converted to functions
>      XXX_default_nan(float_status*). This is necessary since they are
>      dependant on signaling bit meaning.
> 
>   3) Added a float_status* argument to SoftFloat library functions
>      XXX_is_quiet_nan(XXX a_), XXX_is_signaling_nan(XXX a_),
>      XXX_maybe_silence_nan(XXX a_).
> 
>   4) Updated code in all architectures to reflect changes in SoftFloat
>      library. This change is twofolds: it includes modification of SoftFloat
>      library functions invocations, and addition of invocations of function
>      set_snan_bit_is_one() during CPU initialization, with arguments that
>      are appropriate for each architecture.
> 
> IMPORTANT:
> 
> This change is not meant to create any change in emulator behavior or
> functionality on any platform. It just provides the means for SoftFloat
> library to be used in a more flexible way - in other words, it will just
> prepare SoftFloat library for usage related to Mips platform and its
> specifics regarding signaling bit meaning, which is done in the next patch.
> 
> [1] "IEEE Standard for Floating-Point Arithmetic",
>     IEEE Computer Society, August 29, 2008.
>     (http://www.csee.umbc.edu/~tsimo1/CMSC455/IEEE-754-2008.pdf)
> 
> Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
> ---
>  fpu/softfloat-specialize.h    | 546 +++++++++++++++++++++---------------------
>  fpu/softfloat.c               | 170 +++++++------
>  include/fpu/softfloat.h       |  49 ++--
>  target-alpha/cpu.c            |   2 +
>  target-arm/cpu.c              |   2 +
>  target-arm/helper-a64.c       |  14 +-
>  target-arm/helper.c           |  40 ++--
>  target-i386/cpu.c             |   4 +
>  target-m68k/cpu.c             |   2 +
>  target-m68k/helper.c          |   6 +-
>  target-microblaze/cpu.c       |   2 +
>  target-microblaze/op_helper.c |   6 +-
>  target-mips/helper.h          |   4 +-
>  target-mips/msa_helper.c      |  96 ++++----
>  target-mips/op_helper.c       |  13 +-
>  target-mips/translate.c       |   4 +-
>  target-mips/translate_init.c  |   6 +-
>  target-openrisc/cpu.c         |   2 +
>  target-ppc/fpu_helper.c       | 120 +++++-----
>  target-ppc/translate_init.c   |   2 +
>  target-s390x/cpu.c            |   1 +
>  target-s390x/fpu_helper.c     |  28 ++-
>  target-s390x/helper.h         |   6 +-
>  target-s390x/translate.c      |   6 +-
>  target-sh4/cpu.c              |   1 +
>  target-sparc/cpu.c            |   1 +
>  target-tricore/helper.c       |   1 +
>  target-unicore32/cpu.c        |   1 +
>  target-xtensa/cpu.c           |   3 +
>  29 files changed, 608 insertions(+), 530 deletions(-)
> 

For the TriCore part you can have a

Tested-by: Bastian Koppelmann<kbastian@mail.uni-paderborn.de>

Cheers,
Bastian

^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit
  2016-03-29 12:50   ` Bastian Koppelmann
@ 2016-03-30 16:58     ` Aleksandar Markovic
  0 siblings, 0 replies; 22+ messages in thread
From: Aleksandar Markovic @ 2016-03-30 16:58 UTC (permalink / raw)
  To: Bastian Koppelmann, qemu-devel
  Cc: peter.maydell, ehabkost, rth, mark.cave-ayland, agraf,
	Petar Jovanovic, blauwirbel, jcmvbkbc, Miodrag Dinic, qemu-arm,
	qemu-ppc, pbonzini, edgar.iglesias, gxt, Leon Alrae, afaerber,
	aurelien, proljc

Thank you very much. I will let you know if any change regarding tricore appears in later versions of this patch.
________________________________________
From: qemu-devel-bounces+aleksandar.markovic=imgtec.com@nongnu.org [qemu-devel-bounces+aleksandar.markovic=imgtec.com@nongnu.org] on behalf of Bastian Koppelmann [kbastian@mail.uni-paderborn.de]
Sent: Tuesday, March 29, 2016 5:50 AM
To: Aleksandar Markovic; qemu-devel@nongnu.org
Cc: peter.maydell@linaro.org; ehabkost@redhat.com; proljc@gmail.com; mark.cave-ayland@ilande.co.uk; agraf@suse.de; Petar Jovanovic; blauwirbel@gmail.com; jcmvbkbc@gmail.com; Miodrag Dinic; qemu-arm@nongnu.org; qemu-ppc@nongnu.org; edgar.iglesias@gmail.com; pbonzini@redhat.com; gxt@mprc.pku.edu.cn; Leon Alrae; afaerber@suse.de; aurelien@aurel32.net; rth@twiddle.net
Subject: Re: [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit

On 03/25/2016 01:50 PM, Aleksandar Markovic wrote:
> From: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
>
> This patch enables SoftFloat library to be configured at run-time in
> relation to the meaning of signaling NaN bit.
>
> Background:
>
> In floating-point calculations, there is a need for denoting undefined or
> unrepresentable values. This is achieved by defining certain floating-point
> numerical values to be NaNs (which stands for "not a number"). For additional
> reasons, virtually all modern floating-point unit implementations use two
> kinds of NaNs: quiet and signaling. The binary representations of these two
> kinds of NaNs, as a rule, differ only in one bit (it is traditionally,
> the first bit of mantissa).
>
> Up to 2008, standards for floating-point did not specify all details about
> binary representation of NaNs. More specifically, the meaning of the bit
> that is used for distinguishing between signaling and quiet NaNs was not
> strictly prescribed. (IEEE 754-2008 was the first floating-point standard
> that defined that meaning clearly, see [1], p. 35) As a result, different
> platforms took different approaches, and this presented certain challenge
> in emulators like QEMU.
>
> Mips architecture represent the most complex case among QEMU-supported
> architectures regarding signaling NaN bit. Up to Release 6 of Mips
> architecture, "1" in signaling NaN bit denoted signaling NaN, which is
> opposite to IEEE 754-2008 standard. From Release 6 on, Mips architecture
> adopted IEEE standard prescription, and "0" denotes signaling NaN. On top of
> that, Mips architecture for SIMD (also known as MSA, or vector instructions)
> also specifies signaling bit in accordance to IEEE standard. MSA unit can be
> implemented with both pre-Release 6 and Release 6 main processor units.
>
> QEMU uses SoftFloat library to implement various floating-point-related
> instructions on all platforms. The current implementation allows for defining
> meaning of signaling NaN bit during build time, and is implemented via
> preprocessor macro called SNAN_BIT_IS_ONE.
>
> The change in this patch enables SoftFloat library to be configured in
> run-time. This configuration is meant to occur during CPU initialization,
> when it is definitely known what desired behavior for particular CPU
> (or any additional FPUs) is.
>
> The change is implemented so that it is consistent with existing
> implementation of similar cases. This means that structure float_status is
> used for passing the information about desired signaling NaN bit during each
> invocation of SoftFloat functions. The additional field in float_status is
> called snan_bit_is_one, which supersedes macro SNAN_BIT_IS_ONE.
>
> Further break down of changes:
>
>   (for the sake of brevity, a placeholder XXX is used below and it might
>   mean float16, float32, float64, floatx80, or float128)
>
>   1) Added field snan_bit_is_one to the structure float_status,
>      and the correspondent setter function set_snan_bit_is_one().
>
>   2) SoftFloat library constants XXX_default_nan converted to functions
>      XXX_default_nan(float_status*). This is necessary since they are
>      dependant on signaling bit meaning.
>
>   3) Added a float_status* argument to SoftFloat library functions
>      XXX_is_quiet_nan(XXX a_), XXX_is_signaling_nan(XXX a_),
>      XXX_maybe_silence_nan(XXX a_).
>
>   4) Updated code in all architectures to reflect changes in SoftFloat
>      library. This change is twofolds: it includes modification of SoftFloat
>      library functions invocations, and addition of invocations of function
>      set_snan_bit_is_one() during CPU initialization, with arguments that
>      are appropriate for each architecture.
>
> IMPORTANT:
>
> This change is not meant to create any change in emulator behavior or
> functionality on any platform. It just provides the means for SoftFloat
> library to be used in a more flexible way - in other words, it will just
> prepare SoftFloat library for usage related to Mips platform and its
> specifics regarding signaling bit meaning, which is done in the next patch.
>
> [1] "IEEE Standard for Floating-Point Arithmetic",
>     IEEE Computer Society, August 29, 2008.
>     (http://www.csee.umbc.edu/~tsimo1/CMSC455/IEEE-754-2008.pdf)
>
> Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
> ---
>  fpu/softfloat-specialize.h    | 546 +++++++++++++++++++++---------------------
>  fpu/softfloat.c               | 170 +++++++------
>  include/fpu/softfloat.h       |  49 ++--
>  target-alpha/cpu.c            |   2 +
>  target-arm/cpu.c              |   2 +
>  target-arm/helper-a64.c       |  14 +-
>  target-arm/helper.c           |  40 ++--
>  target-i386/cpu.c             |   4 +
>  target-m68k/cpu.c             |   2 +
>  target-m68k/helper.c          |   6 +-
>  target-microblaze/cpu.c       |   2 +
>  target-microblaze/op_helper.c |   6 +-
>  target-mips/helper.h          |   4 +-
>  target-mips/msa_helper.c      |  96 ++++----
>  target-mips/op_helper.c       |  13 +-
>  target-mips/translate.c       |   4 +-
>  target-mips/translate_init.c  |   6 +-
>  target-openrisc/cpu.c         |   2 +
>  target-ppc/fpu_helper.c       | 120 +++++-----
>  target-ppc/translate_init.c   |   2 +
>  target-s390x/cpu.c            |   1 +
>  target-s390x/fpu_helper.c     |  28 ++-
>  target-s390x/helper.h         |   6 +-
>  target-s390x/translate.c      |   6 +-
>  target-sh4/cpu.c              |   1 +
>  target-sparc/cpu.c            |   1 +
>  target-tricore/helper.c       |   1 +
>  target-unicore32/cpu.c        |   1 +
>  target-xtensa/cpu.c           |   3 +
>  29 files changed, 608 insertions(+), 530 deletions(-)
>

For the TriCore part you can have a

Tested-by: Bastian Koppelmann<kbastian@mail.uni-paderborn.de>

Cheers,
Bastian



^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 2/2] target-mips: Implement IEEE 754-2008 functionality for R6 and MSA instructions
  2016-03-28 21:49   ` Richard Henderson
@ 2016-03-30 19:28     ` Aleksandar Markovic
  2016-03-31 11:55     ` Aleksandar Markovic
  1 sibling, 0 replies; 22+ messages in thread
From: Aleksandar Markovic @ 2016-03-30 19:28 UTC (permalink / raw)
  To: Richard Henderson, qemu-devel
  Cc: peter.maydell, ehabkost, kbastian, mark.cave-ayland, agraf,
	Petar Jovanovic, blauwirbel, jcmvbkbc, Miodrag Dinic, qemu-arm,
	qemu-ppc, pbonzini, edgar.iglesias, gxt, Leon Alrae, afaerber,
	aurelien, proljc

I really appreciate your guidance and help. I will respond shortly with a proposal that will address all issues that you brought up. Thanks again for your support and time.

Aleksandar
________________________________________
From: qemu-devel-bounces+aleksandar.markovic=imgtec.com@nongnu.org [qemu-devel-bounces+aleksandar.markovic=imgtec.com@nongnu.org] on behalf of Richard Henderson [rth@twiddle.net]
Sent: Monday, March 28, 2016 2:49 PM
To: Aleksandar Markovic; qemu-devel@nongnu.org
Cc: peter.maydell@linaro.org; ehabkost@redhat.com; kbastian@mail.uni-paderborn.de; mark.cave-ayland@ilande.co.uk; agraf@suse.de; Petar Jovanovic; blauwirbel@gmail.com; jcmvbkbc@gmail.com; Miodrag Dinic; qemu-arm@nongnu.org; qemu-ppc@nongnu.org; edgar.iglesias@gmail.com; pbonzini@redhat.com; gxt@mprc.pku.edu.cn; Leon Alrae; afaerber@suse.de; aurelien@aurel32.net; proljc@gmail.com
Subject: Re: [Qemu-devel] [PATCH 2/2] target-mips: Implement IEEE 754-2008 functionality for R6 and MSA instructions

On 03/25/2016 05:50 AM, Aleksandar Markovic wrote:
> @@ -2621,9 +2621,23 @@ uint64_t helper_float_cvtl_d(CPUMIPSState *env, uint64_t fdt0)
>       uint64_t dt2;
>
>       dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
> -    if (get_float_exception_flags(&env->active_fpu.fp_status)
> -        & (float_flag_invalid | float_flag_overflow)) {
> -        dt2 = FP_TO_INT64_OVERFLOW;
> +    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
> +        if (get_float_exception_flags(&env->active_fpu.fp_status)
> +                & (float_flag_invalid | float_flag_overflow)) {
> +            if (float64_is_any_nan(fdt0)) {
> +                dt2 = 0;
> +            } else {
> +                if (float64_is_neg(fdt0))
> +                    dt2 = INT64_MIN;
> +                else
> +                    dt2 = INT64_MAX;
> +            }
> +        }
> +    } else {
> +        if (get_float_exception_flags(&env->active_fpu.fp_status)
> +                & (float_flag_invalid | float_flag_overflow)) {
> +            dt2 = FP_TO_INT64_OVERFLOW;
> +        }

Better to swap the tests here, so that you test the exception flags first (and
once).  That is the exceptional condition, the one that will be true least
often.  After that, FCR31_NAN2008 will be tested only when needed.

But also, this pattern is replicated so many times you'd do well to pull this
sequence out to helper functions (one for s, one for d).

> +uint64_t helper_float_abs_d(CPUMIPSState *env, uint64_t fdt0)
> +{
> +    uint64_t fdt1;
> +
> +    if (env->active_fpu.fcr31 & (1 << FCR31_ABS2008)) {
> +        fdt1 = float64_abs(fdt0);
> +    } else {
> +        if (float64_is_neg(fdt0)) {
> +            fdt1 = float64_sub(0, fdt0, &env->active_fpu.fp_status);
> +        } else {
> +            fdt1 = float64_add(0, fdt0, &env->active_fpu.fp_status);
> +        }
> +        update_fcr31(env, GETPC());

Here you're better off using two separate helper functions, and chose the
correct one during translation.  Indeed, since the 2008 version is a simple
bit-flip, you needn't actually have a helper; just expand the sequence inline.


r~

^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 2/2] target-mips: Implement IEEE 754-2008 functionality for R6 and MSA instructions
  2016-03-28 21:49   ` Richard Henderson
  2016-03-30 19:28     ` Aleksandar Markovic
@ 2016-03-31 11:55     ` Aleksandar Markovic
  2016-03-31 16:30       ` Richard Henderson
  1 sibling, 1 reply; 22+ messages in thread
From: Aleksandar Markovic @ 2016-03-31 11:55 UTC (permalink / raw)
  To: Richard Henderson, qemu-devel
  Cc: peter.maydell, ehabkost, kbastian, mark.cave-ayland, agraf,
	Petar Jovanovic, blauwirbel, jcmvbkbc, Miodrag Dinic, qemu-arm,
	qemu-ppc, pbonzini, edgar.iglesias, gxt, Leon Alrae, afaerber,
	aurelien, proljc

Hi, Richard, what would you think about this approach:

Functionality of <ABS|NEG>.<S|D> and <CVT|FLOOR|CEIL|TRUNC|ROUND>.<L|W>.<S|D>
instructions is dependent on flags ABS2008 and NAN2008 in FCR31. There are
MIPS architectures (for example mips32r5) that allow implementations
with different values of these flags. So, in order to detect the desired
behavior in translate-time, insn_flags field can't be used - and, therefore,
it makes sense to add two new members to the MIPS's DisasContext:

typedef struct DisasContext {
    . . .
    bool nan2008;
    bool abs2008;
} DisasContext;

Their initialization could be in gen_intermediate_code_internal():

    ctx.nan2008 = (env->active_fpu.fcr31 >> FCR31_NAN2008) & 1;
    ctx.abs2008 = (env->active_fpu.fcr31 >> FCR31_ABS2008) & 1;

Now, ABS.D (and all <ABS|NEG>.<S|D>) handling might look like this:

    case OPC_ABS_D:
        check_cp1_registers(ctx, fs | fd);
        {
            TCGv_i64 fp0 = tcg_temp_new_i64();

            gen_load_fpr64(ctx, fp0, fs);
            if (ctx->abs2008) {
                tcg_gen_andi_i64(fp0, fp0, 0x7fffffffffffffffULL);
            } else {
                gen_helper_float_abs_d(fp0, fp0);
            }
            gen_store_fpr64(ctx, fp0, fd);
            tcg_temp_free_i64(fp0);
        }
        opn = "abs.d";
        break;

Here, 2008-style ABS.D is implemented inline, without a helper, and
gen_helper_float_abs_d() is an old pre-2008 helper that would be intact
(the same as it is currently) with this change.

On the other hand, CVT.L.D (and all <CVT|FLOOR|CEIL|TRUNC|ROUND>.<L|W>.<S|D>)
handling would take this form:

    case OPC_CVT_L_D:
        check_cp1_64bitmode(ctx);
        {
            TCGv_i64 fp0 = tcg_temp_new_i64();

            gen_load_fpr64(ctx, fp0, fs);
            if (ctx->nan2008) {
                gen_helper_float_cvt_2008_l_d(fp0, cpu_env, fp0);
            } else {
                gen_helper_float_cvt_l_d(fp0, cpu_env, fp0);
            }
            gen_store_fpr64(ctx, fp0, fd);
            tcg_temp_free_i64(fp0);
        }
        opn = "cvt.l.d";
        break;

Function helper_float_cvt_2008_l_d() is a new, only-2008-style helper for
CVT.L.D and would look like this:

uint64_t helper_float_cvt_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
{
    uint64_t dt2;

    dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
    if (get_float_exception_flags(&env->active_fpu.fp_status)
            & (float_flag_invalid | float_flag_overflow)) {
        dt2 = DBL_TO_INT64_OVERFLOW(fdt0)
    }
    update_fcr31(env, GETPC());
    return dt2;
}

(macro DBL_TO_INT64_OVERFLOW(x) would be defined this way:

#define DBL_TO_INT64_OVERFLOW(x)                                             \
    float64_is_any_nan(x) ? 0 : (float64_is_neg(x) ? INT64_MIN : INT64_MAX);

to avoid awkward repeating "if" statements in multiple headers)

gen_helper_float_cvt_l_d() and all old style helpers for instructions
<CVT|FLOOR|CEIL|TRUNC|ROUND>.<L|W>.<S|D> would remain the same.

Please let me know about your opinion. I greatly appreciate your kind
consideration of this matter. I am looking forward to hearing from you.

Yours,
Aleksandar
________________________________________
From: qemu-devel-bounces+aleksandar.markovic=imgtec.com@nongnu.org [qemu-devel-bounces+aleksandar.markovic=imgtec.com@nongnu.org] on behalf of Richard Henderson [rth@twiddle.net]
Sent: Monday, March 28, 2016 2:49 PM
To: Aleksandar Markovic; qemu-devel@nongnu.org
Cc: peter.maydell@linaro.org; ehabkost@redhat.com; kbastian@mail.uni-paderborn.de; mark.cave-ayland@ilande.co.uk; agraf@suse.de; Petar Jovanovic; blauwirbel@gmail.com; jcmvbkbc@gmail.com; Miodrag Dinic; qemu-arm@nongnu.org; qemu-ppc@nongnu.org; edgar.iglesias@gmail.com; pbonzini@redhat.com; gxt@mprc.pku.edu.cn; Leon Alrae; afaerber@suse.de; aurelien@aurel32.net; proljc@gmail.com
Subject: Re: [Qemu-devel] [PATCH 2/2] target-mips: Implement IEEE 754-2008 functionality for R6 and MSA instructions

On 03/25/2016 05:50 AM, Aleksandar Markovic wrote:
> @@ -2621,9 +2621,23 @@ uint64_t helper_float_cvtl_d(CPUMIPSState *env, uint64_t fdt0)
>       uint64_t dt2;
>
>       dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
> -    if (get_float_exception_flags(&env->active_fpu.fp_status)
> -        & (float_flag_invalid | float_flag_overflow)) {
> -        dt2 = FP_TO_INT64_OVERFLOW;
> +    if (env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) {
> +        if (get_float_exception_flags(&env->active_fpu.fp_status)
> +                & (float_flag_invalid | float_flag_overflow)) {
> +            if (float64_is_any_nan(fdt0)) {
> +                dt2 = 0;
> +            } else {
> +                if (float64_is_neg(fdt0))
> +                    dt2 = INT64_MIN;
> +                else
> +                    dt2 = INT64_MAX;
> +            }
> +        }
> +    } else {
> +        if (get_float_exception_flags(&env->active_fpu.fp_status)
> +                & (float_flag_invalid | float_flag_overflow)) {
> +            dt2 = FP_TO_INT64_OVERFLOW;
> +        }

Better to swap the tests here, so that you test the exception flags first (and
once).  That is the exceptional condition, the one that will be true least
often.  After that, FCR31_NAN2008 will be tested only when needed.

But also, this pattern is replicated so many times you'd do well to pull this
sequence out to helper functions (one for s, one for d).

> +uint64_t helper_float_abs_d(CPUMIPSState *env, uint64_t fdt0)
> +{
> +    uint64_t fdt1;
> +
> +    if (env->active_fpu.fcr31 & (1 << FCR31_ABS2008)) {
> +        fdt1 = float64_abs(fdt0);
> +    } else {
> +        if (float64_is_neg(fdt0)) {
> +            fdt1 = float64_sub(0, fdt0, &env->active_fpu.fp_status);
> +        } else {
> +            fdt1 = float64_add(0, fdt0, &env->active_fpu.fp_status);
> +        }
> +        update_fcr31(env, GETPC());

Here you're better off using two separate helper functions, and chose the
correct one during translation.  Indeed, since the 2008 version is a simple
bit-flip, you needn't actually have a helper; just expand the sequence inline.


r~

^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 2/2] target-mips: Implement IEEE 754-2008 functionality for R6 and MSA instructions
  2016-03-31 11:55     ` Aleksandar Markovic
@ 2016-03-31 16:30       ` Richard Henderson
  0 siblings, 0 replies; 22+ messages in thread
From: Richard Henderson @ 2016-03-31 16:30 UTC (permalink / raw)
  To: Aleksandar Markovic, qemu-devel
  Cc: peter.maydell, ehabkost, kbastian, mark.cave-ayland, agraf,
	Petar Jovanovic, blauwirbel, jcmvbkbc, Miodrag Dinic, qemu-arm,
	qemu-ppc, pbonzini, edgar.iglesias, gxt, Leon Alrae, afaerber,
	aurelien, proljc

On 03/31/2016 04:55 AM, Aleksandar Markovic wrote:
> Hi, Richard, what would you think about this approach:
> 
> Functionality of <ABS|NEG>.<S|D> and <CVT|FLOOR|CEIL|TRUNC|ROUND>.<L|W>.<S|D>
> instructions is dependent on flags ABS2008 and NAN2008 in FCR31. There are
> MIPS architectures (for example mips32r5) that allow implementations
> with different values of these flags. So, in order to detect the desired
> behavior in translate-time, insn_flags field can't be used - and, therefore,
> it makes sense to add two new members to the MIPS's DisasContext:
> 
> typedef struct DisasContext {
>     . . .
>     bool nan2008;
>     bool abs2008;
> } DisasContext;
> 
> Their initialization could be in gen_intermediate_code_internal():
> 
>     ctx.nan2008 = (env->active_fpu.fcr31 >> FCR31_NAN2008) & 1;
>     ctx.abs2008 = (env->active_fpu.fcr31 >> FCR31_ABS2008) & 1;
> 
> Now, ABS.D (and all <ABS|NEG>.<S|D>) handling might look like this:
> 
>     case OPC_ABS_D:
>         check_cp1_registers(ctx, fs | fd);
>         {
>             TCGv_i64 fp0 = tcg_temp_new_i64();
> 
>             gen_load_fpr64(ctx, fp0, fs);
>             if (ctx->abs2008) {
>                 tcg_gen_andi_i64(fp0, fp0, 0x7fffffffffffffffULL);
>             } else {
>                 gen_helper_float_abs_d(fp0, fp0);
>             }
>             gen_store_fpr64(ctx, fp0, fd);
>             tcg_temp_free_i64(fp0);
>         }
>         opn = "abs.d";
>         break;
> 
> Here, 2008-style ABS.D is implemented inline, without a helper, and
> gen_helper_float_abs_d() is an old pre-2008 helper that would be intact
> (the same as it is currently) with this change.

Yes, that's exactly what I had in mind.

> On the other hand, CVT.L.D (and all <CVT|FLOOR|CEIL|TRUNC|ROUND>.<L|W>.<S|D>)
> handling would take this form:
> 
>     case OPC_CVT_L_D:
>         check_cp1_64bitmode(ctx);
>         {
>             TCGv_i64 fp0 = tcg_temp_new_i64();
> 
>             gen_load_fpr64(ctx, fp0, fs);
>             if (ctx->nan2008) {
>                 gen_helper_float_cvt_2008_l_d(fp0, cpu_env, fp0);
>             } else {
>                 gen_helper_float_cvt_l_d(fp0, cpu_env, fp0);
>             }
>             gen_store_fpr64(ctx, fp0, fd);
>             tcg_temp_free_i64(fp0);
>         }
>         opn = "cvt.l.d";
>         break;
> 
> Function helper_float_cvt_2008_l_d() is a new, only-2008-style helper for
> CVT.L.D and would look like this:
> 
> uint64_t helper_float_cvt_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
> {
>     uint64_t dt2;
> 
>     dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
>     if (get_float_exception_flags(&env->active_fpu.fp_status)
>             & (float_flag_invalid | float_flag_overflow)) {
>         dt2 = DBL_TO_INT64_OVERFLOW(fdt0)
>     }
>     update_fcr31(env, GETPC());
>     return dt2;
> }

That looks fine as well.



r~

^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit
  2016-03-25 12:50 ` [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit Aleksandar Markovic
  2016-03-28 21:36   ` Richard Henderson
  2016-03-29 12:50   ` Bastian Koppelmann
@ 2016-04-01 19:02   ` Leon Alrae
  2016-04-03 14:25     ` Aleksandar Markovic
  2 siblings, 1 reply; 22+ messages in thread
From: Leon Alrae @ 2016-04-01 19:02 UTC (permalink / raw)
  To: Aleksandar Markovic, qemu-devel
  Cc: peter.maydell, ehabkost, proljc, mark.cave-ayland, agraf,
	kbastian, petar.jovanovic, blauwirbel, jcmvbkbc, miodrag.dinic,
	qemu-arm, qemu-ppc, edgar.iglesias, pbonzini, gxt, afaerber,
	aurelien, rth

On 25/03/16 12:50, Aleksandar Markovic wrote:
>  /*----------------------------------------------------------------------------
>  | The pattern for a default generated single-precision NaN.
>  *----------------------------------------------------------------------------*/
> +float32 float32_default_nan(float_status *status) {
>  #if defined(TARGET_SPARC)
> -const float32 float32_default_nan = const_float32(0x7FFFFFFF);
> +    return const_float32(0x7FFFFFFF);
>  #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
>        defined(TARGET_XTENSA) || defined(TARGET_S390X) || defined(TARGET_TRICORE)
> -const float32 float32_default_nan = const_float32(0x7FC00000);
> -#elif SNAN_BIT_IS_ONE
> -const float32 float32_default_nan = const_float32(0x7FBFFFFF);
> +    return const_float32(0x7FC00000);
>  #else
> -const float32 float32_default_nan = const_float32(0xFFC00000);
> +    if (status->snan_bit_is_one)
> +        return const_float32(0x7FBFFFFF);
> +    else
> +        return const_float32(0xFFC00000);

Here for MIPS (when FCR31.NAN2008 is set) we should generate 0x7FC00000
for single-precision. Reference:
"MIPS Architecture For Programmers, Volume I-A: Introduction to the
MIPS64 Architecture", Imagination Technologies LTD., Document Number:
MD00083, Revision 6.01, August 20, 2014, Table 6.3 "Value Supplied When
a New Quiet NaN Is Created", p. 84

Also, for double-precision we should generate 0x7FF8000000000000.

Thanks,
Leon

^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 2/2] target-mips: Implement IEEE 754-2008 functionality for R6 and MSA instructions
  2016-03-25 12:50 ` [Qemu-devel] [PATCH 2/2] target-mips: Implement IEEE 754-2008 functionality for R6 and MSA instructions Aleksandar Markovic
  2016-03-28 21:49   ` Richard Henderson
@ 2016-04-01 19:07   ` Leon Alrae
  2016-04-03 15:05     ` Aleksandar Markovic
  1 sibling, 1 reply; 22+ messages in thread
From: Leon Alrae @ 2016-04-01 19:07 UTC (permalink / raw)
  To: Aleksandar Markovic, qemu-devel
  Cc: peter.maydell, ehabkost, proljc, mark.cave-ayland, agraf,
	kbastian, petar.jovanovic, blauwirbel, jcmvbkbc, miodrag.dinic,
	qemu-arm, qemu-ppc, edgar.iglesias, pbonzini, gxt, afaerber,
	aurelien, rth

On 25/03/16 12:50, Aleksandar Markovic wrote:
> +#define MSA_CLASS_SIGNALING_NAN      0x001
> +#define MSA_CLASS_QUIET_NAN          0x002
> +#define MSA_CLASS_NEGATIVE_INFINITY  0x004
> +#define MSA_CLASS_NEGATIVE_NORMAL    0x008
> +#define MSA_CLASS_NEGATIVE_SUBNORMAL 0x010
> +#define MSA_CLASS_NEGATIVE_ZERO      0x020
> +#define MSA_CLASS_POSITIVE_INFINITY  0x040
> +#define MSA_CLASS_POSITIVE_NORMAL    0x080
> +#define MSA_CLASS_POSITIVE_SUBNORMAL 0x100
> +#define MSA_CLASS_POSITIVE_ZERO      0x200
> +
> +#define MSA_CLASS(name, bits)                                        \
> +uint ## bits ## _t helper_msa_ ## name (CPUMIPSState *env,           \
> +                                        uint ## bits ## _t arg)      \
> +{                                                                    \
> +    if (float ## bits ## _is_signaling_nan(arg,                      \
> +                &env->active_tc.msa_fp_status)) {                    \
> +        return MSA_CLASS_SIGNALING_NAN;                              \
> +    } else if (float ## bits ## _is_quiet_nan(arg,                   \
> +                    &env->active_tc.msa_fp_status)) {                \
> +        return MSA_CLASS_QUIET_NAN;                                  \
> +    } else if (float ## bits ## _is_neg(arg)) {                      \
> +        if (float ## bits ## _is_infinity(arg)) {                    \
> +            return MSA_CLASS_NEGATIVE_INFINITY;                      \
> +        } else if (float ## bits ## _is_zero(arg)) {                 \
> +            return MSA_CLASS_NEGATIVE_ZERO;                          \
> +        } else if (float ## bits ## _is_zero_or_denormal(arg)) {     \
> +            return MSA_CLASS_NEGATIVE_SUBNORMAL;                     \
> +        } else {                                                     \
> +            return MSA_CLASS_NEGATIVE_NORMAL;                        \
> +        }                                                            \
> +    } else {                                                         \
> +        if (float ## bits ## _is_infinity(arg)) {                    \
> +            return MSA_CLASS_POSITIVE_INFINITY;                      \
> +        } else if (float ## bits ## _is_zero(arg)) {                 \
> +            return MSA_CLASS_POSITIVE_ZERO;                          \
> +        } else if (float ## bits ## _is_zero_or_denormal(arg)) {     \
> +            return MSA_CLASS_POSITIVE_SUBNORMAL;                     \
> +        } else {                                                     \
> +            return MSA_CLASS_POSITIVE_NORMAL;                        \
> +        }                                                            \
> +    }                                                                \
> +}

Duplicating the class operation is unnecessary. We can just have common
function for FPU and MSA which takes additional float_status argument.

Also I noticed that this patch series doesn't provide Flush Subnormals
(the FCSR.FS bit), but probably this functionality can come later...

Leon

^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit
  2016-04-01 19:02   ` Leon Alrae
@ 2016-04-03 14:25     ` Aleksandar Markovic
  2016-04-04 16:10       ` Leon Alrae
  0 siblings, 1 reply; 22+ messages in thread
From: Aleksandar Markovic @ 2016-04-03 14:25 UTC (permalink / raw)
  To: Leon Alrae, Aleksandar Markovic, qemu-devel
  Cc: peter.maydell, ehabkost, kbastian, rth, mark.cave-ayland, agraf,
	Petar Jovanovic, blauwirbel, jcmvbkbc, Miodrag Dinic, qemu-arm,
	qemu-ppc, pbonzini, edgar.iglesias, gxt, afaerber, aurelien,
	proljc

I truly appreciate your guidance and bringing this matter to my attention.

It just seems to me that, in similar case, 16-bit default NaN value should be 0x7E00. This value is needed for MSA operations. ("MIPS Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module", Revision 1.12, (february 3, 2016), page 52, table 3.7 "Default NaN Encodings")

I plan to include all three corrections in the next version of this patch set. Please, let me know if you think that I should not.

Yours,
Aleksandar



________________________________________
From: qemu-devel-bounces+aleksandar.markovic=imgtec.com@nongnu.org [qemu-devel-bounces+aleksandar.markovic=imgtec.com@nongnu.org] on behalf of Leon Alrae
Sent: Friday, April 01, 2016 12:02 PM
To: Aleksandar Markovic; qemu-devel@nongnu.org
Cc: peter.maydell@linaro.org; ehabkost@redhat.com; proljc@gmail.com; mark.cave-ayland@ilande.co.uk; agraf@suse.de; kbastian@mail.uni-paderborn.de; Petar Jovanovic; blauwirbel@gmail.com; jcmvbkbc@gmail.com; Miodrag Dinic; qemu-arm@nongnu.org; qemu-ppc@nongnu.org; edgar.iglesias@gmail.com; pbonzini@redhat.com; gxt@mprc.pku.edu.cn; afaerber@suse.de; aurelien@aurel32.net; rth@twiddle.net
Subject: Re: [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit

On 25/03/16 12:50, Aleksandar Markovic wrote:
>  /*----------------------------------------------------------------------------
>  | The pattern for a default generated single-precision NaN.
>  *----------------------------------------------------------------------------*/
> +float32 float32_default_nan(float_status *status) {
>  #if defined(TARGET_SPARC)
> -const float32 float32_default_nan = const_float32(0x7FFFFFFF);
> +    return const_float32(0x7FFFFFFF);
>  #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
>        defined(TARGET_XTENSA) || defined(TARGET_S390X) || defined(TARGET_TRICORE)
> -const float32 float32_default_nan = const_float32(0x7FC00000);
> -#elif SNAN_BIT_IS_ONE
> -const float32 float32_default_nan = const_float32(0x7FBFFFFF);
> +    return const_float32(0x7FC00000);
>  #else
> -const float32 float32_default_nan = const_float32(0xFFC00000);
> +    if (status->snan_bit_is_one)
> +        return const_float32(0x7FBFFFFF);
> +    else
> +        return const_float32(0xFFC00000);

Here for MIPS (when FCR31.NAN2008 is set) we should generate 0x7FC00000
for single-precision. Reference:
"MIPS Architecture For Programmers, Volume I-A: Introduction to the
MIPS64 Architecture", Imagination Technologies LTD., Document Number:
MD00083, Revision 6.01, August 20, 2014, Table 6.3 "Value Supplied When
a New Quiet NaN Is Created", p. 84

Also, for double-precision we should generate 0x7FF8000000000000.

Thanks,
Leon


^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 2/2] target-mips: Implement IEEE 754-2008 functionality for R6 and MSA instructions
  2016-04-01 19:07   ` Leon Alrae
@ 2016-04-03 15:05     ` Aleksandar Markovic
  0 siblings, 0 replies; 22+ messages in thread
From: Aleksandar Markovic @ 2016-04-03 15:05 UTC (permalink / raw)
  To: Leon Alrae
  Cc: peter.maydell, ehabkost, proljc, mark.cave-ayland, qemu-devel,
	kbastian, agraf, blauwirbel, jcmvbkbc, miodrag.dinic, qemu-arm,
	qemu-ppc, petar.jovanovic, edgar.iglesias, pbonzini, gxt,
	afaerber, aurelien, rth

[-- Attachment #1: Type: text/plain, Size: 4849 bytes --]


Hello, Leon, thank you very much for the kind feedback. Let me clarify my take on the involved issues.

1) Class operations

I am going to correct the code as you hinted.

The reason I wanted separate handling of MSA class operation is code and module decoupling. Handling of MSA instructions (in file msa_helper.c) and regular instructions (in file op_helper.c) have many overlaping areas - however, my understanding is that the designer of MSA module wanted it to be as independant on code in other files/modulas as possible. Handling class operation is on of the rare instances where code in msa_helper.c relies on the code in op_helper.c., and it made sense to me that this dependence should be removed, for the sake of consistency within MSA module - even if the functionalitied are virtually identical. That said, I will anyway listen to your advice, since you most probably see more than myself regarding this, and I am going to revert to a single handling of class operations, for both MSA and regular versions.

2) Flush subnormals

My impression is that his set of features should be treated and implemented separately, at some later point in time.

Although the implementation seems not to be too complex (defining FCR31_FS, invoking appropriately set_flush_to_zero() and set_flush_inputs_to_zero() on CPU init, plus special exception handling, like it is already done for MSA equivalents), it looks to me that it would have added a lot of risk into a patch series that is already touching a lot of sensitive areas, and therefore introducing a lot of risks. Once this patch series is hopefully intergrated, flush subnormals will be much easier to integrate, since it will be mips-only issue. Therefore, if you agree, I will leave it for the future. I will definitely mention it in commit messages though (as a limitaion), for future reference.

Thanks again for your consideration of this matter.

Sincerely yours,
Aleksandar


-------- Original Message --------
Subject: Re: [PATCH 2/2] target-mips: Implement IEEE 754-2008 functionality for R6 and MSA instructions
Date: Friday, April 1, 2016 21:07 CEST
From: Leon Alrae <leon.alrae@imgtec.com>
To: Aleksandar Markovic <aleksandar.markovic@rt-rk.com>,<qemu-devel@nongnu.org>
CC: <qemu-arm@nongnu.org>, <qemu-ppc@nongnu.org>, <aurelien@aurel32.net>,<peter.maydell@linaro.org>, <rth@twiddle.net>, <afaerber@suse.de>,<pbonzini@redhat.com>, <ehabkost@redhat.com>, <edgar.iglesias@gmail.com>,<proljc@gmail.com>, <agraf@suse.de>, <blauwirbel@gmail.com>,<mark.cave-ayland@ilande.co.uk>, <gxt@mprc.pku.edu.cn>,<petar.jovanovic@imgtec.com>, <miodrag.dinic@imgtec.com>,<jcmvbkbc@gmail.com>, <kbastian@mail.uni-paderborn.de>
References: <1458910214-12239-1-git-send-email-aleksandar.markovic@rt-rk.com><1458910214-12239-3-git-send-email-aleksandar.markovic@rt-rk.com>


 On 25/03/16 12:50, Aleksandar Markovic wrote:
> +#define MSA_CLASS_SIGNALING_NAN 0x001
> +#define MSA_CLASS_QUIET_NAN 0x002
> +#define MSA_CLASS_NEGATIVE_INFINITY 0x004
> +#define MSA_CLASS_NEGATIVE_NORMAL 0x008
> +#define MSA_CLASS_NEGATIVE_SUBNORMAL 0x010
> +#define MSA_CLASS_NEGATIVE_ZERO 0x020
> +#define MSA_CLASS_POSITIVE_INFINITY 0x040
> +#define MSA_CLASS_POSITIVE_NORMAL 0x080
> +#define MSA_CLASS_POSITIVE_SUBNORMAL 0x100
> +#define MSA_CLASS_POSITIVE_ZERO 0x200
> +
> +#define MSA_CLASS(name, bits) \
> +uint ## bits ## _t helper_msa_ ## name (CPUMIPSState *env, \
> + uint ## bits ## _t arg) \
> +{ \
> + if (float ## bits ## _is_signaling_nan(arg, \
> + &env->active_tc.msa_fp_status)) { \
> + return MSA_CLASS_SIGNALING_NAN; \
> + } else if (float ## bits ## _is_quiet_nan(arg, \
> + &env->active_tc.msa_fp_status)) { \
> + return MSA_CLASS_QUIET_NAN; \
> + } else if (float ## bits ## _is_neg(arg)) { \
> + if (float ## bits ## _is_infinity(arg)) { \
> + return MSA_CLASS_NEGATIVE_INFINITY; \
> + } else if (float ## bits ## _is_zero(arg)) { \
> + return MSA_CLASS_NEGATIVE_ZERO; \
> + } else if (float ## bits ## _is_zero_or_denormal(arg)) { \
> + return MSA_CLASS_NEGATIVE_SUBNORMAL; \
> + } else { \
> + return MSA_CLASS_NEGATIVE_NORMAL; \
> + } \
> + } else { \
> + if (float ## bits ## _is_infinity(arg)) { \
> + return MSA_CLASS_POSITIVE_INFINITY; \
> + } else if (float ## bits ## _is_zero(arg)) { \
> + return MSA_CLASS_POSITIVE_ZERO; \
> + } else if (float ## bits ## _is_zero_or_denormal(arg)) { \
> + return MSA_CLASS_POSITIVE_SUBNORMAL; \
> + } else { \
> + return MSA_CLASS_POSITIVE_NORMAL; \
> + } \
> + } \
> +}

Duplicating the class operation is unnecessary. We can just have common
function for FPU and MSA which takes additional float_status argument.

Also I noticed that this patch series doesn't provide Flush Subnormals
(the FCSR.FS bit), but probably this functionality can come later...

Leon


 

[-- Attachment #2: Type: text/html, Size: 5565 bytes --]

^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit
  2016-03-28 21:36   ` Richard Henderson
@ 2016-04-04 13:21     ` Aleksandar Markovic
  2016-04-04 13:31       ` Peter Maydell
  0 siblings, 1 reply; 22+ messages in thread
From: Aleksandar Markovic @ 2016-04-04 13:21 UTC (permalink / raw)
  To: Richard Henderson, qemu-devel
  Cc: peter.maydell, ehabkost, kbastian, mark.cave-ayland, agraf,
	Petar Jovanovic, blauwirbel, jcmvbkbc, Miodrag Dinic, qemu-arm,
	qemu-ppc, pbonzini, edgar.iglesias, gxt, Leon Alrae, afaerber,
	aurelien, proljc

Hello, Richard.

I truly appreciate your guidance, it is of tremendous help to me.

I plan to address all issues you brought up in this mail in the V2 of my patch series.

All is clear to me, except some subtleties regarding initialization of platforms.
More specifically, for setting snan bit, I adopted this principle.

1. If target platform doesn't use SoftFloatLibrary, nothing is added.
      (cris, lm32, moxie)
2. Else, if target platform's signalling bit meaning is "1 is signalling",
   explicit invocation of set_snan_bit_is_one(1) is added.
      (mips, sh4, unicore32)
         (for mips this will change in the second patch of this series,
         but this very patch leaves mips features as they currently are.)
3. Else, if target platform explicitely sets other fields of its
   float_status structure(s), explicit invocation of
   set_snan_bit_is_one(0) is added.
      (arm, ppc, s390x, tricore)
4. Else, if target platform doesn't exlpcitely sets its structure CPUXXXState,
   explicit invocation of set_snan_bit_is_one(0) is added.
      (alpha, xtensa)
5. For remaining cases, nothing is added. (Those cases explicitely set
   their CPUXXXState to 0, and implicitly perform set_snan_bit_is_one(0).)
      (i386, m68k, microblaze, openrisc, sparc)

By platforms, this looks like following:

A. alpha - structure CPUAlphaState not explicitely set to 0s,
      explicit invocation of set_snan_bit_is_one(0) added
B. arm - explicitely sets other fields of float_status,
      explicit invocation of set_snan_bit_is_one(0) added
C. cris - does not use SoftFloat library, nothing added
D. i386 - structure CPUX86State explicitely set to 0s,
      nothing added (implicit set_snan_bit_is_one(0))
E. lm32 - does not use SoftFloat library, nothing added
F. m68k - structure CPUM68KState explicitely set to 0s,
      nothing added (implicit set_snan_bit_is_one(0))
G. microblaze - structure CPUMBState explicitely set to 0s,
      nothing added (implicit set_snan_bit_is_one(0))
H. mips - must explicitely invoke set_snan_bit_is_one(1)
I. moxie - does not use SoftFloat library, nothing added
J. openrisc - structure CPUOpenRISCState explicitely set to 0s,
      nothing added (implicit set_snan_bit_is_one(0))
K. ppc - explicitely sets other fields of float_status,
      explicit invocation of set_snan_bit_is_one(0) added
L. s390x - explicitely sets other fields of float_status,
      explicit invocation of set_snan_bit_is_one(0) added
M. sh4 - must explicitely invoke set_snan_bit_is_one(1)
N. sparc - structure CPUSPARCState explicitely set to 0s,
      nothing added (implicit set_snan_bit_is_one(0))
O. tricore - explicitely sets other fields of float_status,
      explicit invocation of set_snan_bit_is_one(0) added
P. unicore32 - must explicitely invoke set_snan_bit_is_one(1)
Q. xtensa - structure CPUXtensaState not explicitely set to 0s,
      explicit invocation of set_snan_bit_is_one(0) added

Does such approach look OK to you?

Feightfully yours,
Aleksandar



________________________________________
From: qemu-devel-bounces+aleksandar.markovic=imgtec.com@nongnu.org [qemu-devel-bounces+aleksandar.markovic=imgtec.com@nongnu.org] on behalf of Richard Henderson [rth@twiddle.net]
Sent: Monday, March 28, 2016 2:36 PM
To: Aleksandar Markovic; qemu-devel@nongnu.org
Cc: peter.maydell@linaro.org; ehabkost@redhat.com; kbastian@mail.uni-paderborn.de; mark.cave-ayland@ilande.co.uk; agraf@suse.de; Petar Jovanovic; blauwirbel@gmail.com; jcmvbkbc@gmail.com; Miodrag Dinic; qemu-arm@nongnu.org; qemu-ppc@nongnu.org; edgar.iglesias@gmail.com; pbonzini@redhat.com; gxt@mprc.pku.edu.cn; Leon Alrae; afaerber@suse.de; aurelien@aurel32.net; proljc@gmail.com
Subject: Re: [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit

On 03/25/2016 05:50 AM, Aleksandar Markovic wrote:
> +float16 float16_default_nan(float_status *status) {

{ on the next line.

> +        return const_float64(LIT64( 0xFFF8000000000000 ));

Let's please fix the horrible formatting in this file as we touch the lines,
please.

> -#define floatx80_default_nan_high 0x7FFF
> -#define floatx80_default_nan_low  LIT64(0xBFFFFFFFFFFFFFFF)
> -#else
> -#define floatx80_default_nan_high 0xFFFF
> -#define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
> -#endif
> +uint16_t floatx80_default_nan_high(float_status *status) {
> +uint64_t floatx80_default_nan_low(float_status *status) {

Why do you need two separate functions for this?

> +floatx80 floatx80_default_nan(float_status *status) {

Seems to me this one is good enough, and indeed preferable.

> -#define float128_default_nan_high LIT64(0x7FFF7FFFFFFFFFFF)
> -#define float128_default_nan_low  LIT64(0xFFFFFFFFFFFFFFFF)
...
> +float128 float128_default_nan(float_status *status) {

Likewise.


> diff --git a/target-alpha/cpu.c b/target-alpha/cpu.c
> index 2eab060..1714387 100644
> --- a/target-alpha/cpu.c
> +++ b/target-alpha/cpu.c
> @@ -277,6 +277,8 @@ static void alpha_cpu_initfn(Object *obj)
>   #endif
>       env->lock_addr = -1;
>       env->fen = 1;
> +
> +    set_snan_bit_is_one(0, &env->fp_status);

We've just done a memset of (most of) the entire cpu struct.  We don't need to
re-initialize this field to zero here.  Same with most of the other cpus.


r~

^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit
  2016-04-04 13:21     ` Aleksandar Markovic
@ 2016-04-04 13:31       ` Peter Maydell
  2016-04-04 19:37         ` Eduardo Habkost
  0 siblings, 1 reply; 22+ messages in thread
From: Peter Maydell @ 2016-04-04 13:31 UTC (permalink / raw)
  To: Aleksandar Markovic
  Cc: ehabkost, kbastian, mark.cave-ayland, agraf, qemu-devel,
	blauwirbel, jcmvbkbc, Miodrag Dinic, qemu-arm, qemu-ppc,
	Petar Jovanovic, pbonzini, edgar.iglesias, proljc, gxt,
	Leon Alrae, afaerber, aurelien, Richard Henderson

On 4 April 2016 at 14:21, Aleksandar Markovic
<Aleksandar.Markovic@imgtec.com> wrote:
> B. arm - explicitely sets other fields of float_status,
>       explicit invocation of set_snan_bit_is_one(0) added

We zero the float_status structs on reset, because they are earlier
in the CPUARMState structure than the 'features' field (and so the
memset() in arm_cpu_reset() will clear them). So you don't
need to explicitly zero a field like this. I expect the other
architectures are the same.

thanks
-- PMM

^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit
  2016-04-03 14:25     ` Aleksandar Markovic
@ 2016-04-04 16:10       ` Leon Alrae
  0 siblings, 0 replies; 22+ messages in thread
From: Leon Alrae @ 2016-04-04 16:10 UTC (permalink / raw)
  To: Aleksandar Markovic, Aleksandar Markovic, qemu-devel
  Cc: peter.maydell, ehabkost, kbastian, rth, mark.cave-ayland, agraf,
	Petar Jovanovic, blauwirbel, jcmvbkbc, Miodrag Dinic, qemu-arm,
	qemu-ppc, pbonzini, edgar.iglesias, gxt, afaerber, aurelien,
	proljc

On 03/04/16 15:25, Aleksandar Markovic wrote:
> It just seems to me that, in similar case, 16-bit default NaN value should be 0x7E00. This value is needed for MSA operations. ("MIPS Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module", Revision 1.12, (february 3, 2016), page 52, table 3.7 "Default NaN Encodings")
> 
> I plan to include all three corrections in the next version of this patch set. Please, let me know if you think that I should not.

Great, thanks.

Also, the pickNaNMulAdd() for MIPS requires updating to match "3.5.3 NaN
Propagation" from the same MSA doc:
"When two or three operands are NaN, the payload of the resulting NaN is
identical to the payload of one of the input NaNs selected from left to
right as described by the instruction format".
This indicates the "c, a, b" order instead of "a, b, c" which is
currently implemented.

Regards,
Leon

^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit
  2016-04-04 13:31       ` Peter Maydell
@ 2016-04-04 19:37         ` Eduardo Habkost
  2016-04-04 19:38           ` Peter Maydell
  0 siblings, 1 reply; 22+ messages in thread
From: Eduardo Habkost @ 2016-04-04 19:37 UTC (permalink / raw)
  To: Peter Maydell
  Cc: proljc, kbastian, mark.cave-ayland, qemu-devel, agraf,
	blauwirbel, jcmvbkbc, Aleksandar Markovic, qemu-arm, qemu-ppc,
	Petar Jovanovic, pbonzini, Miodrag Dinic, edgar.iglesias, gxt,
	Leon Alrae, afaerber, aurelien, Richard Henderson

On Mon, Apr 04, 2016 at 02:31:47PM +0100, Peter Maydell wrote:
> On 4 April 2016 at 14:21, Aleksandar Markovic
> <Aleksandar.Markovic@imgtec.com> wrote:
> > B. arm - explicitely sets other fields of float_status,
> >       explicit invocation of set_snan_bit_is_one(0) added
> 
> We zero the float_status structs on reset, because they are earlier
> in the CPUARMState structure than the 'features' field (and so the
> memset() in arm_cpu_reset() will clear them). So you don't
> need to explicitly zero a field like this. I expect the other
> architectures are the same.

Even if it is not zeroed on reset, it is zeroed on object_new().
Isn't that enough?

-- 
Eduardo

^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit
  2016-04-04 19:37         ` Eduardo Habkost
@ 2016-04-04 19:38           ` Peter Maydell
  2016-04-04 19:42             ` Eduardo Habkost
  0 siblings, 1 reply; 22+ messages in thread
From: Peter Maydell @ 2016-04-04 19:38 UTC (permalink / raw)
  To: Eduardo Habkost
  Cc: proljc, kbastian, mark.cave-ayland, qemu-devel, agraf,
	blauwirbel, jcmvbkbc, Aleksandar Markovic, qemu-arm, qemu-ppc,
	Petar Jovanovic, pbonzini, Miodrag Dinic, edgar.iglesias, gxt,
	Leon Alrae, afaerber, aurelien, Richard Henderson

On 4 April 2016 at 20:37, Eduardo Habkost <ehabkost@redhat.com> wrote:
> On Mon, Apr 04, 2016 at 02:31:47PM +0100, Peter Maydell wrote:
>> On 4 April 2016 at 14:21, Aleksandar Markovic
>> <Aleksandar.Markovic@imgtec.com> wrote:
>> > B. arm - explicitely sets other fields of float_status,
>> >       explicit invocation of set_snan_bit_is_one(0) added
>>
>> We zero the float_status structs on reset, because they are earlier
>> in the CPUARMState structure than the 'features' field (and so the
>> memset() in arm_cpu_reset() will clear them). So you don't
>> need to explicitly zero a field like this. I expect the other
>> architectures are the same.
>
> Even if it is not zeroed on reset, it is zeroed on object_new().
> Isn't that enough?

It must be zeroed on reset, otherwise we won't get the right
behaviour if you reset the CPU after running it for a bit.
object_new() zeroing is not sufficient.

thanks
-- PMM

^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit
  2016-04-04 19:38           ` Peter Maydell
@ 2016-04-04 19:42             ` Eduardo Habkost
  2016-04-04 19:46               ` Peter Maydell
  0 siblings, 1 reply; 22+ messages in thread
From: Eduardo Habkost @ 2016-04-04 19:42 UTC (permalink / raw)
  To: Peter Maydell
  Cc: proljc, kbastian, mark.cave-ayland, qemu-devel, agraf,
	blauwirbel, jcmvbkbc, Aleksandar Markovic, qemu-arm, qemu-ppc,
	Petar Jovanovic, pbonzini, Miodrag Dinic, edgar.iglesias, gxt,
	Leon Alrae, afaerber, aurelien, Richard Henderson

On Mon, Apr 04, 2016 at 08:38:54PM +0100, Peter Maydell wrote:
> On 4 April 2016 at 20:37, Eduardo Habkost <ehabkost@redhat.com> wrote:
> > On Mon, Apr 04, 2016 at 02:31:47PM +0100, Peter Maydell wrote:
> >> On 4 April 2016 at 14:21, Aleksandar Markovic
> >> <Aleksandar.Markovic@imgtec.com> wrote:
> >> > B. arm - explicitely sets other fields of float_status,
> >> >       explicit invocation of set_snan_bit_is_one(0) added
> >>
> >> We zero the float_status structs on reset, because they are earlier
> >> in the CPUARMState structure than the 'features' field (and so the
> >> memset() in arm_cpu_reset() will clear them). So you don't
> >> need to explicitly zero a field like this. I expect the other
> >> architectures are the same.
> >
> > Even if it is not zeroed on reset, it is zeroed on object_new().
> > Isn't that enough?
> 
> It must be zeroed on reset, otherwise we won't get the right
> behaviour if you reset the CPU after running it for a bit.
> object_new() zeroing is not sufficient.

The only calls to set_snan_bit_is_one() with non-zero arguments I
see on this patch are during CPU init or reset. How exactly would
the snan_bit_is_one field change to non-zero during runtime, to
require zeroing it again on reset?

-- 
Eduardo

^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit
  2016-04-04 19:42             ` Eduardo Habkost
@ 2016-04-04 19:46               ` Peter Maydell
  2016-04-04 19:56                 ` Eduardo Habkost
  0 siblings, 1 reply; 22+ messages in thread
From: Peter Maydell @ 2016-04-04 19:46 UTC (permalink / raw)
  To: Eduardo Habkost
  Cc: proljc, kbastian, mark.cave-ayland, qemu-devel, agraf,
	blauwirbel, jcmvbkbc, Aleksandar Markovic, qemu-arm, qemu-ppc,
	Petar Jovanovic, pbonzini, Miodrag Dinic, edgar.iglesias, gxt,
	Leon Alrae, afaerber, aurelien, Richard Henderson

On 4 April 2016 at 20:42, Eduardo Habkost <ehabkost@redhat.com> wrote:
> On Mon, Apr 04, 2016 at 08:38:54PM +0100, Peter Maydell wrote:
>> On 4 April 2016 at 20:37, Eduardo Habkost <ehabkost@redhat.com> wrote:
>> > On Mon, Apr 04, 2016 at 02:31:47PM +0100, Peter Maydell wrote:
>> >> On 4 April 2016 at 14:21, Aleksandar Markovic
>> >> <Aleksandar.Markovic@imgtec.com> wrote:
>> >> > B. arm - explicitely sets other fields of float_status,
>> >> >       explicit invocation of set_snan_bit_is_one(0) added
>> >>
>> >> We zero the float_status structs on reset, because they are earlier
>> >> in the CPUARMState structure than the 'features' field (and so the
>> >> memset() in arm_cpu_reset() will clear them). So you don't
>> >> need to explicitly zero a field like this. I expect the other
>> >> architectures are the same.
>> >
>> > Even if it is not zeroed on reset, it is zeroed on object_new().
>> > Isn't that enough?
>>
>> It must be zeroed on reset, otherwise we won't get the right
>> behaviour if you reset the CPU after running it for a bit.
>> object_new() zeroing is not sufficient.
>
> The only calls to set_snan_bit_is_one() with non-zero arguments I
> see on this patch are during CPU init or reset. How exactly would
> the snan_bit_is_one field change to non-zero during runtime, to
> require zeroing it again on reset?

I meant in general for these float_status flags, not anything
specific to this particular flag.

thanks
-- PMM

^ permalink raw reply	[flat|nested] 22+ messages in thread

* Re: [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit
  2016-04-04 19:46               ` Peter Maydell
@ 2016-04-04 19:56                 ` Eduardo Habkost
  0 siblings, 0 replies; 22+ messages in thread
From: Eduardo Habkost @ 2016-04-04 19:56 UTC (permalink / raw)
  To: Peter Maydell
  Cc: proljc, kbastian, mark.cave-ayland, agraf, qemu-devel,
	blauwirbel, jcmvbkbc, Aleksandar Markovic, qemu-arm, qemu-ppc,
	Petar Jovanovic, edgar.iglesias, Miodrag Dinic, pbonzini, gxt,
	Leon Alrae, afaerber, aurelien, Richard Henderson

On Mon, Apr 04, 2016 at 08:46:17PM +0100, Peter Maydell wrote:
> On 4 April 2016 at 20:42, Eduardo Habkost <ehabkost@redhat.com> wrote:
> > On Mon, Apr 04, 2016 at 08:38:54PM +0100, Peter Maydell wrote:
> >> On 4 April 2016 at 20:37, Eduardo Habkost <ehabkost@redhat.com> wrote:
> >> > On Mon, Apr 04, 2016 at 02:31:47PM +0100, Peter Maydell wrote:
> >> >> On 4 April 2016 at 14:21, Aleksandar Markovic
> >> >> <Aleksandar.Markovic@imgtec.com> wrote:
> >> >> > B. arm - explicitely sets other fields of float_status,
> >> >> >       explicit invocation of set_snan_bit_is_one(0) added
> >> >>
> >> >> We zero the float_status structs on reset, because they are earlier
> >> >> in the CPUARMState structure than the 'features' field (and so the
> >> >> memset() in arm_cpu_reset() will clear them). So you don't
> >> >> need to explicitly zero a field like this. I expect the other
> >> >> architectures are the same.
> >> >
> >> > Even if it is not zeroed on reset, it is zeroed on object_new().
> >> > Isn't that enough?
> >>
> >> It must be zeroed on reset, otherwise we won't get the right
> >> behaviour if you reset the CPU after running it for a bit.
> >> object_new() zeroing is not sufficient.
> >
> > The only calls to set_snan_bit_is_one() with non-zero arguments I
> > see on this patch are during CPU init or reset. How exactly would
> > the snan_bit_is_one field change to non-zero during runtime, to
> > require zeroing it again on reset?
> 
> I meant in general for these float_status flags, not anything
> specific to this particular flag.

Sorry, I misunderstood you.

I was talking about snan_bit_is_one, specifically. My point is
that all the set_snan_bit_is_one(0, ...) calls on this patch are
not necessary because object_new() already zeroed the field.

-- 
Eduardo

^ permalink raw reply	[flat|nested] 22+ messages in thread

end of thread, other threads:[~2016-04-04 19:56 UTC | newest]

Thread overview: 22+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2016-03-25 12:50 [Qemu-devel] [PATCH 0/2] target-mips: Fix IEEE 754-2008-related issues Aleksandar Markovic
2016-03-25 12:50 ` [Qemu-devel] [PATCH 1/2] softfloat: Enable run-time-configurable meaning of signaling NaN bit Aleksandar Markovic
2016-03-28 21:36   ` Richard Henderson
2016-04-04 13:21     ` Aleksandar Markovic
2016-04-04 13:31       ` Peter Maydell
2016-04-04 19:37         ` Eduardo Habkost
2016-04-04 19:38           ` Peter Maydell
2016-04-04 19:42             ` Eduardo Habkost
2016-04-04 19:46               ` Peter Maydell
2016-04-04 19:56                 ` Eduardo Habkost
2016-03-29 12:50   ` Bastian Koppelmann
2016-03-30 16:58     ` Aleksandar Markovic
2016-04-01 19:02   ` Leon Alrae
2016-04-03 14:25     ` Aleksandar Markovic
2016-04-04 16:10       ` Leon Alrae
2016-03-25 12:50 ` [Qemu-devel] [PATCH 2/2] target-mips: Implement IEEE 754-2008 functionality for R6 and MSA instructions Aleksandar Markovic
2016-03-28 21:49   ` Richard Henderson
2016-03-30 19:28     ` Aleksandar Markovic
2016-03-31 11:55     ` Aleksandar Markovic
2016-03-31 16:30       ` Richard Henderson
2016-04-01 19:07   ` Leon Alrae
2016-04-03 15:05     ` Aleksandar Markovic

This is an external index of several public inboxes,
see mirroring instructions on how to clone and mirror
all data and code used by this external index.